10 Simulazione di prova d Esame di Stato

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "10 Simulazione di prova d Esame di Stato"

Transcript

1 0 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario In un sistema cartesiano l equazione in due incognite ( ) ( + ) ( ) +6=0 rappresenta una curva γ avente come asse di simmetria la bisettrice del primo e terzo quadrante. a. Ruotare γ in modo che l asse di simmetria coincida con l asse delle ordinate e ricavare l equazione della funzione ruotata f posta nel semipiano positivo delle. b. Studiare la funzione f e tracciarne il grafico. c. Calcolare il volume del solido di rotazione ottenuto ruotando la curva f attorno all asse delle ascisse nella regione di piano limitata dalle rette di equazioni = 0 e =0, dove 0 è il punto di ascissa positiva in cui la curva interseca l asse delle ascisse. d. Verificare infine che il volume calcolato nel punto c è equivalente a quello del solido di rotazione ottenuto ruotando la stessa curva del punto c attorno all asse delle ordinate nella regione di piano limitata dagli asintoti verticali e dalla retta di equazione =0. a. ccorre ruotare la curva di un angolo di 45. La trasformazione cha va applicata alla curva è quindi la rotazione di 45 data dalle equazioni: = ( + ) = ( + ) Sostituendo nell equazione si ottiene ( ) ( 4) = 0. La funzione posta nel semipiano positivo delle ordinate sarà pertanto: 4 =. b. Dominio: 4 0 per ±. Da cui N 0 per > < e D >0 per > <. Dalla figura si ricava che il dominio è dato da: ; <<;. LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC N D + + +

2 Intersezioni con gli assi: intersezione asse (0; ±); intersezione asse (0; ±). Simmetrie: funzione pari (secondo quanto indicato nel testo). Segno: la funzione è sempre positiva per ogni appartenente al dominio, in quanto è una radice di ordine pari. Asintoti: verticali: = ± 4 lim + =+ ; lim 4 =+ ; orizzontali: = lim ± 4 =. Derivata prima: = ( 4)( ) ; dominio: < ; <<; >. I punti = ± sono punti in cui la funzione è continua, ma non derivabile. Calcoliamo i limiti lim ( 4)( ) = ; lim + + ( 4)( ) =+ I punti di coordinate (±; 0) sono punti di semicuspide aventi come tangenti le rette = ±. Inoltre sono punti di minimo relativo. Calcoliamo i punti stazionari. Y =0quando =0. Allora il punto di coordinate (0;) è un punto stazionario. Classifichiamolo. Y > 0 per >0. Dalla figura si ricavano gli intervalli in cui la funzione è crescente e che il punto (0; ) è un punto di minimo. LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC 0 N D f () + + f () m Dai dati raccolti il calcolo della derivata seconda, che risulta particolarmente complesso, è inutile. Non ci sono punti di flesso e la concavità della funzione è rivolta verso l alto nell intervallo <<. Il grafico è riportato in figura.

3 c. Il punto d intersezione con l asse delle ascisse è 0 =. Il volume del solido è dato dal calcolo dell integrale definito: V = π d = π 0 d π d. Il primo integrale è immediato e pari a 8 ; il secondo è l integrale di una funzione fratta di cui occorre scomporre il denominatore. In conclusione: [ V = π ln ] 0 ( = 8+ ) ln π. + 7 d. Come si può notare, il ramo della funzione per è simmetrico al ramo di funzione compreso nell intervallo 0 rispetto alla bisettrice =. Infatti, elevando al quadrato entrambi i membri della funzione si ottiene = 4, ed esplicitando ri- spetto alla si ottiene = 4. Applicando le trasformazioni geometriche della { = simmetria assiale rispetto alla retta = si riottiene l espressione di partenza a conferma di quanto detto. Il volume cercato è allora dato = dall integrale: V = π 0 4 d, che essendo formalmente uguale a quello precedentemente calco- ( 8+ ) ln π. 7 lato darà lo stesso risultato V = Problema Si consideri una circonferenza di raggio unitario di centro, una sua corda AB e si indichi con l angolo al centro AÔB. a. Determinare l area del segmento circolare non contenente il centro e avente come base la corda AB in funzione dell angolo. (Si ricorda che il segmento circolare a una base è ciascuna delle due parti in cui un cerchio viene diviso da una sua corda.) b. Studiare e tracciare il grafico di tale funzione. c. Detta h la differenza fra il raggio e la misura della distanza della corda dal centro, trovare una relazione che esprima h in funzione di. = 4 = LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC

4 d. Ruotare la circonferenza attorno al diametro perpendicolare alla corda AB. Dimostrare che il volume del segmento sferico corrispondente al segmento circolare precedentemente calcolato vale V = πh ( h). e. Fissato un opportuno sistema di coordinate, il cui centro coincida con quello della sfera e formato da due angoli, α e β, corrispondenti rispettivamente alla longitudine e alla latitudine, determinare un espressione che permetta di calcolare la distanza fra due punti P e Q posti sulla sfera alla stessa latitudine α e aventi rispettivamente longitudine β e β. Applicare quanto calcolato nel punto precedente per ricavare la distanza sulla Terra (supposta sferica di raggio R T = 6400 km) fra due località di coordinate geografiche latitudine 50 e longitudine rispettivamente 0 e 70. a. L area del segmento circolare è dato dalla differenza fra l area del settore circolare (A s ) e quella del triangolo AB. L area del settore circolare è proporzionale a quella del cerchio e vale r, mentre quella del triangolo può essere espressa come la metà del prodotto di due lati per il seno dell angolo compreso, nel nostro caso r sen. Poiché il raggio è unitario si ottiene: A = A s A AB = sen = ( sen ). b. Studiamo la funzione. Dominio: R. Intersezioni con gli assi. Intersezione asse : sen = 0. La soluzione si ottiene graficamente dall intersezione fra la curva sinusoidale e la bisettrice del primo e terzo quadrante. Dalla figura si vede che l unica soluzione è l origine degli assi, in quanto la bisettrice è la retta tangente alla curva sinusoidale nell origine. Infatti la derivata prima della funzione sinusoidale nell origine vale cos 0 =, che è il coefficiente angolare della bisettrice. LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC = π π π π = sen Intersezione asse : (0; 0). Simmetrie: f( ) = [ + sen( )] = ( + sen ) = f( ) funzione dispari. Segno: la funzione è data dalla differenza fra la bisettrice del primo e terzo quadrante e la funzione sinusoidale. Data la simmetria della funzione, basta analizzare il semipiano 4

5 positivo delle ascisse. Poiché la retta sta sempre sopra la funzione sinusoidale in quanto tangente nell origine, la f sarà sempre positiva per >0 e negativa per <0. Asintoti: non ci sono asintoti né verticali né orizzontali in quanto il dominio è tutto R. Data la simmetria della funzione, basta studiare il limite per che tende a +. ( sen ) =. lim + Calcoliamo allora se esiste l asintoto obliquo. L eventuale coefficiente angolare vale ( sen ) =. lim + Il termine noto si ricava calcolando il limite lim + ( sen ) = lim + sen. Questo limite però non esiste e quindi si conclude che non c è neanche l asintoto obliquo. Derivata prima. Calcoliamo la derivata: = ( cos ). Essa si annulla quando cos =, cioè per =kπ, che risulteranno punti stazionari. Inoltre > 0 quando cos <, cioè per ogni valore di escluso i punti stazionari che risultano essere punti di flesso orizzontale. La f risulta allora essere sempre crescente. Derivata seconda. Calcoliamo infine la derivata seconda: = sen. Essa si annulla per = kπ ed è positiva per gli intervalli kπ < < (k +)π. Pertanto la f ha flessi nei punti ( kπ; kπ) (di cui quelli di ascissa pari a kπ sono quelli orizzontali) e volge la concavità verso l alto negli intervalli kπ < < (k +)π. Grafico: in figura è riportato il grafico della funzione. LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC = sen 5 5 c. Dalla figura h = HP = P H. H = A cos, quindi h = cos. A H P B 5

6 d. Posto un sistema di riferimento cartesiano con origine nel centro della circonferenza e l asse sul diametro perpendicolare alla corda AB, per calcolare il volume del segmento sferico occorre calcolare il volume del solido ottenuto ruotando la circonferenza attorno all asse nell intervallo fra la distanza della corda dal centro e la misura del raggio del cerchio. La circonferenza nel nostro sistema di riferimento ha equazione + =,per cui il volume è dato dall integrale: V = π h ( )d = π [ ] h = πh Q ( h). e. La distanza fra i punti P e Q aventi la stessa latitudine è data dalla misura dell arco di circonferenza il cui raggio, come si vede in figura, vale R cos α, dove R è il raggio della sfera. L arco di una circonferenza è dato dal prodotto del raggio per la differenza fra gli angoli espressi in radianti. Quindi PQ = R(β β ) cos α =(β β ) cos α, essendo il raggio della sfera unitario. Posto α =50 e β β =40 = 40π =0,7rad, la distanza PQ varrà 80 R T cos 50 0,7 =880 km. α α P LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC Questionario Sono date le funzioni ( ) f() = e g() =log. Determinare dominio, grafico e codominio di = f[g()] e di = g[f()]. ( ) = D = R; C = { R >0} = log D = { R >0}; C = R 6

7 ( ) log = f[g()] = = log = D = { R >0}; C = { R >0} ( ) ( ) = g[f()] = log = log D = R; C = R 5 4 = = 4 5 = LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC 4 4 Dimostrare che un qualunque triangolo viene diviso dalle sue mediane in sei triangoli tra loro equivalenti. A M L B N ABC è un triangolo qualunque. AN, BL, CM sono le sue mediane. I triangoli BN e NC sono equivalenti, perché hanno basi uguali (BN = NC per ipotesi) e la stessa altezza (vertice in comune). 7 C

8 Analogamente sono equivalenti i triangoli CL e LA (CL = LA per ipotesi e vertice in comune) e i triangoli AM e MB (AM = MB per ipotesi e vertice in comune). Sono inoltre equivalenti i triangoli ABN e ANC, perché hanno basi uguali (BN = NC per ipotesi) e la stessa altezza (vertice A in comune). Sono equivalenti per differenza di triangoli equivalenti anche i triangoli AB e AC; e di conseguenza sono tutti equivalenti tra loro i triangoli MB, AM, LA, CL, perché equivalenti a metà di triangoli equivalenti. Analogamente, osservando l equivalenza dei triangoli CAM e CMB si arriva a concludere, per la proprietà transitiva, che anche i triangoli BN e NC sono equivalenti ai quattro triangoli equivalenti MB, AM, LA, CL. Si consideri una piramide retta a base quadrata di vertice V e che ha i suoi spigoli laterali della stessa lunghezza a del lato di base. Determinare gli angoli, espressi in gradi e primi sessagesimali, formati dallo spigolo e dal lato di base, quello fra l apotema e il diametro della circonferenza inscritta nel quadrato di base e infine quello fra lo spigolo e la diagonale del quadrato di base. V LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC H A K B Il triangolo VAB è equilatero, per cui l angolo V ÂB =60. L apotema VK, altezza del triangolo AV B, vale a e HK = a,per cui l angolo V KH = arc cos KH VK = arc cos = Poiché il triangolo VHB è rettangolo e HB = a, allora l angolo V BH = arc cos HB = arc cos VB =45. 4 Determinare il numero di soluzioni dell equazione m ln =0 al variare di m numero reale. L equazione è la soluzione del sistema dato dalla funzione logaritmica e dal fascio di rette passanti per l origine. Dalla figura si ricava subito che per m 0 c è una sola soluzione compresa nell intervallo (0 < ). Per m >0 invece occorre distinguere tre casi: le rette sono secanti (due soluzioni distinte), tangenti (due soluzioni coincidenti) o 8

9 esterne (nessuna soluzione). Per determinare gli intervalli soluzione del problema occorre allora determinare il coefficiente della retta tangente. Detto allora P (k;lnk) il punto di tangenza fra la generica retta = m e la curva logaritmica, imponiamo che la retta tangente in P alla curva logaritmica passi per il centro. Il coefficiente angolare della retta tangente sarà dato dalla derivata nel punto P e risulterà uguale a t. Allora la retta tangente passante per P avrà equazione: ln k = ( t). t Imponendo il passaggio per l origine si ricava ln k =, da cui k = e. Allora la retta = e è la retta tangente alla curva logaritmica. Questo significa che per 0 <m< e l equazione ha due soluzioni distinte (di cui una compresa nell intervallo <<e e l altra per >e), per m = e due soluzioni coincidenti ( = e) e per m > e nessuna soluzione. =ln = m e = e = m LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC 5 Trovare due numeri reali positivi la cui somma è k e per i quali il prodotto del quadrato dell uno per la radice quadrata dell altro è massimo. Detti e i due numeri, si può scrivere la funzione z che esprime la relazione data nel seguente modo: = k z = =(k ) z ( k)(5 k) =. La derivata prima si annulla per = k e per = k. Studiando il segno della deriva pri- 5 ma si ricava che c è un massimo per = k 5. 9

10 6 Data la funzione { sen se <0 ln( + ) se 0 calcolare il dominio, verificare se è continua e derivabile in ogni punto del dominio e tracciarne il grafico. Il dominio è tutto R. Per quanto riguarda la continuità e la derivabilità, l unico punto da studiare è quello di ascissa nulla. La funzione è continua in =0. Infatti: F (0) = ln = 0 lim sen =0; lim 0 ln( + ) =0 0 + La funzione è derivabile in =0e F (0) =. Infatti: F (0) = lim cos =; F 0 Il grafico è dato in figura. k 0 5 k 0 f () f () 0 + (0) = lim = + k 5 M = f () k + LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC π π π 7 Enunciare il Teorema di Lagrange e applicarlo alla funzione = +, determinando l estremo superiore dell intervallo nell ipotesi che l estremo inferiore valga 0 e che il valore dell ascissa interno all intervallo indicato nel teorema sia. L enunciato del teorema è consultabile nel testo, Modulo N, Unità. Calcoliamo la derivata prima: f () =. + 0

11 Il valore assunto dalla funzione per =0è f(0) = e il valore assunto dalla derivata prima per = è f ( ) =. Applicando il teorema otteniamo: ( ) f = f(b) f(0) b + = = da cui b + =b b 0 b 4(b +)=(b +) b 4b =0, che ha soluzioni b =0(non accettabile) e b =4. 8 Si consideri una semicirconferenza di raggio unitario e un triangolo rettangolo isoscele a essa inscritto. Costruire sui cateti due semicirconferenze di diametro pari a ciascun cateto dalla parte esterna al triangolo. Si vengono così a formare fra la semicirconferenza maggiore e le altre due, due superfici, dette lunule. Dimostrare che la somma delle aree delle lunule è pari all area del triangolo rettangolo. Dalla figura si osserva che ciascuna lunula ha come area la differenza fra l area (A ) del semicerchio avente diametro un cateto e quella (A) del segmento circolare avente corda il cateto del triangolo ABC. L area del segmento circolare a sua volta è ottenuta sottraendo all area (A ) del quarto del cerchio avente diametro l ipotenusa e quella del triangolo rettangolo AB (o BC). Inoltre, poiché l ipotenusa del triangolo rettangolo vale, si ricava che i cateti hanno misura. Per cui: A = ( ) AB π = π 4 ; A = π 4 LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC Area triangolo: A = AB = A = A A = π 4. L area di ciascuna lunula allora varrà: A A=,per cui l area delle due lunule varrà come l area A del triangolo. B A C

12 9 Sia f una funzione simmetrica rispetto al punto A di coordinate (0; ), il cui dominio sia tutto R. Dimostrare che, per tutti i reali, si ha f()+f( ) =6. Poiché A(0; ) è il centro di simmetria fra due punti simmetrici della funzione, valgono le relazioni di simmetria centrale: { = +h = +k dove h e k sono le coordinate del centro di simmetria. Per cui { = = +6 Ne deriva che + = f()+f( ) =6. 0 Illustrare il metodo di integrazione per parti e applicarlo per ricavare le primitive della funzione f() =e. Il metodo di integrazione per parti si basa sull espressione della derivata del prodotto. [f()g()] = f ()g()+f()g () Integrando entrambi i membri si ricava: [f()g()] d = f ()g()d + f()g ()d f()g() = f ()g()d + f()g ()d, LESCHER EDITRE PAGINA LIBERAMENTE FTCPIABILE A US DIDATTIC da cui si ricava l espressione dell integrazione per parti: f ()g()d = f()g() f()g ()d. Applicando alla funzione si ottiene: f () =e, da cui integrando si ottiene f() = e ; g () =, da cui derivando si ottiene g() =. Applicando la formula si ricava: e d = e + e d. Quest ultimo integrale è immediato per cui si ottiene: e e + c = e ( + )+c.

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2 Sessione ordinaria all estero (EUROPA) 8-9 ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO: EUROPA CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tema di: MATEMATICA Il candidato risolva uno

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

8 Simulazione di prova d Esame di Stato

8 Simulazione di prova d Esame di Stato 8 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Si consideri la famiglia di funzioni f α () = a e a con a parametro reale

Dettagli

ORDINAMENTO 2011 QUESITO 1

ORDINAMENTO 2011 QUESITO 1 www.matefilia.it ORDINAMENTO 0 QUESITO Consideriamo la sezione della sfera e del cilindro con un piano passante per l asse del cilindro: Indicando con x il diametro di base del cilindro, con y la sua altezza

Dettagli

12 Simulazione di prova d Esame di Stato

12 Simulazione di prova d Esame di Stato 2 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario È assegnata la funzione = f() =( +2)e 2 +, essendo una variabile reale.

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

5 Simulazione di prova d Esame di Stato

5 Simulazione di prova d Esame di Stato 5 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Tra le parabole di equazione k, individuare la parabola γ tangente alla

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1 Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2005 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 5 Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA Nel primo quadrante del sistema di riferimento Oy,

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1

LICEO SCIENTIFICO QUESTIONARIO QUESITO 1 www.matefilia.it LICEO SCIENTIFICO 015 - QUESTIONARIO QUESITO 1 y = f() ; il suo grafico è tangente alla retta y = + 5 nel secondo quadrante ed inoltre risulta: f () = + 6. Determinare l equazione y =

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione ordinaria all estero (EUROPA) - a.s Soluzione di De Rosa Nicola Corso di ordinamento- Sessione ordinaria all estero (EUROPA - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (EUROPA ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione ordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 00 Sessione ordinaria Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Sia AB un segmento

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Si determini il campo di esistenza della funzione y = (x 2 3x) 1 x 4. Ricordiamo che il campo di esistenza di una funzione del

Dettagli

4^C - Esercitazione recupero n 4

4^C - Esercitazione recupero n 4 4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

13 Simulazione di prova d Esame di Stato

13 Simulazione di prova d Esame di Stato Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario È data la funzione esponenziale = 4e e +. a. Dopo aver verificato che si

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s Soluzione di De Rosa Nicola Corso di ordinamento- Sessione ordinaria all estero (AMERICHE) - a.s. 007-008 MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLE ITALIANE ALL ESTERO (AMERICHE) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria

Dettagli

AMERICHE QUESTIONARIO QUESITO 1

AMERICHE QUESTIONARIO QUESITO 1 www.matefilia.it AMERICHE 26 - QUESTIONARIO QUESITO Tre circonferenze di raggio sono tangenti esternamente una all altra. Qual è l area della regione interna che esse delimitano? Osserviamo che il triangolo

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano, riferito

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2 www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2003 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Sessione suppletiva Il candidato risolva uno dei due problemi e dei 1 quesiti in cui si articola il questionario. PROBLEMA 1 Del triangolo ABC si

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1.

In un triangolo un lato è maggiore della differenza degli altri due, pertanto dal triangolo si ha > dividendo per =1. L iperbole L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. Come si evince del grafico, la differenza delle distanze

Dettagli

ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 2003 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale)

ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 2003 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale) Sessione ordinaria LS_ORD 00 America Boreale ESAME DI STATO: Indirizzo Scientifico Sessione ordinaria 00 SECONDA PROVA SCRITTA Tema di MATEMATICA (AMERICA emisfero boreale) Il candidato risolva uno dei

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008

Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008 Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 8 Sessione Ordinaria 8 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto d) 5 Problema 6 Punto

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

FUNZIONI 3. calcolare: a) lim f ( x)

FUNZIONI 3. calcolare: a) lim f ( x) ) Data la funzione di equazione a) lim f ( ) b) lim f ( ) f FUNZIONI ), scriverne il dominio poi calcolare: 5 c) lim f ( ) d) lim f ( ) ( ± 5 ) Data la funzione di equazione f ( ) 5, scriverne il dominio

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE

UNITÀ DIDATTICA 3 FUNZIONI GONIOMETRICHE UNITÀ DIDATTICA FUNZIONI GONIOMETRICHE 1 La misura degli angoli In ogni circonferenza è possibile definire una corrispondenza biunivoca tra angoli al centro e archi: a ogni angolo al centro corrisponde

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 7 Problema 1 Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria 001-00 In un piano, riferito a un sistema di assi cartesiani

Dettagli

M557 - ESAME DI STATO DI LICEO SCIENTIFICO

M557 - ESAME DI STATO DI LICEO SCIENTIFICO M7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di: MATEMATICA Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA 1 Nel primo quadrante del

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it ORDINAMENTO 2009 - SESSIONE SUPPLETIVA QUESITO 1 Una piramide, avente area di base B e altezza h, viene secata con un piano parallelo alla base. Si calcoli a quale distanza dal vertice

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 006 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Nel piano,

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

Esercizi sulle rette nello spazio

Esercizi sulle rette nello spazio 1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli