Inferenza esatta sui parametri (I e II)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Inferenza esatta sui parametri (I e II)"

Transcript

1 Modelli di computazione affettiva e comportamentale Data: 19 e 21 Maggio 2010 Inferenza esatta sui parametri (I e II) Docente: Prof. Giuseppe Boccignone Scriba: Lorenzo Genta 1 Introduzione ai diversi approcci Abbiamo fino ad ora esplorato il primo livello dell inferenza su variabili (1) dando per scontato di conoscere e H. P (x y,, H) P (y x, H, ) P (y x, H, ) (1) Prendendo in considerazione i parametri possiamo considerarli come fossero costanti (come mostrato in figura 1 A): questo si rappresenta disegnando un puntino sotto ai parametri costanti. Un altro modo per rappresentare una situazione di questo tipo è rappresentato in figura 1 B, dove rappresentiamo anche il valore del parametro. Figura 1: Graphical Model dove il parametro é rappresentato come una costante Possiamo altresì considerare come fosse una variabile osservata (fig. 2 A): in questo caso abbiamo che le X 1...X n sono indipendenti in quanto il nodo osservato (in configurazione tail-to-tail), per le proprietá di indipendenza condizionale; divide il grafo; possiamo quindi scrivere P ( N X ) P (X i ). Si noti come il caso (A) rappresenta la tibica situazione contemplata in un setting frequentistico, dove i campioni X i sono considerati indipendenti e identicamente distribuiti (i.i.d). Utilizzando un approccio bayesiano è invece possibile, piú in generale considerare come una variabile aleatoria anch essa, come mostrato in figura 2 B ed espresso nella formula 2. Notare che la soluzione a questo problema è classificata come problema di learning (il nostro obiettivo diventa apprendere i parametri), ma i1 1

2 2 Inferenza esatta sui parametri (I e II) in un setting Bayesiano tale problema é ricondotto ad un problema di inferenza. Figura 2: Graphical Model dove il parametro é rappresentato come una variabile aleatoria, osservata (A) o non osservata (B) P ( x) P (x )P () P (x )P () (2) 2 L approccio classico: stima di massima verosimiglianza (Maximum Likelihood) Analizziamo un caso semplice, basandoci sulla distribuzione di Bernoulli, per tentare di inferire i parametri : consideriamo il lancio di una moneta. In questo caso già conosciamo la distribuzione di probabilità P (x ) Bern(x; ). Lo spazio degli eventi è Ω SUCCESSO, INSUCCESSO e la funzione di probabilità su tale spazio è data dalla 3. P (ω) { 1 se ω SUCCESSO 0 se ω INSUCCESSO x (1 ) 1 x (3) dove ω Ω e è la probabilità che la variabile aleatoria X sia un successo. Quindi sappiamo che: [0, 1] E[X] x [0,1] x P (x ) E[X] 0 P (x 0 ) + 1 P (x 1 ) var[x] E[X 2 ] (E[X]) 2 (4) Una volta stimata la variabile la considero come fosse osservata. Quindi X 1...X n (che chiameremo D per Dati) diventano indipendenti. Da questo procedo con i calcoli:

3 Inferenza esatta sui parametri (I e II) 3 P (D ) N P (x i ) i1 N xi (1 ) 1 xi (5) i1 questa viene chiamata funzione di verosimiglianza (rispetto al parametro ) che rappresenteremo con L(, x). Ora cerco quel tale che mi massimizzi la funzione di verosimiglianza (nei calcoli seguenti considereremo N X x i ) i1 N N N x i (1 x i ) xi (1 ) 1 xi i1 (1 ) i1 i1 X (1 ) N X L(; x) (6) Ora definisco l(; x) log L(; x) x log + (N X) log(1 ) come log-verosimiglianza. Se cerchiamo il che massimizza questa funzione otteniamo uno stimatore ottimo. l x 1 (N X) 1 1 x 1 X N 0 0 (N X) N i1 N x i 1 1 (7) Al termine del calcolo troviamo che lo stimatore di massima verosimiglianza risulta proprio essere la media campionaria. Il problema fondamentale di questo approccio può essere spiegato con il paradosso classico dell induzione: ipotizzando tre lanci di una moneta nei quali si ottenga come risultato T, T, T la stima del parametro sarebbe ˆ In pratica deduco da un campione troppo ridotto un valore statisticamente ingiustificato della certezza di ottenere testa in un lancio della moneta. Questo è spiegabile anche mediante il paradosso del cigno nero: se osservo 3 cigni bianchi, posso assumere che tutti i cigni siano bianchi? (esiste una particolare razza di cigni neri in Africa...) 3 L approccio Bayesiano Mediante un approccio di tipo Bayesiano trattiamo il parametro come se fosse una variabile aleatoria:

4 4 Inferenza esatta sui parametri (I e II) P ( x) P (x ) p() P (x ) P ()d (8) Ora non stiamo più stimando il parametro ma stiamo cercando la distribuzione di probabilità che lo rappresenta. La P ( x) rappresenta la probabilità a posteriori su. Infine, nell ambito della teoria delle decisioni, cercheremo un criterio di scelta della basandoci sulla sua distribuzione di probabilità(valore a massima probabilità, media...). Ora procediamo esplicitando le distribuzioni conosciute: P ( x) P (x ) p() P (x ) P ()d ( N ) x x (1 ) N x P () ( ) N x (1 ) N x P ()d x x (1 ) N x 1 x (1 ) N x 1 d (9) Il problema si riscontra nel passaggio segnato dal simbolo *: come definire P ()? Abbiamo tre possibili approcci: 1. Non sapendo nulla considero la possibilità che ogni valore sia equiprobabile associando quindi la probabilità di ad una distribuzione uniforme. 2. Posso considerare la distribuzione coniugata alla distribuzione P (x ) 3. Nel caso in cui si abbiano informazioni precise in merito alla distribuzione di P (), (per esempio dovute alla natura dello specifico problema modellato) posso applicarla direttamente all interno della formula. In questo svolgimento abbiamo scelto l approccio descritto al punto 1 (come evidenziato nei valori contrassegnati da **) ed abbiamo infatti rappresentato la P () come distribuzione uniforme: questo approccio è noto anche come Let the data speak : non avendo informazioni sufficienti ipotizzo un valore neutro. 3.1 La distribuzione Beta Presentiamo ora brevemente una distribuzione di probabilità molto utilizzata specialmente in ambito bayesiano. La distribuzione Beta nasce dalla funzione omonima B(a, b) 1 a 1 (1 ) b 1 d ed ha la seguente forma: Beta(; a, b) Γ(a + b) Γ(a) + Γ(b) a 1 (1 ) b 1 (10)

5 Inferenza esatta sui parametri (I e II) 5 Eguagliando ora i parametri a b con la distribuzione da noi trovata otteniamo x a 1 N x b 1 a x + 1 b N x + 1 (11) La distribuzione del nostro parametro risulta quindi essere una distribuzione di Beta. A questo punto dovremmo trovare i valori per gli iperparametri a e b: questi due iperparametri riflettono le condizioni empiriche sui dati. Vi sono alcune tecniche empiriche per stimarli anche su pochi dati quindi nel nostro modello grafico (figura 3) saranno considerati come parametri e non come variabili aleatorie. Figura 3: Modello grafico Bayesiano della distribuzione Beta-Binomiale 3.2 Analisi dei risultati ottenuti Utilizzando la distribuzione 10 per calcolare la P ( D) otteniamo:

6 6 Inferenza esatta sui parametri (I e II) P ( D) ( N ) x x (1 ) N x ( ) N x (1 ) N x x x (1 ) N x a 1 (1 ) b 1 x (1 ) N x a 1 (1 ) b 1 d Γ(a+b) Γ(a)+Γ(b) a 1 (1 ) b 1 Γ(a + b) Γ(a) + Γ(b) a 1 (1 ) b 1 d a+x 1 (1 ) N x+b 1 1 a + x 1 N x + b 1 }{{}}{{} α β (1 ) d 0 } {{ } Integrale noto: funzione Beta Γ(α + β) Γ(α) Γ(β) α 1 (1 ) β 1 Γ(a + x + N x + b) Γ(a + x) Γ(N x + b) a+x 1 (1 ) N x+b 1 Γ(a + N + b) Γ(a + x) Γ(N x + b) a+x 1 (1 ) N x+b 1 (12) Mentre la distribuzione 10 era il nostro modello di probabilità a priori, la distribuzione 12 è la nostra probabilità a posteriori, nuovamente una beta con parametri modificati: più precisamente si può notare che si sta andando ad incrementare ad a i successi ed a b gli insuccessi. Questo mostra chiaramente la situazione sulle mie credenze a priori (10) e quelle a posteriori(12): se su 10 lanci di una moneta ottengo 5 croci si incrementano allo stesso modo a e b non variando la forma della distribuzione. Se invece ottenessi dei dati contraddittori la forma della mia distribuzione Beta cambierebbe adattando il mio modello iniziale ai risultati empirici. Un altro fatto interessante da notare è che tutto questo processo può essere eseguito interamente ONLINE, ovvero passo dopo passo durante l osservazione dei dati: P ( D) t P (D ) P ()t P (D ) P ()d (13) Le tecniche utilizzabili online hanno una grande importanza per via della possibilità di utilizzarle in real time: le tecniche bayesiane sono il modo migliore per avere un approccio online. 3.3 Scelta di un valore per Vi sono diversi approcci per la scelta del valore migliore da utilizzare per il parametro. Il punto di partenza é la teoria generale delle decisioni: Funzione di costo(massimizzo) {}}{ R(x) }{{} α, L(, α(x)) P (, α) Funzione di rischio (minimizzo)

7 Inferenza esatta sui parametri (I e II) 7 Si puó mostrare che per casi specifici della funzione di costo ottengo le seguenti regole di decisione, tipicamente utilizzate: Regole MAP (Maximum A Posteriori): ˆ argmax (P ( D)) Medie a posteriori: E[ D] P ( D)d Approccio tramite MAP Procediamo cercando il massimo della nostra distribuzione: Beta(; α, β) ˆ 1 {}}{ k [(α 1) α 2 (1 ) β 1 α 1 (β 2)(1 ) β 1 ] 0 α 1 α + β 2 a + x 1 a + x + N x + b 2 a + x 1 a + N + b 2 (14) Notiamo che nel caso in cui a 1 e b 1 abbiamo ˆ MAP x N ˆ ML quindi ˆ argmax(p ( D)) argmax P (D ) ˆ ML. Il metodo di massima verosimiglianza risulta quindi essere un caso particolare dell approccio bayesiano Approccio tramite media Proviamo ora ad utilizzare la media come nuovo valore di. E[ D] ˆ MEAN P ( D)d α α + β a + x a + x + N x + b a + x a + N + b (15) Nell ipotesi fatta precedentemente (a 1, b 1), ipotizzando che il risultato di tipo TESTA sia un successo, abbiamo ˆ MEAN x + 1 N + 2 N teste + 1 N teste + N croci + 2 (16) Questo è (in questo caso specifico) uguale alla regola di successione di Laplace: supponendo di ottenere 3 teste in 3 lanci consecutivi avremmo: 1 Fattore di normalizzazione

8 8 Inferenza esatta sui parametri (I e II) P (T esta) 4 4/5 (17) 5 Appare chiaramente che in questo caso è stato tenuto conto nei calcoli dell insufficienza dei dati: non diamo più un valore di probabilità 1 all evento osservato bensì gli associamo una probabilità molto alta (più corretto). 4 Valutazione delle ipotesi - inferenza sui modelli L ultimo punto da analizzare, per quanto riguarda l approccio bayesiano, è l inferenza sui modelli: P (H 0 x) P (x H 0) P (H 0 ) P (x) P (H 1 x) P (x H 1) P (H 1 ) P (x) (18) (19) Valuto la probabilità di un modello dato un campione analizzato. Successivamente posso scommettere su di un modello piuttosto che su di un altro P (H 0 x) P (H 1 x) P (x H 0) P (H 0) P (x) P (x H 1) P (H 1) P (x) P (x H 0 ) P (x H 1 ) P (x, H0 ) P ( H 0 )d P (x, H1 ) P ( H 1 )d (20) Nel passaggio contrassegnato da * abbiamo dato la stessa probabilità a priori al modello H 0 ed al modello H 1. La funzione 20 in alcuni casi può essere calcolata in forma chiusa, quando questo non è possibile è necessario adottare tecniche più complesse. Se il rapporto dato dalla 20 risultasse > 1 avremmo che il modello H 0 è più preciso per rappresentare i nostri dati, altrimenti sarebbe preferibile il modello H 1.

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Note introduttive alla probabilitá e alla statistica

Note introduttive alla probabilitá e alla statistica Note introduttive alla probabilitá e alla statistica 1 marzo 2017 Presentiamo sinteticamente alcuni concetti introduttivi alla probabilitá e statistica 1 Probabilità e statistica Probabilità: Un modello

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

Localizzazione di una esplosione

Localizzazione di una esplosione XXIII Ciclo di Dottorato in Geofisica Università di Bologna Corso di: Il problema inverso in sismologia Prof. Morelli Localizzazione di una esplosione Paola Baccheschi & Pamela Roselli 1 INTRODUZIONE Problema

Dettagli

Esercizi su variabili aleatorie discrete

Esercizi su variabili aleatorie discrete Esercizi su variabili aleatorie discrete Esercizio 1. Data la variabile aleatoria discreta X, caratterizzata dalla seguente rappresentazione nello spazio degli stati: 1 0,25 X = { 0 0,50 1 0,25 calcolare

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Modelli probabilistici variabili casuali

Modelli probabilistici variabili casuali Modelli probabilistici variabili casuali Le variabili casuali costituiscono il legame tra il calcolo della probabilità e gli strumenti di statistica descrittiva visti fino ad ora. Idea: pensiamo al ripetersi

Dettagli

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza

Statistica Metodologica Avanzato Test 1: Concetti base di inferenza Test 1: Concetti base di inferenza 1. Se uno stimatore T n è non distorto per il parametro θ, allora A T n è anche consistente B lim Var[T n] = 0 n C E[T n ] = θ, per ogni θ 2. Se T n è uno stimatore con

Dettagli

Cenni di probabilità

Cenni di probabilità Corso di Laurea in Ingegneria per l Ambiente ed il Territorio Corso di Costruzioni Idrauliche A.A. 2004-05 www.dica.unict.it/users/costruzioni Cenni di probabilità Ing. Antonino Cancelliere Dipartimento

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre

R - Esercitazione 6. Andrea Fasulo Venerdì 22 Dicembre Università Roma Tre R - Esercitazione 6 Andrea Fasulo fasulo.andrea@yahoo.it Università Roma Tre Venerdì 22 Dicembre 2017 Il modello di regressione lineare semplice (I) Esempi tratti da: Stock, Watson Introduzione all econometria

Dettagli

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Università di Siena Corso di STATISTICA Parte seconda: Teoria della stima Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Master E 2 C Centro per lo Studio dei Sistemi Complessi Università di

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE

Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

Approccio statistico alla classificazione

Approccio statistico alla classificazione Approccio statistico alla classificazione Approccio parametrico e non parametrico Finestra di Parzen Classificatori K-NN 1-NN Limitazioni dell approccio bayesiano Con l approccio bayesiano, sarebbe possibile

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

Capitolo 5. Variabili casuali discrete

Capitolo 5. Variabili casuali discrete Capitolo 5 Variabili casuali discrete Come già anticipato nel paragrafo 3, nella teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable) può essere

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura

Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura INDICE GENERALE Prefazione Ringraziamenti dell'editore Il sito web dedicato al libro Test online: la piattaforma McGraw-Hill Education Guida alla lettura XI XIV XV XVII XVIII 1 LA RILEVAZIONE DEI FENOMENI

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Metodi quantitativi per i mercati finanziari

Metodi quantitativi per i mercati finanziari Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 2. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 2 Esercitazioni Dott. L 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 5 Abbiamo visto: Modelli probabilistici nel continuo Distribuzione uniforme continua Distribuzione

Dettagli

PROBABILITA E STATISTICA

PROBABILITA E STATISTICA PROBABILITA E STATISTICA La nozione di probabilità è stata concepita in modi diversi; GROSSOLANAMENTE le principali sono: Concezione classica: concetto di probabilità come uguale possibilità concezione

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici

Computazione per l interazione naturale: fondamenti probabilistici Computazione per l interazione naturale: fondamenti probabilistici Corso di Interazione Naturale Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it boccignone.di.unimi.it/in_2016.html

Dettagli

Esercitazione del

Esercitazione del Esercizi sulla regressione lineare. Esercitazione del 21.05.2013 Esercizio dal tema d esame del 13.06.2011. Si consideri il seguente campione di n = 9 osservazioni relative ai caratteri ed Y: 7 17 8 36

Dettagli

Ulteriori applicazioni del test del Chi-quadrato (χ 2 )

Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 10. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 10 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 REGRESSIONE LINEARE Date due variabili quantitative, X e Y, si è

Dettagli

Probabilità Condizionale - 1

Probabilità Condizionale - 1 Probabilità Condizionale - 1 Come varia la probabilità al variare della conoscenza, ovvero delle informazioni in possesso di chi la calcola? ESEMPIO - Calcolare la probabilità che in una estrazione della

Dettagli

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio:

VARIABILI ALEATORIE Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al 6 lancio: VARIABILI ALEATORIE. Una moneta equilibrata viene lanciata più volte. Qual è la probabilità che al lancio: a) si abbia testa per la prima volta? b) Si sia avuto testa almeno una volta? c) Si sia avuta

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 7 11.03.2014 Dott.ssa Antonella Costanzo Esercizio 1. Test di indipendenza tra mutabili In un indagine vengono rilevate le informazioni su settore produttivo (Y) e genere (X)

Dettagli

Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione

Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Metodi statistici per la ricerca sociale Capitolo 7. Confronto tra Due Gruppi Esercitazione Alessandra Mattei Dipartimento di Statistica, Informatica, Applicazioni (DiSIA) Università degli Studi di Firenze

Dettagli

Modelli Grafici Probabilistici (1): concetti generali

Modelli Grafici Probabilistici (1): concetti generali Modelli Grafici Probabilistici (1): concetti generali Corso di Modelli di Computazione Affettiva Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it Giuseppe.Boccignone@unimi.it

Dettagli

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza:

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza: Fenomeni aleatori Misure Meccaniche e Termiche Sezione di Misure e Tecniche Sperimentali I fenomeni aleatori (o casuali) sono fenomeni empirici il cui risultato non è prevedibile a priori, caratterizzati

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017

Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 23/5/2017 Esercitazione 3 - Statistica II - Economia Aziendale Davide Passaretti 3/5/017 Contents 1 Intervalli di confidenza 1 Intervalli su un campione 1.1 Intervallo di confidenza per la media................................

Dettagli

Lezione 1. La Statistica Inferenziale

Lezione 1. La Statistica Inferenziale Lezione 1 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 2 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile Uniforme Continua Data una scheda telefonica da 5 euro di cui non si sa se sia

Dettagli

Variabile casuale E 6 E 5 E 4. R S x1 E 2

Variabile casuale E 6 E 5 E 4. R S x1 E 2 Variabile casuale Una Variabile Casuale X è una regola (funzione reale) che associa ad E (evento elementare di S) uno ed un solo numero reale. Notazione: X: variabile casuale : realizzazione di una variabile

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Esercizi di riepilogo

Esercizi di riepilogo Esercizi di riepilogo Es1: Scommesse al casinò Tizio e Caio si alternano al tavolo di un casinò. Tizio gioca negli istanti di tempo dispari, mentre Caio in quelli pari Ad ogni istante di tempo, il guadagno

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Correzione primo compitino, testo B

Correzione primo compitino, testo B Correzione primo compitino, testo B gennaio 20 Parte Esercizio Facciamo riferimento alle pagine 22 e 2 del libro di testo Quando si ha a che fare con la moltiplicazione o la divisione di misure bisogna

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 6 1 Test ed intervalli di confidenza per una popolazione Esercizio n. 1 Il calore (in calorie

Dettagli

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta

Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017. Giovanni Lafratta Concetti di teoria dei campioni ad uso degli studenti di Statistica Economica e Finanziaria, A.A. 2016/2017 Giovanni Lafratta ii Indice 1 Spazi, Disegni e Strategie Campionarie 1 2 Campionamento casuale

Dettagli

Distribuzioni di probabilità. Un po' di teoria

Distribuzioni di probabilità. Un po' di teoria Distribuzioni di probabilità Un po' di teoria Distribuzione di Poisson Considera un centralino telefonico. Tale centralino riceve in media 3600 telefonate al giorno. Vogliamo calcolare la probabilità

Dettagli

LE DISTRIBUZIONI CAMPIONARIE

LE DISTRIBUZIONI CAMPIONARIE LE DISTRIBUZIONI CAMPIONARIE Argomenti Principi e metodi dell inferenza statistica Metodi di campionamento Campioni casuali Le distribuzioni campionarie notevoli: La distribuzione della media campionaria

Dettagli

STATISTICA ESERCITAZIONE 9

STATISTICA ESERCITAZIONE 9 STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione

Dettagli

Esercizi di riepilogo Lezioni

Esercizi di riepilogo Lezioni Esercizi di riepilogo Lezioni 9-10-11 Es1: Aspettazioni iterate Siano X, Y, e Z v.a. discrete. Dimostrare le seguenti generalizzazioni della legge delle aspettazioni iterate a) b) c) Es2: Bacchetta Abbiamo

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare

PROBABILITA. DEFINIZIONE: Ogni singolo risultato di un esperimento casuale si chiama evento elementare PROBABILITA La teoria della probabilità si applica ad esperimenti aleatori o casuali: ossia, esperimenti il cui risultato non è prevedibile a priori. Ad esempio, lancio di un dado, lancio di una moneta,

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Cenni di apprendimento in Reti Bayesiane

Cenni di apprendimento in Reti Bayesiane Sistemi Intelligenti 216 Cenni di apprendimento in Reti Bayesiane Esistono diverse varianti di compiti di apprendimento La struttura della rete può essere nota o sconosciuta Esempi di apprendimento possono

Dettagli

Analisi della regressione multipla

Analisi della regressione multipla Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

(a) Determinare lo stimatore di massima verosimiglianza θ di θ. (b) Calcolare la funzione di score e l informazione di Fisher.

(a) Determinare lo stimatore di massima verosimiglianza θ di θ. (b) Calcolare la funzione di score e l informazione di Fisher. Statistica Matematica, Anno Accademico 216/17, 27 Gennaio 217 ESERCIZIO 1 Siano X 1, X 2, X 3 variabili aleatorie indipendenti con legge X 1 Gamma(3,2), X 2 Gamma(5,1) e X 3 Gamma(4,3) Determinare la funzione

Dettagli

STIMA DELLA VARIANZA CAMPIONARIA

STIMA DELLA VARIANZA CAMPIONARIA STIMA DELLA VARIANZA CAMPIONARIA Abbiamo visto che una stima puntuale corretta per il valore atteso µ delle variabili aleatorie X i è x n = (x 1 +.. + x n )/n. Una stima puntuale della varianza σ 2 delle

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica

Esercizi di Calcolo delle Probabilità e Statistica Esercizi di Calcolo delle Probabilità e Statistica Master E C Andrea Garulli, Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato 3 volte. Qual è la probabilità

Dettagli

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/2003 e del 14/1/2003

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/2003 e del 14/1/2003 Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/003 e del 14/1/003 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore

Dettagli

Esercitazioni di Statistica Metodologica

Esercitazioni di Statistica Metodologica Esercitazioni di Statistica Metodologica June 22, 2009 1 Esercizio La compagnia di telefonia fissa Happy Line ha svolto una indagine sul numero di telefonate effettuate dai suoi clienti la settimana scorsa.

Dettagli

Sommario. 2 I grafici Il sistema di coordinate cartesiane Gli istogrammi I diagrammi a torta...51

Sommario. 2 I grafici Il sistema di coordinate cartesiane Gli istogrammi I diagrammi a torta...51 Sommario 1 I dati...15 1.1 Classificazione delle rilevazioni...17 1.1.1 Esperimenti ripetibili (controllabili)...17 1.1.2 Rilevazioni su fenomeni non ripetibili...18 1.1.3 Censimenti...19 1.1.4 Campioni...19

Dettagli

Variabili aleatorie. 13 aprile Definizione di variabile aleatoria e misurabilitá. (R, B) é una funzione aleatoria se

Variabili aleatorie. 13 aprile Definizione di variabile aleatoria e misurabilitá. (R, B) é una funzione aleatoria se Variabili aleatorie 3 aprile 207 Si introduce il concetto di variabile aleatoria discreta e continua e di legge di probabilitá. Si considera in seguito la funzione di ripartizione come caratterizzazione

Dettagli

Dispensa di Statistica

Dispensa di Statistica Dispensa di Statistica 1 parziale 2012/2013 Diagrammi... 2 Indici di posizione... 4 Media... 4 Moda... 5 Mediana... 5 Indici di dispersione... 7 Varianza... 7 Scarto Quadratico Medio (SQM)... 7 La disuguaglianza

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005

Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005 Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005 c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Esercizio

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Trasformazioni Logaritmiche

Trasformazioni Logaritmiche Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

LEZIONE N. 11 ( a cura di MADDALENA BEI)

LEZIONE N. 11 ( a cura di MADDALENA BEI) LEZIONE N. 11 ( a cura di MADDALENA BEI) F- test Assumiamo l ipotesi nulla H 0 :β 1,...,Β k =0 E diverso dal verificare che H 0 :B J =0 In realtà F - test è più generale H 0 :Aβ=0 H 1 :Aβ 0 A è una matrice

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre Gennaio 2001

Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre Gennaio 2001 Corsi di Laurea in Ingegneria Civile e Edile Analisi Matematica II e Probabilita Lezioni A.A. 2000/01, prof. G. Stefani 9 Ottobre 2000-28 Gennaio 2001 1 Nona settimana 76. Lun. 4 Dic. Generalita. Spazi

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Il Gioco dell'evasione Fiscale

Il Gioco dell'evasione Fiscale Il Gioco dell'evasione Fiscale Laureando Matteo Galliani Relatore Raffaele Mosca Il ruolo della Teoria Dei Giochi Un gioco è una situazione in cui: 1)ogni individuo può scegliere un certo comportamento

Dettagli

Richiami di probabilità. Decision Theory e Utilità. Richiami di probabilità. assumere certi valori in un insieme x 1, x 2, x n (dominio)

Richiami di probabilità. Decision Theory e Utilità. Richiami di probabilità. assumere certi valori in un insieme x 1, x 2, x n (dominio) 9 lezione Scaletta argomenti: Probabilità Richiami di probabilità Reti Bayesiane Decision Theory e Utilità 1 Richiami di probabilità - La formalizzazione deriva da Boole - Concetto di VARIABILE CASUALE

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

Verifica delle ipotesi: Binomiale

Verifica delle ipotesi: Binomiale Verifica delle ipotesi: Binomiale Esercizio Nel collegio elettorale di una città, alle ultime elezioni il candidato A ha ottenuto il 4% delle preferenze mentre il candidato B il 6%. Nella nuova tornata

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli