1. Elementi di Calcolo Combinatorio.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1. Elementi di Calcolo Combinatorio."

Transcript

1 . Elementi di Calolo Combinatorio. Prinipio Base del Conteggio Supponiamo he si devono ompiere due esperimenti. Se l esperimento uno può assumere n risultati possibili, e per ognuno di questi i sono n risultati possibili del seondo, allora in totale i sono n n possibili risultati dei due esperimenti. Dimostrazione: E suffiiente elenare i possibili risultati dei due esperimenti. (,) (,) (, ) (,) (, n ) (, n ) ( n,) ( n,) ( n, n ) dove il risultato è ( i, j) se l esperimento numero assume il suo i-esimo risultato possibile e l esperimento numero assume il suo j-esimo risultato possibile. Prinipio Base Generalizzato del Conteggio Supponiamo he si devono ompiere r esperimenti. Se l esperimento uno E può assumere n risultati possibili, e per ognuno di questi i sono n risultati possibili del seondo esperimento E, e per ognuno dei possibili risultati del primo e del seondo esperimento i sono n possibili risultati del terzo E e se. allora in totale i sono n n n possibili risultati degli r esperimenti. r Dimostrazione: prinipio di induzione: Per r= la proposizione è vera in quanto vale il prinipio base del onteggio. Supponiamo he è vera per r- ioè he per r- esperimenti i sia un totale di n n n r esiti possibili.

2 Per r vale il seguente ragionamento: definiso l esperimento nuovo S he onsiste nel onsiderare i primi r-esperimenti E, E,, E r insieme. Questo esperimento ha n n n r esiti possibili (per l ipotesi induttiva). Per ognuno di questi risultati i saranno n possibili risultati di E, allora in base al prinipio r r base del onteggio i sono un numero totale di risultati pari a n n n n r r Permutazioni Quanti possibili ordinamenti della lettere a, b, sono possibili? I asi sono: ab, ab, ba, ba, ab, ba. Ognuno di questi ordinamenti si die permutazione. Ci sono 6 permutazioni di un insieme di elementi: = 6 In generale se ho un insieme di n elementi, i sarà un totale di diverse permutazioni. ( ) P n n = n! n Considerato un insieme di n elementi, il numero n! esprime il totale di ordinamenti he posso fare onsiderando tutti gli elementi dell insieme. Esempio : Una squadra di aletto è omposta da gioatori. Ogni aliatore deve tirare un rigore, quanti ordini di battuta diversi sono possibili? P =! = 4 = 0. Esempio : Il signor Rossi possiede 4 libri di matematia, di himia, di biologia e di inglese. Egli vuole disporre i libri nella sua libreria in modo he libri della stessa materia siano viini fra loro. Quanti ordinamenti diversi sono possibili?

3 Ci sono 4!!!! ordinamenti diversi he prevedono prima la sistemazione dei libri di matematia poi himia e quindi biologia e inglese. Ma i sono anhe 4! Possibili ordini delle materie da onsiderare quindi ho 4! 4!!!! = 69 Combinazioni Altre volte noi siamo nella neessità di determinare il numero di diversi gruppi di r oggetti he si possono formare da un totale di n oggetti. Due gruppi sono diversi fra loro se risultano omposti da elementi diversi (non onta l ordine degli stessi ome avveniva nella permutazioni). Quanti possibili gruppi di tre elementi selti dall insieme { A, BCDE,,, } posso selezionare? Ci sono selte per il primo elemento, 4 per il seondo e per il terzo. Contando in questo modo vado a onsiderare diversi gruppi quali ABC, ACB, BAC, BCA, CAB, CBA Quindi ogni aso preedente viene ontato 6 volte di più ioè! volte in più. Quindi, poihé l ordine all interno del gruppo non è importante, il risultato è 4 = 0 In generale il numero di gruppi di r elementi selezionati da un insieme he ne ontiene n sono n ( n ) ( n r+ ) n! n = Cnr, r! ( n r)! r! r Esempio :

4 Si deve formare una ommissione di tre individui selezionati da una popolazione di 0 unità. Quante ommissioni diverse si possono formare? Due ommissioni sono diverse fra loro solo se sono diverse le persone he le ompongono quindi i sono ommissioni possibili = = 40 Esempio 4: Da un gruppo di donne e 7 uomini, quante ommissione di donne e uomini si possono formare? Ci sono possibili gruppi di donne prese da un insieme di. 7 Ci sono possibili gruppi di uomini presi da un insieme di 7. Dal prinipio del onteggio segue he è un totale di possibili ommissioni = = Disposizioni Cosa suede se onsideriamo diversi due gruppi anhe per l ordine on il quale gli elementi ompaiono all interno del gruppo? Cioè, quanti gruppi diversi (per elementi e per ordine) di k elementi presi da un totale di n si possono formare?

5 La risposta è semplie basta onsiderare il numero di ombinazioni n k (mi individua i gruppi diversi per elementi) e moltipliarle per le k! permutazioni dei k elementi he ostituisono il gruppo onsiderato. La quantità n n! D = C P = k! n n n k nk, nk, k k = = + ( n k)! ( ) ( ) Prende il nome di disposizione di n elementi presi a k alla volta. Esempio : Si deve formare una ommissione di tre individui selezionati da una popolazione di 0 unità. Il primo selezionato assume il ruolo di presidente, il seondo di vie-presidente e il terzo di segretario. Quante ommissioni diverse si possono formare? Due ommissioni sono diverse fra loro se sono diverse le persone he le ompongono ma anhe se è diverso l ordine di omposizione quindi le ommissioni possibili sono D 0, 0 =! = = Elementi di Calolo delle Probabilità. Consideriamo un esperimento il ui risultato non è prevedibile on ertezza. Definizione Chiamiamo spazio ampionario l insieme di tutti i possibili esiti dell esperimento.

6 Esempio 6 Si lania una moneta. L esito dell esperimento non è noto in partenza S = C, T. ma so he il suo spazio ampionario { } Esempio 7 Si laniano due monete. L esito dell esperimento non è noto in partenza S = C, C, C, T, T, C, T, T. { } ma so he il suo spazio ampionario ( ) ( ) ( ) ( ) Definizione Chiamiamo evento un qualsiasi sottoinsieme E dello spazio ampionario S. A ogni evento vogliamo assegnare una misura (probabilità) della apaità dello stesso di verifiarsi ome risultato dell esperimento 0 del nostro grado di fiduia (personale) ira il verifiarsi dell evento. Definizione Presi due eventi E ed F dello stesso spazio ampionario S, hiamiamo evento unione E Fquell evento he si verifia quando aadono E o F. Esempio 8 Supponiamo di laniare simultaneamente due monete. Siano E TT,, TC, F = C, T. Allora l evento = {( ) ( )} e {( )} E F = ( T, T),( T, C),( C, T) si verifia se appare almeno una testa. { } Definizione 4 Presi due eventi E ed F dello stesso spazio ampionario S, hiamiamo evento intersezione (o prodotto) E Fquell evento he si verifia quando E ed F aadono.

7 Esempio 9 Supponiamo di laniare simultaneamente due monete. Siano E = {( TT, ),( TC, ),( CT, )} e F = {( T, C),( C, T),( C, C) }. Allora l evento E F = {( T, C),( C, T) } si verifia se appare testa ed roe. Si noti he anhe S, quindi anh esso è da onsiderarsi un evento he hiameremo evento nullo. Definizione Presi due eventi E ed F dello stesso spazio ampionario S, diiamo he essi sono inompatibili se E F =. Per esempio onsideriamo il lanio di due dadi. Siano E = {(, ),(, )}; F = {(, ),(, ),(, )} Allora l evento E F = il he india he non è possibile he la somma dei due dadi sia e 4. Definizione 6 Preso l evento E dello spazio ampionario S, indihiamo on E il suo evento omplementare (o opposto) quell evento he aade quando E non si verifia. Consideriamo un esperimento il ui spazio ampionario è S. Per ogni suo evento supponiamo di definire un numero P( E ) he soddisfa i seguenti tre assiomi. ASSIOMA ASSIOMA ( ) 0 P E P( S ) = ASSIOMA

8 E, E,... : i j E E = i j ( ) = ( ) P E P E i= i Il numero P( E ) prende il nome di probabilità dell evento E. i= L assioma i die he la probabilità di un evento è ompreso fra zero ed uno. L assioma due i die he on probabilità uno si verifiherà un evento dello spazio ampionario. L assioma tre i die he per ogni sequenza di eventi inompatibili, la probabilità he almeno uno di essi si verifihi è data dalla somma delle loro rispettive probabilità. Esempio 0 Supponiamo di laniare un dado. S = {,,,4,,6} e P( {} ) = P( {} ) = P( {} ) = P( {} 4 ) = P( {} ) = P( {} 6 ) = 6 Sia E = { il risultato del lanio è un numero pari} allora da assioma tre poihé gli eventi ese, ese 4, ese 6 sono inompatibili si ha he P( E) = P( {, 4,6} ) = P( {} ) + P( {} 4 ) + P( {} 6 ) = i Alune semplii proposizioni Proposizione P E = P E Prova S E E ( ) ( ) E E = quindi da = +. Ma da ASSIOMA = quindi P( S) = P( E E ). Inoltre ASSIOMA segue he P( S) P( E) P( E ) sappiamo he P( S ) = pertanto per sostituzione otteniamo

9 da ui P( E ) = P( E) ( ) P( E ) = P E + Proposizione Se E F allora P( E) P( F). Prova F = E ( E F) ma E ( E F) = P F = P E + P E F ma P E F 0 P F P E quindi da ASSIOMA segue. he ( ) ( ) ( ) ( ) ( ) ( ) Proposizione P E F = P E + P F P E F Prova Si noti he ( ) ( ) ( ) ( ). ( ) ( ) ( ) ( ) (.) E F = E E F P E F = P E + P E F da ASSIOMA. Inoltre sempre da ASSIOMA ho ( ) ( ) ( ) ( ) ( ) F = E F E F P F = P E F + P E F da ui segue he ( ) = ( ) ( ) (.) P E F P F P E F Sostituendo la (.) nella (.) riavo la tesi ( ) = ( ) + ( ) ( ) P E F P E P F P E F Eserizio Una satola ontiene 60 biglietti numerati da a 60. Estraendo un biglietto a aso, qual è la probabilità he risulti maggiore di 7 oppure minore di 4?

10 Indio on E= evento il numero estratto è >7 oppure <4. Indio on E i = evento ese il numero i. Risulta he i P( E i ) = ma 60 PE ( ) = PE ( E E E E E ) = da assioma = PE ( ) + PE ( ) = 6 = + = = i i= i= 8 Eserizio In un vassoio i sono 00 aramelle di ui all arania, alla menta e al limone. Prendendo a aso una aramella dal vassoio, qual è la probabilità he non sia alla menta? E A = evento prendo aramella all arania. PE ( A) = 00 E M = evento prendo aramella alla menta. PE ( M ) = 00 E L = evento prendo aramella al limone. PE ( L ) = 00 C 67 PE ( M) = PE ( M) = = = 0, C PE ( M) = PE ( A) + PE ( L) = + = 0, i Eserizio Si lania una moneta sei volte. Trovare la probabilità he testa venga più di frequente di roe. Potremmo onsiderare tutti gli eventi del tipo: A = evento 6 teste e 0 roi A = evento teste e roe et

11 Ma forse è più semplie (siuramente più interessante!!!) ambiare strada e onsiderare i seguenti eventi: A = evento testa ese più spesso di roe B = evento roe ese più spesso di testa C = evento testa e roe esono in numero uguale A, BC, sono eventi he partizionano lo spazio ampionario e quindi essendo inompatibili vale PA ( ) + PB ( ) + PC ( ) =. Si noti ora he il problema è simmetrio rispetto a testa e roe PC ( ) Quindi PA ( ) = PB ( ) PA ( ) + PC ( ) = da ui PA ( ) =. A questo punto ero PC ( ) = teste e roi in ugual numero. Un esempio di risultato favorevole è il seguente: C T T T C C 6 = questa è solo uno dei asi favorevoli, quanti ne sono in totale? Devo trovare il numero totale di gruppi (he differisono solo per gli oggetti e non per l ordine) di teste e roi he sono dati da 6! 6 4 C6, = = = 0.!! 6 0 Quindi PC ( ) = 0= = da ui riavo PA ( ) = = Spazi ampionari on risultati equiprobabili Spesso i sono situazioni in ui è naturale supporre he tutti i risultati dell esperimento siano equiprobabili. S =,,..., N e formuliamo l ipotesi Supponiamo he { } ({ } ) { } ( ) ({ }) P = P = = P N (.) Allora poihé P( S ) = e gli eventi elementari, dall assioma segue he i j Ssono inompatibili

12 N ( ) ( ) {} P S = P i = Inoltre dall ipotesi (.) segue he indiato on { } dedue e periò N ({}) i= P i = p= pn N i= i= pn = p =. N ( ) p = P i i S si Appliando anora l assioma si ha he E S, p i E p E numero di asi favorevoli a E P( E) = = = p p S numero di asi totali i S Eserizio 4 La probabilità he laniando simultaneamente due dadi si ottengano numeri la ui somma vale è maggiore o minore della probabilità he si ottengano due numeri la ui somma vale 0? E = somma vale. E = somma vale 0. P( E) = ; P( E) = P( E) < P( E) 6 6

13 Eserizio Un urna ontiene 6 palline bianhe e palline nere. Se si estraggono a aso palline, qual è la probabilità he siano una biana e l altra nera? 6 Il numero di asi favorevoli ad estrazioni di una pallina biana è. Il numero di asi favorevoli ad estrazioni di una pallina nera è. 6 Pertanto dal prinipio del onteggio ho = 6 = 0 asi favorevoli all estrazione di una pallina biana e di una pallina nera. Resta da alolare il numero totale di possibili estrazioni di due palline (qualsiasi) dal totale delle presenti. Tale numero è. La probabilità erata è quindi 6 6 = 0,4 Eserizio 6 Gioando a poker Calolare la probabilità di avere una sala reale di QUADRI servito 7 = =, Calolare la probabilità di avere una sala reale servito = =, volte più probabile di una sala reale di un seme speifio.

14 Calolare la probabilità di avere un poker d assi servito = = =, ! !! volte più probabile di una sala reale. Calolare la probabilità di avere un poker servito = = =, 40 0! !! volte più probabile di un poker d assi. Calolare la probabilità di avere un olore servito 4 = 0,00 Calolare la probabilità di avere un full servito = = 0,0044! 47!! 6 volte più probabile di un poker. Calolare la probabilità di avere un tris servito 4 4 = 0,0 4

15 Calolare la probabilità di avere una doppia oppia servito 4 4 = 0,047 Calolare la probabilità di avere una oppia servito 4 4 = 0, 46.

PRINCIPIO BASE DEL CONTEGGIO

PRINCIPIO BASE DEL CONTEGGIO Calolo ombinatorio PRINCIPIO BASE DEL CONTEGGIO Se dobbiamo ompiere due esperimenti onseutivi ed il primo esperimento può assumere N risultati diversi e per ognuno di questi il seondo esperimento ne può

Dettagli

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p =

+ t v. v 3. x = p + tv, t R. + t. 3 2 e passante per il punto p = 5. Rette e piani in R 3 ; sfere. In questo paragrafo studiamo le rette, i piani e le sfere in R 3. Ci sono due modi per desrivere piani e rette in R 3 : mediante equazioni artesiane oppure mediante equazioni

Dettagli

Appunti ed esercizi di combinatoria. Alberto Carraro

Appunti ed esercizi di combinatoria. Alberto Carraro Appunti ed esercizi di combinatoria Alberto Carraro December 2, 2009 01 Le formule principali per contare Disposizioni Sia A un insieme di n 1 elementi distinti Le sequenze di 1 k n elementi scelti senza

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Calcolo delle probabilità Prof. Livia De Giovanni statistica@dis.uniroma1.it Esercizio 1 Si vuole studiare la distribuzione del sesso dei figli nelle famiglie aventi due figli

Dettagli

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche

Ancora sull indipendenza. Se A e B sono indipendenti allora lo sono anche Ancora sull indipendenza Se A e B sono indipendenti allora lo sono anche A e B Ā e B Ā e B Sfruttiamo le leggi di De Morgan Leggi di De Morgan A B = Ā B A B = Ā B P (Ā B) = P (A B) = 1 P (A B) = 1 (P (A)

Dettagli

Figura 2.1. A sottoinsieme di B

Figura 2.1. A sottoinsieme di B G Sammito, ernardo, Formulario di matematia Insiemi F Cimolin, L arletta, L Lussardi Insiemi Generalità Un insieme è una ollezione distinguibile di oggetti, detti elementi dell'insieme Quando un elemento

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Considerate gli insiemi A = {1,2,3,4} e B = {a,b,c}; quante sono le applicazioni (le funzioni) di A in B?

Considerate gli insiemi A = {1,2,3,4} e B = {a,b,c}; quante sono le applicazioni (le funzioni) di A in B? FUNZIONI E CALCOLO COMBINATORIO Il quesito assegnato all esame di stato 2004 (sientifio Ordinamento e PNI) suggerise un ollegamento tra funzioni ostruite tra insiemi finiti e Calolo Combinatorio QUESITO

Dettagli

Teoria della probabilità Assiomi e teoremi

Teoria della probabilità Assiomi e teoremi Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Assiomi e teoremi A.A. 2008-09 Alberto Perotti DELEN-DAUIN Esperimento casuale Esperimento

Dettagli

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012

STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 STATISTICA MEDICA Prof. Tarcisio Niglio http://www.tarcisio.net tarcisio@mclink.it oppure su Facebook Anno Accademico 2011-2012 Calcolo delle Probabilità Teoria & Pratica La probabilità di un evento è

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 13 Febbraio 2014

MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 13 Febbraio 2014 MATEMATICA CORSO A COMPITINO DI RECUPERO (Tema 1) 13 Febbraio 2014 Soluzioni 1. In un sahetto i sono 7 palline olorate: 2 rosse, 3 verdi e 2 gialle. Si fanno 4 estrazioni on rimessa. a) Calola la probabilità

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a:

Si considerino gli eventi A = nessuno studente ha superato l esame e B = nessuno studente maschio ha superato l esame. Allora A c B è uguale a: TEST DI AUTOVALUTAZIONE - SETTIMANA 2 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Si considerino gli

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 9 giugno 006 Spazi di probabilità finiti e uniformi Esercizio Un urna contiene 6 palline rosse, 4 nere, 8 bianche. Si estrae una pallina; calcolare

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Esercizi sul calcolo delle probabilità

Esercizi sul calcolo delle probabilità Esercizi sul calcolo delle probabilità Svolti e da svolgere (per MAR 13 marzo) Dati due eventi A e B dello spazio campionario Ω. Si sappia che P(A c )=0,3 P(B)=0,4 e P(A B c )=0,5 si determinino le probabilità

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k

Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità. Le disposizioni semplici di n elementi di classe k Pordenone Corso di Matematica e Statistica 4 Calcolo combinatorio e probabilità UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica

Dettagli

Esercizi di Calcolo delle Probabilità (calcolo combinatorio)

Esercizi di Calcolo delle Probabilità (calcolo combinatorio) Esercizi di Calcolo delle Probabilità (calcolo combinatorio 1. Lanciamo due dadi regolari. Qual è la probabilità che la somma delle facce rivolte verso l alto sia pari a 7? 1/6 2. Due palline vengono estratte

Dettagli

Tabella 7. Dado truccato

Tabella 7. Dado truccato 0 ALBERTO SARACCO 4. Compiti a casa 7novembre 200 4.. Ordini di grandezza e calcolo approssimato. Esercizio 4.. Una valigia misura 5cm di larghezza, 70cm di lunghezza e 45cm di altezza. Quante palline

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

Esericizi di calcolo combinatorio

Esericizi di calcolo combinatorio Esericizi di calcolo combinatorio Alessandro De Gregorio Sapienza Università di Roma alessandrodegregorio@uniroma1it Problema (riepilogativo) La segretaria di un ufficio deve depositare 3 lettere in 5

Dettagli

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra

Esercizi di Probabilità e statistica. Francesco Caravenna Paolo Dai Pra Esercizi di Probabilità e statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Proprietà fondamentali Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE

CBM a.s. 2012/2013 PROBLEMA DELLE SCORTE CBM a.s. 212/213 PROBLEMA DELLE SCORTE Chiamiamo SCORTA ogni riserva di materiali presente all interno del sistema produttivo in attesa di essere sottoposto ad un proesso di trasformazione o di distribuzione.

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico.

Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico. Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Probabilità Ines Campa e Marco Longhi Probabilità e Statistica - Esercitazioni

Dettagli

CALCOLO COMBIN I A N T A O T RIO

CALCOLO COMBIN I A N T A O T RIO CALCOLO COMBINATORIO Disposizioni Si dicono disposizioni di N elementi di classe k tutti quei gruppi che si possono formare prendendo ogni volta k degli N elementi e cambiando ogni volta un elemento o

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente

COMPITO n. 1. 3. Siano X, Y due variabili aleatorie tali che il vettore (X, Y ) sia distribuito uniformemente COMPITO n. 1 a) Nel gioco del poker ad ogni giocatore vengono distribuite cinque carte da un normale mazzo di 52. Quant è la probabilità che un giocatore riceva una scala di re (ovvero 9, 10, J, Q, K anche

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate

CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA. Esercizi su eventi, previsioni e probabilità condizionate CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi su eventi, previsioni e probabilità condizionate Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Università di Torino QUADERNI DIDATTICI del Dipartimento di Matematica MARIA GARETTO STATISTICA Lezioni ed esercizi Corso di Laurea in Biotecnologie A.A. 00/00 Quaderno # Novembre 00 M. Garetto - Statistica

Dettagli

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme.

1. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di 40, fra di esse vi sia un solo asso, di qualunque seme. Esercizi difficili sul calcolo delle probabilità. Calcolare la probabilità che estratte a caso ed assieme tre carte da un mazzo di, fra di esse vi sia un solo asso, di qualunque seme. Le parole a caso

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

MOMENTI E CENTRAGGIO DEL VELIVOLO

MOMENTI E CENTRAGGIO DEL VELIVOLO x 1 x ISTITUZIONI DI INGEGNERIA AEROSAZIALE OENTI E CENTRAGGIO VELIVOLO OENTI E CENTRAGGIO DEL VELIVOLO er il alolo delle prestazioni in volo orizzontale rettilineo ed uniforme, il velivolo può essere

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Modelli di base per la politia eonomia Capitolo Marella Mulino Modelli di base per la politia eonomia Corso di Politia eonomia a.a. 22-23 Modelli di base per la politia eonomia Capitolo Capitolo Modello

Dettagli

ALCUNE OSSERVAZIONI SUI TRIANGOLI

ALCUNE OSSERVAZIONI SUI TRIANGOLI LUNE OSSERVZIONI SUI TRINGOLI ataloghiamo i triangoli seondo i lati seondo gli angoli 115 3 67 81 Esiste sempre il triangolo? Selte a aso le misure dei lati, è sempre possibile ostruire il triangolo? Quali

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

TEORIA DELLA PROBABILITÀ I

TEORIA DELLA PROBABILITÀ I TEORIA DELLA PROBABILITÀ I Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [2015-16] Indice 1 Probabilità 1 1.1 Introduzione............................................ 1 1.2 Eventi...............................................

Dettagli

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R.

6. I numeri reali e complessi ( R e C ). x2 = 2. 6.1 I numeri reali R. 6. I numeri reali e complessi ( R e C ). 6.1 I numeri reali R. Non tratteremo in modo molto approfondito gli ulteriori ampliamenti che dai numeri razionali ci portano a quelli reali, all insieme, e R d

Dettagli

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011)

k n Calcolo delle probabilità e calcolo combinatorio (di Paolo Urbani maggio 2011) b) (vedi grafo di lato) 7 0 9 0 0 0 ( E ) + + 0, ) Calcolare, riguardo al gioco del totocalcio, la probabilità dei seguenti eventi utilizzando il calcolo combinatorio a) E : fare b) E : fare 0 c) E : fare

Dettagli

Calcolo combinatorio

Calcolo combinatorio Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.S.: Ingegneria Civile-Architettonico, Ingegneria Civile-Strutturistico Calcolo combinatorio Ines Campa e Marco Longhi Probabilità e Statistica

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }.

A = { escono 2 teste e due croci (indipendentemente dall ordine) } B = { al primo tiro esce testa }. ESERCIZI ELEMENTARI DI CALCOLO DELLE PROBABILITÀ Teorema della somma 1) Giocando alla roulette, calcolare la probabilità che su una estrazione esca: a) Un numero compreso tra 6 e 12 (compresi) oppure maggiore

Dettagli

ESERCIZI DI CALCOLO COMBINATORIO

ESERCIZI DI CALCOLO COMBINATORIO ESERCIZI DI CALCOLO COMBINATORIO 1. Calcolare il numero degli anagrammi che possono essere formati con le lettere della parola Amore. [120] 2. Quante partite di poker diverse possono essere giocate da

Dettagli

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità

Probabilità. Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità Concetti fondamentali Definizione di probabilità Teoremi sulla probabilità Probabilità: indicazioni quantitative sul verificarsi di certi eventi (linguaggio comune), ad es. P di superare o

Dettagli

Il fido e i finanziamenti bancari

Il fido e i finanziamenti bancari Modulo 7 Il fido e i finanziamenti anari 65 I destinatari del Modulo sono gli studenti he, dopo aver analizzato e appreso le aratteristihe fondamentali dell attività delle aziende di redito, le loro funzioni

Dettagli

TEOREMI SULLA PROBABILITÀ

TEOREMI SULLA PROBABILITÀ TEOREMI SULLA PROBABILITÀ o Probabilità totale oprobabilità contraria oprobabilità condizionata odipendenza stocastica oprobabilità composta oformula di Bayes oproblemi di riepilogo Probabilità di eventi

Dettagli

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra

Dispense di Probabilità e Statistica. Francesco Caravenna Paolo Dai Pra Dispense di Probabilità e Statistica Francesco Caravenna Paolo Dai Pra Capitolo 1 Spazi di probabilità discreti 1.1 Generalità Nel corso di questo libro con la dicitura esperimento aleatorio indicheremo

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 2/03/205 Primo foglio di esercizi Esercizio 0.. Una classe di studenti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vengono esposti in una graduatoria in ordine

Dettagli

Esercizio no.1 soluzione a pag.3

Esercizio no.1 soluzione a pag.3 Edutenia.it Modulazioni digitali eserizi risolti 1 Eserizio no.1 soluzione a pag.3 Quanti bit sono neessari per trasmettere 3 simboli e quale è la veloità di modulazione e la veloità di trasmissione se

Dettagli

Traccia della soluzione degli esercizi del Capitolo 1

Traccia della soluzione degli esercizi del Capitolo 1 Traccia della soluzione degli esercizi del Capitolo 1 Esercizio 1 Esprimere ciascuno dei seguenti eventi in termini degli eventi A, B, C. 1. Almeno un evento si verifica. 2. Al più un evento si verifica..

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Cenni di calcolo combinatorio

Cenni di calcolo combinatorio Cenni di calcolo combinatorio 1 Introduzione Calcolare quanti sono i diversi modi di ordinare un insieme di oggetti è un problema interessante. Quante sigle diverse si possono fare con le tre lettere RST?

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

PROBABILITA' E VARIABILI CASUALI

PROBABILITA' E VARIABILI CASUALI PROBABILITA' E VARIABILI CASUALI ESERCIZIO 1 Due giocatori estraggono due carte a caso da un mazzo di carte napoletane. Calcolare: 1) la probabilità che la prima carta sia una figura oppure una carta di

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio

1 Probabilità. 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio Indice 1 Probabilità 1 1.1 Primi esercizi di probabilità con l uso del calcolo combinatorio.. 1 1.2 Probabilità condizionata, indipendenza e teorema di Bayes.... 2 1 Probabilità 1.1 Primi esercizi di probabilità

Dettagli

Calcolo Combinatorio

Calcolo Combinatorio Capitolo S-09 Calcolo Combinatorio Autore: Mirto Moressa Contatto: mirtomo@tiscali.it Sito: www.mirtomoressa.altervista.org Data inizio: 16/10/2010 Data fine: 21/10/2010 Ultima modifica: 21/10/2010 Versione:

Dettagli

Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes

Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Sessione Live #3 Settimana dal 7 all 11 marzo 2003 Probabilità Calcolo combinatorio, probabilità elementare, probabilità condizionata, indipendenza, th delle probabilità totali, legge di Bayes Lezioni

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( )

Prove e sottoprove. Perché il calcolo combinatorio. La moltiplicazione combinatorica. Scelta con e senza ripetizione { } ( ) Perché il calcolo combinatorio Basato sulle idee primitive di distinzione e di classificazione, stabilisce in quanti modi diversi si possono combinare degli oggetti E molto utile nell enumerazione dei

Dettagli

f Le trasformazioni e il trattamento dell aria

f Le trasformazioni e il trattamento dell aria f Le trasformazioni e il trattamento dell aria 1 Generalità Risolvendo il sistema (1) rispetto ad m a si ottiene: () Pertanto, il punto di misela sul diagramma psirometrio è situato sulla ongiungente dei

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Appunti di Teoria della Probabilità Università degli Studi di Bari Corso di Laurea in Scienze Statistiche A.A. 2011/2012.

Appunti di Teoria della Probabilità Università degli Studi di Bari Corso di Laurea in Scienze Statistiche A.A. 2011/2012. Appunti di Teoria della Probabilità Università degli Studi di Bari Corso di Laurea in Scienze Statistiche A.A. 2011/2012 Alessio Pollice 2 Capitolo 1 Eventi e probabilità 1.1 Premessa Etimologia e significato

Dettagli

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 5 - Pag. 1

Diaz - Appunti di Statistica - AA 2001/2002 - edizione 29/11/01 Cap. 5 - Pag. 1 Diaz - Appunti di Statistia - AA 001/00 - edizione 9/11/01 Cap. 5 - Pag. 1 Capitolo 5. Chi quadro. Goodness-of-fit test. Test di simmetria. Taelle. Taelle m n. Correzione per la ontinuità. Test esatto

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 5.1 Schematizzazione di una macchina a fluido

Corso di Laurea: INGEGNERIA INFORMATICA (classe 09) Insegnamento: n Lezione: Titolo: V M. Fig. 5.1 Schematizzazione di una macchina a fluido Corso di Laurea: INGEGNERIA INFORMATICA (lasse 09) Le equazioni del moto dei fluidi L equazione di onservazione dell energia in forma termodinamia V M Ω Ω Fig. 5. Shematizzazione di una mahina a fluido

Dettagli

Ulteriori problemi di fisica e matematica

Ulteriori problemi di fisica e matematica Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Agosto 2010 Ulteriori problemi di fisica e matematica Giovanni Romano Perché un raggio di luce proveniente dal Sole e fatto passare attraverso

Dettagli

PARTE PRIMA PROBABILITA

PARTE PRIMA PROBABILITA i PARTE PRIMA PROBABILITA CAPITOLO I - Gli assiomi della probabilità 1.1 Introduzione........................................................... pag. 1 1.2 Definizione assiomatica di probabilità.......................................

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Somma logica di eventi

Somma logica di eventi Somma logica di eventi Da un urna contenente 24 palline numerate si estrae una pallina. Calcolare la probabilità dei seguenti eventi: a) esce un numero divisibile per 5 o superiore a 20, b) esce un numero

Dettagli

1 Calcolo combinatorio

1 Calcolo combinatorio 1 Calcolo combinatorio In questo capitolo andremo ad introdurre le basi del calcolo combinatorio e le analizzeremo partendo dal caso pratico della risoluzione di un esercizio per poi dare la formulazione

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu

Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu Esercizi di calcolo combinatorio e probabilità Svolgimento a cura di Mattia Puddu 1. Gli interi da 1 a 9 sono scritti nelle 9 caselle di una scacchiera 3x3, ogni intero in ogni casella diversa, in modo

Dettagli

ELEMENTI DI CALCOLO DELLE PROBABILITA

ELEMENTI DI CALCOLO DELLE PROBABILITA Statistica, CLEA p. 1/55 ELEMENTI DI CALCOLO DELLE PROBABILITA Premessa importante: il comportamento della popolazione rispetto una variabile casuale X viene descritto attraverso una funzione parametrica

Dettagli

1 Calcolo delle probabilità

1 Calcolo delle probabilità 1 Calcolo delle probabilità Lo studio delle leggi del caso va sotto il nome di calcolo delle probabilità. Ci fu un vigoroso sviluppo di questa disciplina a cavallo tra il cinquecento e il seicento e lo

Dettagli

ICEC Istituto di Certificazione per l area pelle

ICEC Istituto di Certificazione per l area pelle No:marhio_ICEC_r03_ie.do Approved by PRES. ICEC Date: 16.09.2010 Replaes: 02 Page 1 di 10 Regole d uso dei marhi di ertifiazione ICEC INDICE 1. Sopo e ampo di appliazione 1.1 Marhi di Certifiazione ISO

Dettagli

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1

Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Politecnico di Milano Appunti di calcolo delle probabilità per il corso di Fondamenti di Statistica e Segnali Biomedici [Mod 1] 1 Ilenia Epifani 1 Il contenuto di queste dispense è protetto dalle leggi

Dettagli

simmetria sferica. L intensità (potenza per unità di superficie) a distanza L vale allora I = P / 4π L

simmetria sferica. L intensità (potenza per unità di superficie) a distanza L vale allora I = P / 4π L Fisia Generale Modulo di Fisia II A.A. -5 seritaione OND LTTROMAGNTICH Gb. Si onsideri un onda elettromagnetia piana sinusoidale he si propaga nel vuoto nella direione positiva dell asse x. La lunghea

Dettagli

Introduzione al calcolo delle probabilità: concetti e risultati preliminari

Introduzione al calcolo delle probabilità: concetti e risultati preliminari Capitolo 1 Introduzione al calcolo delle probabilità: concetti e risultati preliminari 1.1 Il ragionamento probabilistico Il ragionamento probabilistico è un tipo di ragionamento di tipo induttivo, anzichè

Dettagli

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 14/02/2012 Istituzioni di Calcolo delle Probabilità David Barbato Questa raccolta comprende sia gli esercizi dell esercitazione del 14 febbraio sia gli esercizi di ricapitolazione sulle

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011

Metodi quantitativi per il trade marketing Modulo 1 Valutazione dei rischi per il marketing a.a. 2010/2011 Metodi quantitativi per il trade marketing Modulo Valutazione dei rischi per il marketing a.a. 200/20 Problemi per esercitazione individuale (non svolti in aula NB: i problemi assegnati per esercitazione

Dettagli