Strategia per la soluzione dei problemi tecnico-scientifici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Strategia per la soluzione dei problemi tecnico-scientifici"

Transcript

1 Sregi per l soluzione dei problemi ecnico-scienifici L soluzione degli esercizi può essere frusrne per gli sudeni, poiché il rggiungimeno del risulo correo è messo repenglio d vri fori: olre un buon conoscenz dell eori dell meri oggeo dell verific è necessrio seguire un sregi efficce, pplicndo corremene le regole dell memic. Se inolre non si è perfemene concenri è fcile commeere qulche errore dovuo ll disrzione. Si inuisce quindi che in un problem di medi complessià gli oscoli possono essere li d ridurre noevolmene l probbilià di rggiungere il risulo correo. Si forniscono lcune indiczioni sull sregi e sugli srumeni memici fondmenli che possono essere d iuo nell soluzione dell mggior pre dei problemi proposi nel eso, sopruo nei cpioli legi llo sudio dell eleroecnic e dell eleronic nlogic. Si vedrà che gli srumeni memici necessri sono in relà piuoso semplici, m devono essere mneggii con sicurezz; si consigli quindi di esercirsi, nche con l iuo dei esi e dell insegnne di memic. L sregi si svilupp nei segueni pssi. 1) nlizzre il eso del problem individundo i di fornii e le vribili incognie, soluzioni del problem. Qundo è possibile, rppresenre il problem schemicmene (disegno, schem elerico, schem blocchi ecc.) evidenzindo le vribili e individundo quelle noe e quelle incognie. 2) Individure le formule memiche che legno le grndezze in gioco. ) Se si dispone di un sol equzione che coniene un vribile incogni, esplicire l incogni come descrio l puno 3). b) In o conrrio si può: b1) scrivere un sisem di equzioni e risolvere; b2) individure l sequenz delle formule che consenono di ricvre i vlori di incognie inermedie, fino clcolre l incogni (o le incognie) che rppresen l soluzione del problem. 3) splicire l vribile incogni () in un equzione: ) lgebric di 1 grdo: y + b c soluzione y c b ( y c) b b ( y c) 2 b) lgebric di 2 grdo: + b+ c con soluzione ± 2 b b 4c 1,2 2 se il emine in è nullo si h: y 2 ± y Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 1

2 c) rigonomeric: y sen soluzione y y sen rcsen (sess cos per cos e g) d) esponenzile o logrimic: y 1 log 1 y y e ln y y y log 1 1 y ln lcune proprieà degli esponenzili e dei logrimi: 1 1 b 1 + b, log log e y, log b log + log b, log log logb b dy e) inegro-differenzile: y d d f) compless: y j + y soluzione y j j( y ) essendo j j 1 j 4) Sosiuire i vlori numerici delle vribili noe, desr dell uguglinz. Si fcci enzione inserire corremene il vlore, enendo cono del prefisso. pico: p 1 12 nno: n 1 9 micro: μ 1 6 milli: m 1 3 chilo: k 1 3 meg: M 1 6 gig: G 1 9 Per esempio: 15 pf F 5 cm,5 m 22 kω Ω,15 mm 2,15 m m 5) Imposre corremene il clcolo sull clcolrice. Leggere enmene le isruzioni dell clcolrice, in pricolre per ciò che rigurd l uso delle prenesi, l inserimeno dei vlori in nozione scienific, l predisposizione in rdini o in grdi per i clcoli rigonomerici, l conversione dei vlori r i sisemi di numerzione decimle, binrio ed esdecimle. 6) Il risulo oenuo è espresso nell unià di misur senz prefisso: Ω, m, m 2, F, ecc. In bse ll precisione richies scegliere il numero di cifre significive con cui rroondre il risulo; l cifr più significiv di un numero è l prim d sinisr divers d zero. Si disinguono due i. Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 2

3 ) ddizione e sorzione: il risulo deve conenere un numero di cifre decimli pri quelle dell operndo con minore numero di cifre decimli; per esempio nell seguene ddizione: 31, , , ,163 il risulo deve essere espresso con due cifre decimli, pri quelle del secondo ddendo, e quindi, rroondndo l cifr meno significiv, vle 46,16. b) Molipliczione e divisione: il prodoo o il quoziene deve vere un numero di cifre significive pri quelle del numero meno preciso coinvolo nel clcolo. Per esempio nel prodoo: 425,356,2566 2,5 27, i re operndi hnno rispeivmene sei, quro e due cifre significive; il risulo deve essere espresso con due cifre significive, rroondndo quell inferiore; vle quindi 27. 7) Uilizzre il prefisso più opporuno per esprimere il risulo nel modo più fcilmene leggibile; lcuni esempi:,245 24,5 μ 756 Hz 756 khz,458 F 458 nf L FIGUR 1 sineizz i pssggi ppen descrii. Si eng presene che è opporuno nlizzre criicmene i risuli oenui, in modo d poer evire errori mcroscopici; due modlià di conrollo dei risuli sono: l nlisi dimensionle delle formule, per rivelre errori durne l fse di esplicizione delle vribili; l nlisi dell ordine di grndezz dei vlori oenui, per rivelre evenuli errori di clcolo. Per esempio ponendo in prllelo due resisori ci si spe un resisenz equivlene inferiore quell più piccol r i due; se il risulo è differene signific che si è commesso un errore. nlizzre il eso e individure le incognie e i prmeri noi. Individure le formule che legno le vribili del problem. Trovre un sregi per esplicire le incognie. sempi di soluzione di esercizi Si fornisce or qulche esempio di ppliczione dell sregi e dei pssggi memici ppen descrii. Lo sudene non si preoccupi se lcuni esempi rno rgomeni che ncor non conosce; ciò che si vuole soolinere è che, un vol individue le formule uili l problem, l soluzione di quesi semplici problemi si svolge sempre con l sequenz sopr descri, i cui pssi sono richimi dll numerzione in colore. Sosiuire i vlori numerici dei prmeri noi ed eseguire i clcoli. sprimere i risuli con un numero opporuno di cifre significive, evenulmene impiegndo i prefissi. FIGUR 1 Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 3

4 Qule vlore di R 2 bisogn meere in prllelo R 1 2 Ω per oenere un resisenz equivlene pri R eq 18 Ω? 1) Si disegn lo schem elerico (FIGUR 2). R 1 2 Ω R 2? FIGUR 2 2) L formul memic (lgebric) che leg le vribili è: R eq R1R 2 R + R 1 2 3) Si esplici l incogni R 2 con i segueni pssggi: Req ( R1 + R2 ) R1R 2 ReqR1 + ReqR2 R1R 2 R R ReqR ReqR ReqR1 R2( R1 Req ) ReqR1 R2 R R 4-5) Si sosiuiscono i vlori numerici e si clcol il risulo: ReqR R2 2657,14 Ω R R eq ) Si considerno re cifre significive, come quelle dei di in ingresso, si rroond e si uilizz il prefisso più opporuno: R 2 2,66 kω eq Quno empo impieg un condensore C 1 μf, inizilmene scrico e limeno d un ensione 1 V rverso un resisenz R 1,2 kω, per cricrsi fino un ensione v c 7 V? 1) Si disegn lo schem elerico (FIGUR 3). R 1 1 V 1,2 kω C 1 µf v c FIGUR 3 2) L formul memic (esponenzile) che leg le vribili è: vc( ) (1 e RC ) 3) Si esplici l incogni (empo) con i segueni pssggi: vc( ) 1 e RC e RC vc( ) 1 v ln(1 c( ) ) RC v RC ln(1 c( ) ) Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 4

5 4-5) Si sosiuiscono i vlori numerici e si clcol il risulo: vc( ) RC ln(1 ) 1, ln(1 1 ),14448 s 6-7) Si considerno due cifre significive, come quelle dei di in ingresso, si rroond e si uilizz il prefisso più opporuno: 14 ms Quno dovrebbe essere lungo uno spezzone di filo di rme con resisivià ρ,22 Ω cm e sezione S 3, mm 2, per presenre un resisenz R 3,5 kω? 2) L formul memic (lgebric) che leg le vribili è: 3) Si esplici l incogni l: l R ρ S R S l ρ 4-5) Si sosiuiscono i vlori numerici (converendoli nelle unià bse: m, m 2 ecc.) e si clcol il risulo: R S l ρ, ,727 m 6-7) Si considerno due cifre significive, come quelle dei di in ingresso; l espressione senz prefisso, in queso o, è quell più fcilmene leggibile: l 48 m. qule ensione V corrisponde il livello L dbv 34 dv? 2) L formul memic (logrimic) che leg le vribili è: L 2log dv 1 V V (con V,775 V) 3) Si esplici l incogni V con i segueni pssggi: log 1 V Ldbv V 2 V V 1 Ldbv 2 V V 1 Ldv 2 4-5) Si sosiuiscono i vlori numerici e si clcol il risulo: Ldv V V 1,775 1, ) Si considerno re cifre significive, si rroond e si uilizz il prefisso più opporuno: V 15,5 mv Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 5

6 Clcolre l correne I 3 nel circuio in FIGUR 4. Suggerimeno: non essendo possibile rovre I 3 medine un formul unic, si procede con l sequenz (o 2b2): si clcol R equivlene (prllelo di R 2 e R 3 in serie R 1 ); si rov I 1 con l legge di Ohm; si ricv V R1 con l legge di Ohm; si ricvno V R2 V R3 con il principio di Kirchhoff per le ensioni; si rov infine I 3 con l legge di Ohm. I 1 R 1 1 kω 1 V V R1 R 2 1 kω R 3 5 Ω I 2 I 3 FIGUR 4 Due uomobili ( e ) si muovono velocià cosne lungo un uosrd; l uomobile viggi 1 km/h e si rov 3 km vni rispeo d, che viggi 12 km/h. Quno empo impieg per rggiungere? In qule puno dell uosrd vviene l inconro? 1) Il problem può essere schemizzo dll FIGUR 5. Sono noe le velocià cosni di (v 12 km/h) e di (v 1 km/h) e l posizione inizile di e di ( 3 km e km, ponendo lo zero del sisem di riferimeno nell posizione inizile di ); le incognie sono l inervllo di empo in cui vviene l inconro ( inc ) e l posizione dell inconro ( inc ). 2) Le formule d uilizzre sono quelle che descrivono il moo uniforme ( velocià cosne) di e di, enendo cono delle posizioni inizili: v v + 3) Nel puno d inconro le coordine di e coincidono, quindi : inc, d cui si deduce, uguglindo i secondi membri del sisem, v inc v inc +. Si ricv quindi l espressione di inc : inc v v che, sosiui nell prim equzione del sisem fornisce l posizione inc : 4-7) Sosiuendo i vlori noi si rov: inc v v inc inc v v 3,15 h v v 12 1 inc v inc 12,15 18 km (ssendo le velocià espresse in km/h, i clcoli forniscono i empi espressi in ore e le disnze in km.) Provimo riproporre il problem in ermini leggermene diversi; dll soluzione si no che le equzioni uilizze sono le sesse di prim m, essendo diverse le incognie, cmbi l sregi di soluzione. Due uomobili ( e ) si muovono velocià cosne lungo un uosrd; l uomobile viggi 1 km/h e si rov 3 km vni rispeo d. qule velocià dovrebbe viggire per rggiungere esmene in corrispondenz del prossimo ello, che si rov 2 km olre l posizione di? Dopo quno empo vverrebbe l inconro? Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 6

7 1) Il problem può essere schemizzo dll FIGUR 6. Sono noe: l velocià cosne di (v 1 km/h), l posizione inizile di e di ( 3 km, km, ponendo lo zero del sisem di riferimeno nell posizione inizile di ), l posizione del ello, in cui dovrà vvenire l inconro ( 23 km); le incognie sono l inervllo di empo in cui vverrà l inconro l ello ( ) e l velocià cosne v che deve mnenere per fr vvenire l inconro esmene in corrispondenz del ello. 2) Le formule d uilizzre sono le sesse del o precedene (moo uniforme): v v + 3) Il empo impiego d per rggiungere il ello si ricv esplicindo dll second equzione: v che, sosiuio nell prim equzione, consene di rovre l velocià che deve vere per inconrre l ello nello sesso isne : 4-7) Sosiuendo i vlori noi si rov: v v 23 3,2 h 1 v km/h,2 L propgzione degli errori I prmeri noi d inserire in un formul sono generlmene conosciui meno di un cero errore. Per esempio i li di un rengolo possono essere misuri (misur dire) con un mero, e il risulo dell misur srà noo meno di un cero errore, dipendene dll incerezz (precisione) dello srumeno (per esempio ±1 mm). L misur dei due li viene quindi espress medine l leur effeu e il relivo errore: bse b ± Δb lezz ± Δ Gli errori Δb e Δ sono dei errori ssolui; i rppori r gli errori ssolui e le misure effeue sono dei errori relivi: Δb/b e Δ/. Ci si chiede or: conoscendo gli errori che ffliggono i prmeri noi di un problem (per esempio risulni d misure diree), con qule errore sono clcole le vribili incognie, ricve con delle formule d li prmeri (misur indire)? sempi di misure indiree sono il clcolo del semiperimero e dell re di un rengolo, noi i li. L propgzione degli errori dipende dl ipo di operzioni preseni nell formul con cui si clcol l incogni; si cino i i più semplici: Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 7

8 molipliczione per un cosne K: K l errore ssoluo Δ si rov moliplicndo Δ per K: Δ K Δ Per esempio, noo un lo l di un qudro con errore Δl, l errore ssoluo sul perimero, che si rov con l formul p 4 l, è do d 4 Δl. somm o differenz di vribili: ± b l errore ssoluo Δ si rov sommndo gli errori ssolui Δ e Δb: Δ Δ + Δb Per esempio, noi i li e b di un rengolo con errori ssolui Δ e Δb, l errore ssoluo sul semiperimero, che si rov con l formul p/2 + b, è do d Δp/2 Δ + Δb. Si osservi che in un differenz, menre gli errori si sommno, il vlore risulne dll differenz può essere nche molo piccolo, se i ermini hnno vlori vicini r loro. Di conseguenz l errore relivo sul risulo porebbe essere elevo; se ne deduce che è bene evire misure indiree che nscono dll differenz r due prmeri noi di vlori comprbili. prodoo o divisione di vribili: b oppure : b l errore ssoluo Δ si rov sommndo gli errori relivi Δ/ e Δb/b: b + b Per esempio, noi i li e b di un rengolo con errori ssolui Δ e Δb, l errore ssoluo sull re, che si rov con l formul b, è do d Δ Δ/ + Δb/b. Queso file cosiuisce un pprofondimeno online dei corsi di eleroecnic ed eleronic di Sefno Mirndol Znichelli diore Sp, ologn [6126] 8

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1 Nicol De Ros, Liceo scienifico Americhe sessione ordinri, memicmene.i PROBLEMA Nel pino riferio coordine cresino Oy:. si sudi l funzione f e se ne rcci il grfico.. Si deermini l mpiezz degli ngoli individui

Dettagli

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato.

Stato quasi stabile: il circuito rimane in questo stato per un tempo prestabilito per poi passare nell altro stato. MULIIBRAORI i dice muliirore un circuio che può ere solo due possiili si dell usci. li si possono essere di due ipi: so sile, so qusi sile. o sile: il circuio rimne in queso so finché non si ineriene dll

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema Anlisi rnsiori L'nlisi dinmic rnsiori (de nche nlisi emporle) è un ecnic che consene di deerminre l rispos dinmic di un sruur sogge d un generic eccizione emporle Gli eei emporli sono li d rendere imporni

Dettagli

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una Cpiolo Le rslzioni. Richimi di eori Definizione. Si do un eore del pino. Si chim rslzione di eore (che si indic con il simolo ) l corrispondenz dl pino in sé che d ogni puno P ssoci il puno (P) = P le

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

Regime dell interesse composto.

Regime dell interesse composto. Regime dell ineresse composo Formule d usre : M = monne ; I = ineresse ; C = cpile ; r = fore di cpilizzzione K = somm d sconre ; s = sso di scono unirio ; i = sso di ineresse unirio V = vlore ule ; ν

Dettagli

Campi Elettromagnetici e Circuiti I Sinusoidi e fasori

Campi Elettromagnetici e Circuiti I Sinusoidi e fasori Fcolà di Ingegneri Universià degli sudi di Pvi Corso di Lure Triennle in Ingegneri Eleronic e Informic Cmpi Eleromgneici e Circuii I Sinusoidi e fsori Cmpi Eleromgneici e Circuii I.. 04/5 Prof. Luc Perregrini

Dettagli

TORSIONE SEMPLICE. 1 Analisi della torsione semplice. 2 Sezione circolare piena. 8 Sollecitazioni semplici

TORSIONE SEMPLICE. 1 Analisi della torsione semplice. 2 Sezione circolare piena. 8 Sollecitazioni semplici 8 Sollecizioni semplici TORSIONE SEMPLICE 1 1 Anlisi dell orsione semplice Si verific l sollecizione di orsione semplice qundo l risulne delle forze eserne reliv qulunque sezione è null e le forze eserne

Dettagli

Domande. 1. Sì. v x 12 x 23

Domande. 1. Sì. v x 12 x 23 Cpiolo Il moo reilineo Domnde. Sì.. Consider i quro semfori (e le loro disnze relive) mosri in figur. Supponi che ll isne 0 s il semforo diveni verde, menre gli lri sono ncor rossi. Il semforo deve divenre

Dettagli

3. Velocità istantanea

3. Velocità istantanea 3. Velocià isnne E possibile ssocire un velocià d ogni singolo isne? Immginimo un uo che rversi il cenro cidino ed osservimone il chimero sul cruscoo: qundo dimo gs l lnce si spos indicndo vlori grndi,

Dettagli

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi:

, proporzionale alla RH%, si fa riferimento allo schema di figura 3 composto dai seguenti blocchi: Esame di Sao di Isiuo Tecnico Indusriale A.S. 007/008 Indirizzo: ELETTRONICA E TELECOMUNICAZIONI Tema di: ELETTRONICA Si deve rilevare l umidià relaiva RH% presene in un ambiene, nell inervallo 0 90%,

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

LA SPINTA DELLE TERRE. Per spinta della terra si intende la pressione che un determinato masso di terra esercita contro un opera di sostegno.

LA SPINTA DELLE TERRE. Per spinta della terra si intende la pressione che un determinato masso di terra esercita contro un opera di sostegno. L INT DELLE TERRE er spin dell err si inende l pressione ce un deero msso di err eserci conro un oper di sosegno. e con un rmoggi si vers su un pino dell err incoerene (vedi figur, form un cumulo conico,

Dettagli

ITEC/REF E L Indice di Costo Termoelettrico. Formula

ITEC/REF E L Indice di Costo Termoelettrico. Formula ITC/RF L Indice di Coso Termoelerico Formul L formul dell indice ITC/RF è: ITC/RF (euro/mw) L formul di ITCccg/RF è: ITCccg/RF dove: i. è il mese di riferimeno dell indice ii. iii. e rppresenno le quoe

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI Esponenzili e logritmi ESPONENZIALI E LOGARITMI Potenze Fino d or si sono definite le potenze d esponenete intero e rzionle (si positivi che negtivi). Ripssimo le definizioni e i concetti che li rigurdno:

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

5. La trasformata di Laplace Esercizi

5. La trasformata di Laplace Esercizi 5. L rform di Lplce Eercizi Aggiornmeno: febbrio 3 p://www.cirm.unibo.i/~brozzi/mi/pdf/mi-cp.5-ee.pdf 5.. Inroduzione ll rform di Lplce 5.. Proprieà dell rform di Lplce 5.-. Coniderimo l funzione limi

Dettagli

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE

Università degli Studi di Cassino - FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA GESTIONALE Universià degli Sudi di assino - FOTÀ DI GGNI OSO DI U GGNI GSTION TTOTNI - prova scria del // SIZIO I - on riferimeno al seguene circuio, operane in regime sinusoidale, calcolare:. il circuio equivalene

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T

Tratto dal Corso di Telecomunicazioni Vol. I Ettore Panella Giuseppe Spalierno Edizioni Cupido. lim. 1 t 1 T rao dal Corso di elecomunicazioni Vol. I ore Panella Giuseppe Spalierno dizioni Cupido 4. nergia e Poenza Dao un segnale di ampiezza s() si definisce energia oale il valore del seguene inegrale: + / /

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

Diodi a giunzione p/n.

Diodi a giunzione p/n. iodi a giunzione p/n. 1 iodi a giunzione p/n. anodo caodo Fig. 1 - Simbolo e versi posiivi convenzionali per i diodi. diodi sono disposiivi eleronici a 2 erminali caraerizzai dalla proprieà di poer condurre

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Novità ADR 2013. Francesca Belinghieri. AssICC Milano, 13 marzo 2014

Novità ADR 2013. Francesca Belinghieri. AssICC Milano, 13 marzo 2014 Novià ADR 2013 Frncesc Belinghieri AssICC Milno, 13 mrzo 2014 Agend Novià ADR 2013 ADR spei pplicivi: - movimenzione e sivggio merci (crgo securing); - responsbilià dei soggei coinvoli nel rsporo di merci

Dettagli

Esercitazione 1: L operazionale 741. Università degli studi di Cagliari corso di laurea in ingegneria elettronica

Esercitazione 1: L operazionale 741. Università degli studi di Cagliari corso di laurea in ingegneria elettronica Eserciazione : L operazionale 74. Universià degli sudi di Cagliari corso di laurea in ingegneria eleronica Eserciazioni di ELETTONICA. marco.monni@diee.unica.i Lo scopo di quese eserciazioni è amiliarizzare

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

Equazioni alle differenze finite lineari

Equazioni alle differenze finite lineari Equzioni lle differenze finie lineri DEFINIZIONE : Si un funzione d e si hun cosne per cui hè nel dominio di se lo è. Allor D, l differenz primdi è quell funzione il cui vlore in, indico con D è do d:

Dettagli

Fisica Generale A. 2. Esercizi di Cinematica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)

Fisica Generale A. 2. Esercizi di Cinematica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) Fisic Generle A. Esercizi di Cinemic hp://cmpus.cib.unibo.i/57/ Esercizio 1 Un puno merile è incolo muoersi luno un uid reiline. Al empo il puno merile si ro in quiee. Il puno merile cceler con ccelerzione:

Dettagli

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di

temperatura; Trasporto di massa, calore e quantità di moto, relazioni di bilancio; La viscosità; Cenni di FISICA-TECNICA Ki Gllucci ki.gllucci@univq.i kgllucci@unie.i Progr del corso Dinic dei fluidi: Regii di oo; Moo szionrio di un fluido idele; Moo szionrio di un fluido rele; Il eore di Bernoulli; Perdie

Dettagli

Capitolo 3 - Trasformata di Fourier (I)

Capitolo 3 - Trasformata di Fourier (I) Appuni di Teori dei Segnli Cpiolo 3 - Trsform di Fourier (I Definizione... Proprieà generli...3 Osservzione: nlogie con lo sviluppo in serie di Fourier...4 Esempio: rsform del rengolo...5 Esempio: rsform

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

VALUTAZIONE ECONOMICA E VALORE DI OPZIONE: IL CASO DEL TRASPORTO FERROVIARIO

VALUTAZIONE ECONOMICA E VALORE DI OPZIONE: IL CASO DEL TRASPORTO FERROVIARIO VALUTAZIONE ECONOMICA E VALORE DI OPZIONE: IL CASO DEL TRASPORTO FERROVIARIO di Psqule Lucio Scndizzo Universià degli Sudi di Rom Tor Verg. VALUTAZIONE ECONOMICA E VALORE DI OPZIONE: IL CASO DEL TRASPORTO

Dettagli

Teoria in pillole: logaritmi

Teoria in pillole: logaritmi Teori in pillole: logritmi EQUAZIONI ESPONENZIALI Un'equzione si dice esponenzile qundo l'incognit compre soltnto nell'esponente di un o più potenze. L'equzione esponenzile più semplice (elementre) è del

Dettagli

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x)

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x) INTEGRALI IMPROPRI Prerequiii: Oieivi : Clcolo degli inegrli indefinii Inegrle definio di un funzione coninu Teorem e formul fondmenle del clcolo inegrle Appliczioni del clcolo inegrle Sper riconocere

Dettagli

Tassi di Cambio, Prezzi e Tassi di Interesse. Giuseppe De Arcangelis 2016 Economia Internazionale

Tassi di Cambio, Prezzi e Tassi di Interesse. Giuseppe De Arcangelis 2016 Economia Internazionale Tssi di Cmbio, Prezzi e Tssi di Ineresse Giuseppe De Arcngelis 2016 Economi Inernzionle 1 Premess L relzione r l ndmeno del livello generle dei prezzi e i ssi di cmbio: l Prià dei Poeri di Acquiso Le relzione

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

Q V CAPACITÀ ELETTRICA. coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V.

Q V CAPACITÀ ELETTRICA. coulomb volt. Quando ad un conduttore isolato viene conferita una carica elettrica Q, esso assume un potenziale V. APAITÀ ELETTRIA uando ad un conduore isolao viene conferia una carica elerica, esso assume un poenziale V. Si definisce capacià elerica Unià di misura della capacià elerica nel S.I. = V farad = F= Dipende

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

TERMODINAMICA DELL ARIA UMIDA

TERMODINAMICA DELL ARIA UMIDA CAPITOLO 5 TERMODINAMICA DELL ARIA UMIDA 5. Generlià Nell'ri è sempre presene un piccol qunià di por d'cqu, indicimene circ % in mss, per cui si può corremene prlre di ri umid. L'ri mosferic secc, e cioè

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. ) Il signor A,

Dettagli

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s

Scelto l asse del moto y orientato verso l alto, nella prima fase del lancio si ha: v = a t ; y = ½ a t 2 e dopo t = 1 min = 60 s Eercizione n 3 FISICA SPERIMENTALE (C.L. Ing. Edi.) (Prof. Gbriele F)A.A. 1/11 Cinemic (b) 1. Un rzzo eore, lncio in ericle, le per 1 min con ccelerzione cone = m/, dopodiché, conumo uo il combuibile,

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO

Verifica 03 LE DISEQUAZIONI DI SECONDO GRADO Verific 0 LE DISEQUAZIONI DI SECONDO GRADO ESERCIZI LE DISEQUAZIONI Risolvi le seguenti disequzioni lineri numeriche. A 0 8 B 7 8 A B 8 7 8 8 9 Rppresent i seguenti intervlli (o unione di intervlli) medinte

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

Lezione 1. Meccanica di un sistema puntiforme Cinematica

Lezione 1. Meccanica di un sistema puntiforme Cinematica Lezione Meccnic di un sisem puniforme Cinemic Meccnic di un corpo puniforme Meccnic: sudi l moo di un corpo: esprime con leggi quniie. l relzione r il moo e le cuse che lo generno. Dinmic Anlisi comple

Dettagli

Laboratorio di Fisica I: laurea in Ottica e Optometria

Laboratorio di Fisica I: laurea in Ottica e Optometria Laboraorio di Fisica I: laurea in Oica e Opomeria Misura del empo caraerisico di carica e scarica di un condensaore araverso una resisenza Descrizione Si vuole cosruire un circuio in serie collegando generaore

Dettagli

ESEMPI DI ESERCIZI SU IRPEF ED IRES

ESEMPI DI ESERCIZI SU IRPEF ED IRES ESEMPI DI ESERCIZI SU IRPEF ED IRES 1. Irpef 1) Dopo avere definio il conceo di progressivià delle impose, si indichino le modalià per la realizzazione di un sisema di impose progressivo. 2) Il signor

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta

Esercizi Scheda N Fisica II. Esercizi con soluzione svolta Poliecnico di Torino etem Esercizi Scheda N. 0 45 Fisica II Esercizi con soluzione svola Esercizio 0. Si consideri il circuio V R T R T V I V 0 Vols R 5 Ω R 0 Ω µf sapendo che per 0 T on T off 5 µs T off

Dettagli

Esercitazione di Laboratorio

Esercitazione di Laboratorio UNIVERSITA' DEGLI STUDI DI BERGAMO Scuola Ineruniversiaria Lombarda di Specializzazione per l Insegnameno Secondario Sezione di Bergamo e Brescia Eserciazione di Laboraorio Laboraorio di Srumenazione Digiale

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

V AK. Fig.1 Caratteristica del Diodo

V AK. Fig.1 Caratteristica del Diodo 1 Raddrizzaore - Generalià I circuii raddrizzaori uilizzano componeni come i Diodi che presenano la caraerisica di unidirezionalià, cioè permeono il passaggio della correne solo in un verso. In figura

Dettagli

MOTORI PER AEROMOBILI

MOTORI PER AEROMOBILI MOTORI PER AEROMOBILI Cp. 6 COMPRESSORE ASSIALE. Inroduzione Anche in queso cso è opporuno richimre lcuni concei già visi nel corso di Propulsori Aerospzili. Si è viso nel clcolo dei cicli l impornz di

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Dinamica: Applicazioni delle leggi di Newton

Dinamica: Applicazioni delle leggi di Newton Fisic Fcolà di Scienze MM FF e, Uniesià Snnio Dinmic: Appliczioni delle leggi di ewon Gionni Filell (filell@unisnnio.i) Il poblem genele dell dinmic Quindi se conoscimo ue le foze che giscono su un oggeo

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

2. Torsione per la sezione generica (prof. Elio Sacco)

2. Torsione per la sezione generica (prof. Elio Sacco) Equion Secion. Torsione per l sezione generic (prof. Elio Scco).. Torsione per l sezione generic... Cinemic Nel cso di sezione generic, l cinemic dell rve consise nell rozione reliv r le sezioni dell rve

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

CINEMATICA DEL PUNTO. CINEMATICA: moto rettilineo

CINEMATICA DEL PUNTO. CINEMATICA: moto rettilineo CINEMATICA DEL PUNTO Inroduzione Con il ermine cinemaica si indica lo sudio del moo dei corpi. Per poer sudiare ciò si approssima la realà ramie una schemaizzazione della sessa. La prima approssimazione

Dettagli

N09 (Quesito Numerico)

N09 (Quesito Numerico) N09 (Quesio Numerico): La "legge di graviazione universale" afferma che l'inerazione ra due oggei assimilabili a puni maeriali, di masse m 1 ed m 2 posi a disanza r 12 si esplica ramie una forza il cui

Dettagli

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso:

Verifica di Fisica 04/12/2014 Argomenti trattati durante il corso: Liceo Scientifico Augusto Righi, Cesen Corso di Fisic Generle, AS 2014/15, Clsse 1C Verific di Fisic 04/12/2014 Argomenti trttti durnte il corso: Grndezze fisiche: fondmentli e derivte Notzione scientific

Dettagli

Esempio: accelerazione media

Esempio: accelerazione media Segno ell ccelerzione L ccelerzione è posii quno è ire nel erso posiio ell sse, negi nel cso opposo. Aenzione l significo el segno!!! Il segno ell ccelerzione non uol sempre ire che l oggeo s umenno o

Dettagli

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero

INCERTEZZA DELLE MISURE. Terminologia. Precisione: riproducibilità di una misura Accuratezza: vicinanza della misura con il valore vero INCERTEZZA DELLE MISURE Trminologi Prcision: riproduciilià di un misur Accurzz: vicinnz dll misur con il vlor vro Error sprimnl incrzz dll misur Tipologi di rrori sprimnli Error sismico: ls sismicmn l

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è.... Per clcolre il vlore numerico di un espressione letterle isogn...... c. Non si possono ssegnre lle lettere che compiono

Dettagli

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI

Fisica Generale Modulo di Fisica II A.A Ingegneria Meccanica Edile - Informatica Esercitazione 4 CIRCUITI ELETTRICI Fisica Generale Modulo di Fisica II A.A. 6-7 Ingegneria Meccanica Edile - Informaica Eserciazione IUITI ELETTII b. Nel circuio della figura si ha 5, e 3 3 e nella resisenza passa una correne di A.Il volaggio

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli