2. Duration. Stefano Di Colli

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Duration. Stefano Di Colli"

Transcript

1 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli

2 Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve eer coo sia l eià dei flussi fiaziari che il momeo i cui quesi flussi si maifesao 2

3 Tassi di ieresse e redimei I flussi fiaziari possoo essere scomposi i: 1. flussi relaivi alla compoee per ieresse (cedole) 2. flussi relaivi alla compoee per capiale (prezzo di rimborso, prezzo di vedia aicipaa del iolo) Se l ivesiore decide di smobilizzare il iolo prima della scadeza, sarà soggeo ad u prezzo di mercao, o simabile ex ae 3

4 Tassi di ieresse e redimei Al momeo dell acquiso di u iolo vi soo alcue compoei cere e alre aleaorie (dipedoo dal mercao) Compoei cere: cedole periodiche sui ioli a asso fisso e lo scaro di emissioe (differeza ra prezzo di rimborso e valore omiale) Variabili aleaorie: reivesimeo dei flussi periodici, prezzo di vedia 4

5 Tassi di ieresse e redimei Limii del TRES Il TRES è ua misura ex-ae, oalmee icapace di simare le compoei aleaorie É valido solo el caso i cui l holdig period coicida la duraa residua del iolo É valido solo el caso i cui i assi siao sabili el empo (curva piaa) Ne segue che il redimeo di u obbligazioe o ecessariamee coicide co il asso di ieresse o co il TRES 5

6 Tassi di ieresse e redimei Il redimeo di u obbligazioe possedua dal empo al empo +1 può essere espresso come R C + P P P +1 = Che può essere riscrio separado i due ermii R i c g C P + 1 = + P = ic + g P P Geeralizzado per eer coo di ivesimei co duraa diversa dall ao P = =1 1 FC ( + TRES) 6

7 Tassi di ieresse e redimei Domada: cosa succede al redimeo se il asso di ieresse aumea? U aumeo dei assi di ieresse compora ua dimiuzioe dei prezzi delle obbligazioi Perdia i coo capiale sulle obbligazioi la cui via residua è maggiore dell holdig period (g<0) L uica obbligazioe il cui redimeo è uguale a quello a scadeza iiziale è quella la cui via residua coicide co l holdig period 7

8 Tassi di ieresse e redimei Quao più è disae la scadeza di u obbligazioe (via residua) ao maggiore è la variazioe di prezzo associaa a ua modifica del asso di ieresse Ache u obbligazioe co u asso di ieresse iizialmee molo appeibile, può avere u redimeo egaivo i preseza di assi al rialzo Se l holdig period è iferiore al via residua, c è u rischio di ieresse Se l holdig period è superiore alla via residua, c è u rischio di reivesimeo 8

9 Esempio: Tassi di ieresse e redimei Si cosideri di disporre di 1000 e avere u holdig period di due ai, mere il asso di ieresse è al 10% Si compri u obbligazioe a 1 ao Se alla fie dell ao il asso è sceso al 5% si reivesirao 1100 al 5% per il secodo ao Alla scadeza del secodo il redimeo bieale sarà sao del 7,24%, più basso del 10% bieale 9

10 Tassi di ieresse e redimei Domada: qual è il guadago o la perdia sui ioli seza cedola a 10 ai per i quali il asso di ieresse è aumeao dal 10 al 20%? 1000 P = ( 1+ 0,10) 10 g P+ 1 P = P 1000 P = , ( ) g = 0,497 = 49,7% g = 193,81 385, , 54 10

11 Idicaori di liquidià La liquidià di u iolo esprime la capacià dello sesso di essere riveduo i modo rapido ed ecoomicamee soddisfacee La liquidià aurale riguarda la capacià dei ioli obbligazioari di produrre alle scadeze previse flussi fiaziari per capiale e ieressi La liquidià arificiale si riferisce allo smobilizzo del iolo obbligazioario sul mercao secodario prima della loro aurale scadeza 11

12 Idicaori di liquidià Gli idicaori di liquidià possoo essere suddivisi i Idicaori elemeari: simao il grado di liquidià aurale di u iolo obbligazioario co riferimeo all ulimo periodo di rimborso del capiale Duraa omiale Duraa residua Idicaori sofisicai: simao il grado di liquidià aurale di u iolo obbligazioario cosiderado la gra pare dei flussi sessi Via media probabile Via media maemaica 12

13 Idicaori di liquidià Idicaori complei: simao il grado di liquidià aurale di u iolo obbligazioario cosiderado la oalià dei flussi fiaziari Duraa media poderaa Duraa media fiaziaria o duraio 13

14 Duraa omiale La duraa omiale misura il periodo iercorree ra il momeo dell emissioe del iolo e la daa di rimborso dell ulima quoa di capiale Ipoizzado che i periodi di maurazioe delle quoe di capiale siao 1, 2,, la duraa omiale risulerà essere D = La duraa omiale può essere di ieresse per valuare la liquidià dei ioli di uova emissioe, ma o quelli già i circolazioe 14

15 Duraa residua La duraa omiale misura il periodo iercorree ra il momeo della sooscrizioe del iolo e la daa di rimborso dell ulima quoa di capiale Ipoizzado che i periodi di maurazioe delle quoe di capiale siao 1, 2,, e che il iolo è sao sia sao acquisao alla daa T, (dove T < ) la duraa residua risulerà essere DR = T Si presa alla valuazioe ache dei ioli i circolazioe No valua l effeo di liquidià coesso ai flussi fiaziari per capiale e ieressi alle scadeze iermedie 15

16 Via media probabile La via media probabile è daa dalla media arimeica poderaa dei periodi di rimborsi delle quoe capiale Ipoizzado che u iolo obbligazioario rimborsi quoe di capiale di imporo pari a C 1, C 2,, C alle dae 1, 2,, VMP C C C C C = = = C = 1 C1+ C C = 1 C = 1 = 1 No cosidera le scadeze relaive alla maurazioe dei flussi fiaziari per ieresse Trascura il problema del diverso valore el empo 16

17 Via media maemaica La via media maemaica è daa dalla media arimeica poderaa dei periodi di scadeza delle quoe di rimborso del capiale Ipoizzado che u iolo obbligazioario rimborsi quoe di capiale di imporo pari a C 1, C 2,, C alle dae 1, 2,, VMM C C ( 1+ r) ( 1+ r) ( 1+ r) = = C C C ( 1+ r) ( 1+ r) ( 1+ r) C 17

18 Via media maemaica C = 1 ( 1+ r) ( 1+ r) C = 1 C = 1 = 1 = = ( 1+ r) No assolve al problema della macaa cosiderazioe delle scadeze alle quali maurao eveuali flussi fiaziari per ieressi Si passa agli idicaori complei C 18

19 Duraa media poderaa La duraa media poderaa è daa dalla media arimeica poderaa dei periodi di maurazioe dei flussi fiaziari sia per ieressi sia per capiale Ipoizzado che u iolo obbligazioario presei flussi fiaziari fuuri per capiale e ieressi di imporo pari a F 1, F 2,, F alle dae 1, 2,, DMP F F F F F = = = F = 1 F1 + F F = 1 F = 1 = 1 19

20 Duraa media poderaa Limie: i flussi o soo cosiderai i fuzioe del momeo della loro effeiva maifesazioe (o soo presi i valori auali) 20

21 Duraio o duraa media fiaziaria La duraa media fiaziaria è la media arimeica poderaa dei periodi di maurazioe dei flussi rispeo al loro valore auale oale Ipoizzado che u iolo obbligazioario presei flussi fiaziari fuuri per capiale e ieressi di imporo pari a F 1, F 2,, F alle dae 1, 2,, DUR F F ( 1+ r) ( 1+ r) ( 1+ r) = = F F F ( 1+ r) ( 1+ r) ( 1+ r) F 21

22 Via media maemaica = = 1 = 1 ( 1+ r) F F ( 1+ r) Può essere riscria ache come segue DUR FC FC = 1 ( 1+ TRES) = 1 1+ = = FC P ( 1+ TRES) = 1 ( TRES) 22

23 Duraio I praica, u obbligazioe deceale co cedola aua al 10% può essere scomposa i ua serie di ioli seza cedola auali La duraio rappresea la velocià di riero dall ivesimeo I ermii figurai può essere visa come la collocazioe emporale del suo baricero fiaziario 23

24 Duraio Esempio: si calcoli la duraa media fiaziaria di u obbligazioe avee le seguei caraerisiche Duraa Frequeza cedole Obbligazioe co cedola 5 ai Imporo cedola 5% Valore omiale 100 Prezzo di emissioe 100 TRES 5% Auale 24

25 Duraio Quao maggiore è la via residua di u obbligazioe, ao maggiore è la sua duraio Quado i assi di ieresse aumeao, la duraio dell obbligazioe co cedola dimiuisce Quao più è elevaa la cedola, ao miore è la duraio del iolo Quao più è elevaa la duraio dei ioli, ao più grade è la variazioe perceuale el valore di mercao del iolo a froe di ua variazioe del asso di ieresse 25

26 Covessià La covessià è la media arimeica poderaa delle scadeze sommae al quadrao delle scadeze C =11 ( 2 ) = + F ( 1+ r) P La covessià misura il grado di dispersioe dei flussi ioro alla duraio Maggiore è la dispersioe dei flussi ioro alla duraio maggiore è la covessià 26

Corso di Intermediari Finanziari e Microcredito

Corso di Intermediari Finanziari e Microcredito Idice Corso di Iermediari iaziari e Microcredio Iroduzioe I crieri radizioali di valuazioe dei progei di ivesimeo; La valuazioe dei progei di ivesimeo I crieri fiaziari di valuazioe dei progei d ivesimeo

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso

Dettagli

I modelli basati sul cash-flow mapping

I modelli basati sul cash-flow mapping I modelli basai sul cash-flow mappig Slides rae da: Adrea Resi Adrea Siroi Rischio e valore elle bache Misura, regolameazioe, gesioe Rischio e valore elle bache I modelli basai sul cash flow mappig AGENDA

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

SCUOLA POLITECNICA IN ECONOMIA E ORGANIZZAZIONE VILFREDO PARETO MASTER IN E-BUSINESS CAPITAL BUDGETING

SCUOLA POLITECNICA IN ECONOMIA E ORGANIZZAZIONE VILFREDO PARETO MASTER IN E-BUSINESS CAPITAL BUDGETING CAPITAL BUDGETING VALUTAZIONE DI PROGETTI D INVESTIMENTO CON PREVISIONE DEI FLUSSI DI CASSA ATTESI: l impresa ivese moea oggi per oeere flussi moeari icremeali el fuuro.* PROGETTO: Ivesimeo i arezzaure

Dettagli

Le basi della valutazione secondo i cash flow. Aswath Damodaran

Le basi della valutazione secondo i cash flow. Aswath Damodaran Le basi della valuazione secondo i cash flow Aswah Damodaran Valuazione secondo i cash flow: le basi dell'approccio Valore = = n CF = 1 1+ r ( ) dove, n = anni di via dell'aivià CF = Cash flow nel periodo

Dettagli

1 FLESSIBILITÀ DELLE PRESTAZIONI... 2 1.1 Adeguamento delle prestazioni... 3 1.1.1 Assicurazioni indicizzate e rivalutabili... 5 1.

1 FLESSIBILITÀ DELLE PRESTAZIONI... 2 1.1 Adeguamento delle prestazioni... 3 1.1.1 Assicurazioni indicizzate e rivalutabili... 5 1. FLEIBILITÀ DELLE PRETZIONI... 2. deguameo delle resazioi... 3.. ssicurazioi idicizzae e rivaluabili... 5.2 ssicurazioi Wi Profi... 7.3 ssicurazioi Ui Liked....4 Ierazioi ra riserva maemaica ed ivesimei

Dettagli

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria MERCATO DEI MUTUI A.A. 2015/2016 Prof. Alberto Dreassi adreassi@uits.it DEAMS Uiversità di Trieste ARGOMENTI Scopi e caratteristiche dello strumeto Tipologie di mutui Il mercato secodario e il ruolo svolto

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Ammortamento di un debito

Ammortamento di un debito Ammorameo di u debio /35 Ammorameo di u debio Che cosa si iede per ammorameo? Ammorameo coabile La quoa di ammorameo cosiuisce la pare del coso di u bee maeriale o immaeriale di ivesimeo da aribuire all

Dettagli

Nozioni elementari di Analisi Matematica applicate alla Fisica Generale

Nozioni elementari di Analisi Matematica applicate alla Fisica Generale Nozioi elemeari di alisi Maemaica applicae alla Fisica Geerale Nozioe di iegrale ideiio La derivazioe può essere ierpreaa come ua regola che, per ogi uzioe assegaa (primiiva), ci permee di deermiare u

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO

APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO Moduo 8a 1 APPROFONDIMENTI SULLA TEORIA DEL CONSUMO AGGREGATO 1. Iroduzioe 2. La eoria de cosumo di Dueseberry 3. La eoria de cico viae di Modigiai 2 1. Iroduzioe Dae esperieze dei maggiori sisemi macroecoomici,

Dettagli

Modelli attuariali per la previdenza complementare

Modelli attuariali per la previdenza complementare Modelli auariali per la prevideza complemeare Fabio Grasso Diparimeo di Scieze Saisiche Uiversià degli Sudi di Roma La Sapieza fabiograsso@uiroma1i Riassuo Il presee lavoro esamia i profili auariali della

Dettagli

Appendice 1. Le previsioni economiche

Appendice 1. Le previsioni economiche Saisica aziedale Bruo Bracalee, Massimo Cossigai, Aa Mulas Copyrigh 009 The McGraw-Hill Compaies srl Appedice. Le previsioi ecoomiche A. Iroduzioe La previsioe del fuuro da sempre cosiuisce maeria di grade

Dettagli

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti:

Sviluppare una metodologia di analisi per valutare la convenienza economica di un nuovo investimento, tenendo conto di alcuni fattori rilevanti: Analisi degli Invesimeni Obieivo: Sviluppare una meodologia di analisi per valuare la convenienza economica di un nuovo invesimeno, enendo cono di alcuni faori rilevani: 1. Dimensione emporale. 2. Grado

Dettagli

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari

Titoli obbligazionari (Bond) Tipi di titoli obbligazionari Tol obblgazoar Bod U obblgazoe è u olo d debo emesso da ua soceà da uo sao o da u ee pubblco che dà dro al suo possessore al rmborso del capale presao alla scadeza e al pagameo d eress cedole. La emssoe

Dettagli

Rischio di interesse: Il modello del clumping. Prof. Ugo Pomante Università di Roma Tor Vergata

Rischio di interesse: Il modello del clumping. Prof. Ugo Pomante Università di Roma Tor Vergata Rischio di ieresse: Il modello del clumpig Prof. Ugo Pomae Uiversià di Roma Tor Vergaa Problemi dei modelli precedei Repricig gap e duraio gap Ipoesi variazioe uiforme dei assi di ieresse delle diverse

Dettagli

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità)

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità) 4 Quai eravamo, quai siamo, quai saremo Che cosa si impara el capiolo 4 er cooscere le caraerisiche e l evoluzioe della popolazioe ialiaa araverso u lugo arco di empo uilizziamo il asso di icremeo medio

Dettagli

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 7 LA STRUTTURA A TERMINE DEI TASSI D INTERESSED

ECONOMIA MONETARIA (parte generale) Prof. Guido Ascari LEZIONE 7 LA STRUTTURA A TERMINE DEI TASSI D INTERESSED ECONOMIA MONETARIA (pare geerale) Prof. Guido Ascari Ao 2006-2007 2007 LEZIONE 7 LA STRUTTURA A TERMINE DEI TASSI D INTERESSED LA STRUTTURA A TERMINE DEI TASSI D INTERESSED Tioli di debio hao diverse scadeze

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche

LEZIONE 3 INDICATORI DELLE PRINCIPALI VARIABILI MACROECONOMICHE. Argomenti trattati: definizione e misurazione delle seguenti variabili macroecomiche LEZIONE 3 INDICATORI DELLE RINCIALI VARIABILI MACROECONOMICHE Argomeni raai: definizione e misurazione delle segueni variabili macroecomiche Livello generale dei prezzi, Tasso d inflazione, π IL nominale,

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI

SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI SCHEMI DI BILANCIO, TABELLE DELLA NOTA INTEGRATIVA E INDICI di Massimo FANTINI e Roberto TONELLO MATERIE: ECONOMIA AZIENDALE (classe 5 IT Idirizzo AFM; Articolazioe SIA; Articolazioe RIM; 5 IP Servizi

Dettagli

Rendita perpetua con rate crescenti in progressione aritmetica

Rendita perpetua con rate crescenti in progressione aritmetica edita perpetua co rate cresceti i progressioe aritmetica iprediamo l'esempio visto ella scorsa lezioe di redita perpetua co rate cresceti i progressioe arimetica: Questa redita può ache essere vista come

Dettagli

Lezione 11. Inflazione, produzione e crescita della moneta

Lezione 11. Inflazione, produzione e crescita della moneta Lezione 11 (BAG cap. 10) Inflazione, produzione e crescia della monea Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Tre relazioni ra produzione, disoccupazione e inflazione Legge di Okun

Dettagli

LEZIONI DI ANALISI ECONOMETRICA

LEZIONI DI ANALISI ECONOMETRICA LEZIONI DI ANALISI ECONOMETRICA Idice Lisa degli esempi applicaivi Iroduzioe Il modello lieare. Aalisi ecoomica ed aalisi ecoomerica Primi obieivi dell Ecoomeria. I modelli e il lugo periodo Modelli saici

Dettagli

Minicorso Stocks Market Trading Analysis

Minicorso Stocks Market Trading Analysis Pare 1 Miicorso Socks Marke Tradig Aalysis di Adrea Saviao Vedo prevedo sravedo, premessa L aalisi ecica e l albero di Naale Il bravo scieziao: sadard e ormale, iaziuo Gli srumei a disposizioe del bravo

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

La previsione della domanda nella supply chain

La previsione della domanda nella supply chain La previsione della domanda nella supply chain La previsione della domanda 1 Linea guida Il ruolo della prerevisione nella supply chain Le caraerisiche della previsione Le componeni della previsione ed

Dettagli

4 La riserva matematica

4 La riserva matematica 4 La riserva maemaica 4.1 Inroduzione La polizza, come si è viso, viene cosruia in modo da essere in equilibrio auariale alla daa di sipula = 0 e rispeo alla base ecnica del I ordine: se X è il flusso

Dettagli

La volatilità delle attività finanziarie

La volatilità delle attività finanziarie 4.30 4.5 4.0 4.5 4.0 4.05 4.00 3.95 3.90 3.85 3.80 3.75 3.70 3.65 3.60 3.55 3.50 3.45 3.40 3.35 3.30 3.5 3.0 3.5 3.0 3.05 3.00.95.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00.95.90.85.80.75.70.65.60.55.50.45.40.35.30.5.0.5.0.05.00

Dettagli

Risk Italia. L'attività in prodotti derivati di BancoPosta. Intervista con Stefano Calderano, responsabile dei prodotti retail OTTOBRE 2002

Risk Italia. L'attività in prodotti derivati di BancoPosta. Intervista con Stefano Calderano, responsabile dei prodotti retail OTTOBRE 2002 OTTOBRE www.ris.e Ris Ialia CURRECIES ITEREST RATES EQUITIES COMMODITIES CREDIT RISK ITALIA VOL / O OTTOBRE L'aivià i prodoi derivai di BacoPosa Iervisa co Sefao Calderao, resposabile dei prodoi reail

Dettagli

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale

Argomenti trattati. Rischio e Valutazione degli investimenti. Teoria della Finanza Aziendale. Costo del capitale Teoria della Finanza Aziendale Rischio e Valuazione degli invesimeni 9 1-2 Argomeni raai Coso del capiale aziendale e di progeo Misura del bea Coso del capiale e imprese diversificae Rischio e flusso di

Dettagli

07.XII Laboratorio integrato 3 - Valutazione economica del progetto - Clamarch - Prof. E. Micelli - Aa

07.XII Laboratorio integrato 3 - Valutazione economica del progetto - Clamarch - Prof. E. Micelli - Aa Elemeti di matematica fiaziaria 07.XII.2011 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006

Il valore delle. Argomenti. Domande chiave. Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2005-2006 - 4 Teoria della Finanza Aziendale rof. Aruro Capasso A.A. 5-6 Il valore delle A. azioni ordinarie - Argomeni Rendimeni richiesi rezzi delle azioni e ES Cash Flows e valore economico d impresa - 3 Domande

Dettagli

La stima per capitalizzazione dei redditi

La stima per capitalizzazione dei redditi La stima per capitalizzazioe dei redditi 24.X.2005 La stima per capitalizzazioe La capitalizzazioe dei redditi è l operazioe matematico-fiaziaria che determia l ammotare del capitale - il valore di mercato

Dettagli

Apertura nei Mercati Finanziari

Apertura nei Mercati Finanziari Lezione 20 (BAG cap. 6.2, 6.4-6.5 e 18.5-18.6) La poliica economica in economia apera Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia Aperura nei Mercai Finanziari 1) Gli invesiori possono

Dettagli

REGIME DELLA CAPITALIZZAZIONE COMPOSTA E SCONTO COMPOSTO

REGIME DELLA CAPITALIZZAZIONE COMPOSTA E SCONTO COMPOSTO Regie della capializzazioe coposa e scoo coposo REGME DELLA CAPTALZZAZONE COMPOSTA E SCONTO COMPOSTO Cosideriao l ipiego del capiale C per ua duraa di (uero iero) ai e suppoiao che gli ieressi siao capializzai

Dettagli

SU DI UN MODELLO ATTUARIALE PER LA VALUTAZIONE AL FAIR VALUE DI CONTRATTI DI ASSICURAZIONE SULLA VITA ANDREA FORTUNATI DOTTORATO IN SCIENZE ATTUARIALI

SU DI UN MODELLO ATTUARIALE PER LA VALUTAZIONE AL FAIR VALUE DI CONTRATTI DI ASSICURAZIONE SULLA VITA ANDREA FORTUNATI DOTTORATO IN SCIENZE ATTUARIALI SU DI UN MODELLO ATTUARIALE PER LA VALUTAZIONE AL FAIR VALUE DI CONTRATTI DI ASSICURAZIONE SULLA VITA ANDREA FORTUNATI DOTTORATO IN SCIENZE ATTUARIALI DIPARTIMENTO DI SCIENZE ATTUARIALI E FINANZIARIE UNIVERSITÀ

Dettagli

Corso di. Economia Politica

Corso di. Economia Politica Prof.ssa Blanchard, Maria Laura Macroeconomia Parisi, PhD; Una parisi@eco.unibs.i; prospeiva europea, DEM Universià Il Mulino di 2011 Brescia Capiolo I. Un Viaggio inorno al mondo Corso di Economia Poliica

Dettagli

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI TEPUS PECUNIA EST COLLANA DI ATEATICA PER LE SCIENZE ECONOICHE FINANZIARIE E AZIENDALI 3 Direore Bearice VENTURI Universià degli Sudi di Cagliari Comiao scienifico Umbero NERI Universiy of aryland Russel

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIAIA Prof. Adrea Berard 999 4. MUTUI E PIANI I AMMOTAMENTO Corso d Maeaca Fazara 999 d Adrea Berard Sezoe 4 0 CONTATTO I MUTUO Il corao d uuo è u operazoe fazara corrspodee ad ua parcolare

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE

Capitolo 27. Elementi di calcolo finanziario EEE Capitolo 27 Elemeti di calcolo fiaziario EEE 2012-2013 27.1 Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo

Dettagli

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08 L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire

Dettagli

Calibrazione di tranche CDO con il modello dinamico GPL

Calibrazione di tranche CDO con il modello dinamico GPL Calibrazioe di rache CDO co il modello diamico GPL La calibrazioe di u idice di credio e delle sue rache cosiseemee sulle varie scadeze co u sigolo modello i asseza di opporuià di arbiraggio è u problema

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità

Economia e gestione delle imprese - 07. Sommario. Liquidità e solvibilità Economia e gesione delle imprese - 07 Obieivi: Descrivere i processi operaivi della gesione finanziaria nel coneso aziendale. Analizzare le decisioni di invesimeno. Analizzare le decisioni di finanziameno.

Dettagli

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1

La programmazione aggregata nella supply chain. La programmazione aggregata nella supply chain 1 La programmazione aggregaa nella supply chain La programmazione aggregaa nella supply chain 1 Linea guida Il ruolo della programmazione aggregaa nella supply chain Il problema della programmazione aggregaa

Dettagli

Cenni di Matematica Finanziaria

Cenni di Matematica Finanziaria Cenni di Maemaica Finanziaria M.Leizia Guerra Facolà di Economia Universià di Urbino Carlo Bo Leggi e regimi finanziari Operazioni finanziarie elemenari Un conrao finanziario ra due soggei Alfa e Bea prevede

Dettagli

flusso in uscita (FU) Impresa flusso in entrata (FE)

flusso in uscita (FU) Impresa flusso in entrata (FE) Analisi degli invesimeni Il bilancio è una sinesi a poseriori della siuazione di un'azienda. La valuazione degli invesimeni è un enaivo di valuare a priori la validià delle scele dell'azienda. L'invesimeno

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

TECNICA DELLE ASSICURAZIONI

TECNICA DELLE ASSICURAZIONI TECNICA DELLE ASSICURAZIONI E DELLE FORME PENSIONISTICHE Prof. Annamaria Olivieri a.a. 25/26 Esercizi: eso. Una socieà di calcio si impegna a risarcire con 5 euro il proprio allenaore, in caso di licenziameno

Dettagli

= 1,4 (rischiosità sistematica)

= 1,4 (rischiosità sistematica) Analisi degli invesimeni n.b.: ui i valori moneari sono in euro Nel corso del 4 al managemen della socieà MPRESA vengono proposi due invesimeni alernaivi. Nel seguio vengono fornie informazioni in merio

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice

tp = 0 P + t r a 0 P Il modello di crescita aritmetico deriva dalla logica del tasso di interesse semplice Eserciazione 7: Modelli di crescia: arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Popolazione sabile e sazionaria. Viviana Amai 03/06/200 Modelli di crescia Nella

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

I possibili schemi di Partenariato Pubblico Privato

I possibili schemi di Partenariato Pubblico Privato OSSERVATORIO collegameno ferroviario Torino-Lione Collegameno ferroviario Torino-Lione I possibili schemi di Parenariao Pubblico Privao Torino, 30 Oobre 2007 Unià Tecnica Finanza di Progeo 1 PPP: analisi

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

I mercati dei beni e i mercati finanziari in economia aperta

I mercati dei beni e i mercati finanziari in economia aperta I mercai dei beni e i mercai finanziari in economia apera Economia apera Mercai dei beni: l opporunià per i consumaori e le imprese di scegliere ra beni nazionali e beni eseri. Mercai delle aivià finanziarie:

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

Scelte finanziarie SCELTE FINANZIARIE

Scelte finanziarie SCELTE FINANZIARIE Scelte fiaziarie SCELE FINANZIARIE Spesso ella pratica si icotrao problemi decisioali i ambito fiaziario, per esempio come scegliere la più coveiete tra varie possibilità di ivestimeto, la meo oerosa tra

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO

UNIVERSITÀ DEGLI STUDI DI BERGAMO UIVERSITÀ DEGLI STUDI DI BERGAMO Facolà di Ecoomia Diparimeo di Maemaica, saisica, iformaica e applicazioi "Lorezo Mascheroi" Doorao di Ricerca i: Meodi compuazioali per le previsioi e decisioi ecoomiche

Dettagli

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina)

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina) ITIS OMAR Dipartimeto di Meccaica APPUNTI DI ECONOMIA ELEMENTARE (tratti da A. MONTE Elemeti di Impiati Idustriali Cortia) Si defiisce iteresse il dearo pagato per l'uso di u capitale otteuto i prestito

Dettagli

Variazione approssimata del valore attuale

Variazione approssimata del valore attuale arazoe approssmaa del valore auale Fabo Bell 0 Abbamo vso le prcpal propreà della durao e dvers mod d calcolarla var esemp, ra cu ol a cedola fssa. Roramo alla relazoe che lega la durao alla sesvà del

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

F è la tensione equivalente al piede del dente nel punto più sollecitato (tensione effettiva) espressa nel modo seguente: F n

F è la tensione equivalente al piede del dente nel punto più sollecitato (tensione effettiva) espressa nel modo seguente: F n 3ALPGC-Cosruzioe di Macchie 3 4 Calcolo a faica 4. Normaiva UNI 886 Resiseza a flessioe Per quao riguarda il calcolo a faica per flessioe delle ruoe di igraaggi la ormaiva UNI 886 (987) fa riferimeo alla

Dettagli

I confronti alla base della conoscenza

I confronti alla base della conoscenza I confroni alla ase della conoscenza Un dao uaniaivo rae significao dal confrono con alri dai Il confrono è la prima e più immediaa forma di analisi dei dai I confroni Daa una grandezza G, due suoi valori

Dettagli

2. Politiche di gestione delle scorte

2. Politiche di gestione delle scorte deerminisica variabile nel empo Quando la domanda viaria nel empo, il problema della gesione dell invenario divena preamene dinamico. e viene deo di lo-sizing. Consideriamo il caso in cui la domanda pur

Dettagli

DISPENSE DI MATEMATICA FINANZIARIA

DISPENSE DI MATEMATICA FINANZIARIA SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.

Dettagli

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere

L ipotesi di rendimenti costanti di scala permette di scrivere la (1) in forma intensiva. Ponendo infatti c = 1/L, possiamo scrivere DIPRTIMENTO DI SCIENZE POLITICHE Modello di Solow (1) 1 a. a. 2015-2016 ppuni dalle lezioni. Uso riservao Maurizio Zenezini Consideriamo un economia (chiusa e senza inerveno dello sao) in cui viene prodoo

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

SCELTE INTERTEMPORALI E DEBITO PUBBLICO

SCELTE INTERTEMPORALI E DEBITO PUBBLICO SCELTE INTERTEMPORALI E DEBITO PUBBLICO Lo sudio delle poliiche economiche con il modello IS-LM permee di analizzare gli effei di breve periodo delle decisioni di poliica fiscale e monearia del governo.

Dettagli

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio

METODI DECISIONALI PER L'AZIENDA. www.lvproject.com. Dott. Lotti Nevio METODI DECISIONALI PER L'AZIENDA www.lvprojec.com Do. Loi Nevio Generalià sui sisemi dinamici. Variabili di sao, di ingresso, di uscia. Sisemi discrei. Sisemi lineari. Paper: Dynamic Modelling Do. Loi

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K 1 Matematica Fiaziaria Uiversità degli Studi La Sapieza Facoltà di Ecoomia Ao accademico 212-13 Matematica Fiaziaria Caale D - K Capitolo 3 Ammortameto di prestiti idivisi Atoio Aibali Atoio Aibali a.a.

Dettagli

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management

La vischiosità dei depositi a vista durante la recente crisi finanziaria: implicazioni in una prospettiva di risk management La vischiosià dei deposii a visa durane la recene crisi finanziaria: implicazioni in una prospeiva di risk managemen Igor Gianfrancesco Camillo Gilibero 31/01/1999 31/07/1999 31/01/2000 31/07/2000 31/01/2001

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015 BLOCCO TEMATICO DI ESTIMO Diritti reali: usufrutto CORSO PRATICANTI 2015 Usufrutto L'usufrutto è il diritto di godimeto da parte di ua persoa detta USUFRUTTUARIO di u bee altrui; il proprietario del bee

Dettagli

Matematica finanziaria avanzata III: la valutazione dei gestori

Matematica finanziaria avanzata III: la valutazione dei gestori Maemaca azaa aazaa III: la aluazoe de geso L dusa del spamo geso La aluazoe della peomace Redme Msue sk-adjused Msue basae su modell ecoomec Le gadezze lea I bechmak e le commsso La lodzzazoe de edme L

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Lezione 2: L investimento in strumenti finanziari I drivers dell analisi del valore L analisi dei titoli obbligazionari:

Lezione 2: L investimento in strumenti finanziari I drivers dell analisi del valore L analisi dei titoli obbligazionari: Lezione 2: L investimento in strumenti finanziari I drivers dell analisi del valore L analisi dei titoli obbligazionari: Analisi degli Investimenti 2014/15 Lorenzo Salieri L investimento in strumenti finanziari

Dettagli

Modifica del regolamento della Cassa pensione Novartis

Modifica del regolamento della Cassa pensione Novartis Modifica del regolameto della Cassa pesioe Novartis Agli assicurati della Cassa pesioe Novartis Il Cosiglio di fodazioe della Cassa pesioe Novartis ha emaato importati modifiche del cocetto e delle prestazioi

Dettagli

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia.

Anche sugli impianti in esercizio è possibile intervenire attuando una serie di soluzioni in grado di ridurre sensibilmente il consumo di energia. Risparmio Energeico Risparmio Energeico per Scale e Tappei Mobili La riduzione dei consumi di energia proveniene dalle foni fossili non rinnovabili (perolio, carbone) è una delle priorià assolue, insieme

Dettagli

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Teoria delle leggi finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Teoria delle leggi finanziarie Inensià di ineresse L inensià di ineresse relaiva al periodo da x ad y è definia come adimensionale I( xy, ) 1 ixy (, ) γ ( xy, ) = = C y x ( dimensione di empo -1 ) L inensià

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

165. Considerazioni sulla valutazione di un interest rate swap

165. Considerazioni sulla valutazione di un interest rate swap 165. Considerazioni sulla valuazione di un ineres rae swap Gabriella D Agosino, Anonio Guglielmi gabriella.dagosino@unisaleno.i; anonio.guglielmi@isruzione.i Absrac The aim of his paper is o pren an inroducory

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Il valore dei titoli azionari. a) DCF Model con TV. I metodi finanziari. I flussi di cassa. Flussidi cassa t

Il valore dei titoli azionari. a) DCF Model con TV. I metodi finanziari. I flussi di cassa. Flussidi cassa t Il valore de ol azoar IL VALORE DEI TITOLI AZIONARI: meod azar Soo possbl dvers approcc: approcco basao su luss d rsulao: meod azar, redduale e del valore (exra pro); approcco d mercao: meodo de mulpl

Dettagli

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02%

52. Se in una città ci fosse un medico ogni 500 abitanti, quale sarebbe la percentuale di medici? A) 5 % B) 2 % C) 0,2 % D) 0,5% E) 0,02% RISPOSTE MOTIVATE QUIZ D AMMISSIONE 2000-2001 MATEMATICA 51. L espressioe log( 2 ) equivale a : A) 2log B) log2 C) 2log D) log E) log 2 Dati 2 umeri positivi a e b (co a 1), si defiisce logaritmo i base

Dettagli

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 10. (BAG cap. 9) Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lezione 10 (BAG cap. 9) Il asso naurale di disoccupazione e la curva di Phillips Corso di Macroeconomia Prof. Guido Ascari, Universià di Pavia In queso capiolo Inrodurremo uno degli oggei più conosciui

Dettagli

Quadro riassuntivo delle principali formule di matematica finanziaria

Quadro riassuntivo delle principali formule di matematica finanziaria uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale o divea fuifeo. epo d ipiego del capiale co ao (u ao)

Dettagli

(formula dello sconto composto convertibile)

(formula dello sconto composto convertibile) uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale iiziale o divea fuifeo. epo d ipiego del capiale ( ao!)

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche:

LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Però offre una diversa spiegazione delle fluttuazioni economiche: LA TEORIA DEL CICLO ECONOMICO REALE (RBC: Real Business Cycle) Edward Presco, Finn Kydland, Rober King, ecc. Si inserisce nel filone della NMC: - Equilibrio generale walrasiano; - incerezza e dinamica:

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli