7 Applicazioni ulteriori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "7 Applicazioni ulteriori"

Transcript

1 7 Applicazioni ulteriori 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse Analisi cinematica Si consideri la struttura in figura 7.1: i gradi di libertà sono pari a l =3n c v =3 0 3 = 0, e dalla disposizione dei vincoli è facile dedurre che essa è isostatica. Fig. 7.1 Ora si immagini di connettere le due sezioni in C ec in maniera tale che esse risultino solidali una all altra (figura 7.). Abbiamo quindi introdotto una connessione tripla. Dunque si ha l =3n c v =3 3 3= 3 per cui la struttura risulta iperstatica. In generale possiamo osservare che ogni maglia Fig. 7. chiusa rappresenta una connessione tripla che va quindi opportunamente presa in considerazione nel calcolo dei gradi di libertà. Ad esempio per la struttura in figura 7.3 si ha l = 9 dunque essa è nove volte iperstatica. Si osservi che se applicassimo la formula l = 3 + s v = = 0, otterremmo un apparente incongruenza con il calcolo precedente. In realtà que- Corso di Scienza delle Costruzioni 1 A. A

2 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse Per comodità di linguaggio, è possibile utilizzare le seguenti denominazioni: isostaticità esterna: si ha quando le reazioni vincolari sono determinabili con le sole equazioni di equilibrio; isostaticità interna: si ha quando le caratteristiche della sollecitazione sono determinabili con le sole equazioni di equilibrio. Fig. 7.3 sta formula, che permette di calcolare i gradi di libertà della struttura considerandola come un unico corpo rigido al quale sono applicate sconnessioni e vincoli esterni, va corretta sottraendo un numero di gradi di libertà pari a tre volte il numero delle maglie chiuse. Si ha quindi l = 3+s v 3m = = 9. Si consideri ora la stessa struttura di figura 7. e si applichi un sistema di carichi esterni (figura 7.4). La struttura è iperstatica, ma è facile verificare come le tre incognite reattive V A, H E e V E siano determinabili con le sole equazioni cardinali della statica. Al contrario, non è possibile determinare le caratteristiche della sollecitazione con le sole equazioni di equilibrio. La struttura di figura 7.4 è dunque globalmente iperstatica, isostatica esternamente e tre volte iperstatica internamente. Per renderla isostatica è sufficiente inserire tre sconnessioni semplici (figura 7.5) disposte in maniera tale da non consentire spostamenti rigidi infinitesimi. In tale configurazione risulta l =3n v c =9 3 6 = 0, o equivalentemente l = 3 + s v 3m = = 0. Fig. 7.5 Fig. 7.4 L analisi cinematica può essere eseguita per via geometrica verificando prima l eventuale isostaticità o labilità interna. Si consideri la struttura priva dei vincoli esterni (figura 7.6). Risulta l =3n v c = 3. Le tre cerniere danno condizioni sulle possibili posizioni dei centri di rotazione relativi, che in questo caso devono coincidere con le cerniere stesse. Nella configurazione a sinistra le tre cerniere non sono allineate, dunque i tre corpi rigidi che compongono la struttura non possono subire spostamenti rigidi infinitesimi relativi; infatti, se tali spostamenti fossero diversi da zero, per il secondo teorema delle catene cinematiche i tre centri relativi dovrebbero essere allineati. Quest ultima condizione risulta verificata nella configurazione di destra. Dunque è possibile affermare che nel primo caso la struttura è isostatica internamente, infatti ha tre gradi di libertà e si comporta come un unico corpo rigido piano, mentre nel secondo caso vi è labilità interna. Corso di Scienza delle Costruzioni 13 A. A Corso di Scienza delle Costruzioni 14 A. A

3 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse Fig. 7.6 Per l analisi cinematica esterna nella configurazione non labile internamente, basta guardare la travatura come un unico corpo rigido, che ha quindi tre gradi di libertà, vincolato con un carrello e una cerniera fissa. Risulta l =3 3 = 0 e, per la disposizione dei vincoli esterni, la struttura è isostatica esternamente. L isostaticità interna ed esterna implica l isostaticità globale della struttura. Fig Analisi statica Sia data la struttura in figura 7.7. Per quanto visto in precedenza, essa è isostatica sia internamente sia esternamente. Le incognite reattive V A, H F e V F possono essere determinate con le sole equazioni cardinali della statica. Risulta: H F + F =0 V A = F V A + V F F =0 V F = 3 F LV A + FL FL =0 H F = F. Per determinare le leggi di variazione delle caratteristiche della sollecitazione, è necessario sconnettere la struttura in corrispondenza di una sezione scelta arbitrariamente. Per semplicità sconnettiamo la struttura in corrispondenza della cerniera in B (figura 7.8). Per la caratterizzazione statica di una cerniera, la forza interna che le due parti di struttura così individuate si scambiano è una forza passante per la cerniera stessa, avente le due componenti T B e N B. Fig. 7.8 Imponendo le condizioni dettate dalla caratterizzazione statica delle altre due cerniere in D e G (momento flettente nullo) è possibile ricavare le due Corso di Scienza delle Costruzioni 15 A. A Corso di Scienza delle Costruzioni 16 A. A

4 7 Applicazioni ulteriori 7.1 Strutture con maglie chiuse 7 Applicazioni ulteriori 7. Travature reticolari forze interne incognite: M(D) = 0 M(G) = 0 T B L N B L =0 N B = F F L + T BL + N B L =0 4 T B = F 4. DE, s (0,L) N(s) = F 4 F = 3 4 F T (s) = F F 4 = 5 4 F È quindi possibile scrivere le leggi di variazione delle caratteristiche della sollecitazione secondo lo schema di figura 7.7. AB, s (0,L) N(s) = F 4 T (s) = F 4 M(s) = F (L s) 4 BC, s (0,L) N(s) = F 4 T (s) = F 4 M(s) = F 4 s CD, s (0,L) N(s) = F 4 F = 3 4 F T (s) = F 4 M(s) = F (L s) 4 M(s) = F 4 (L + s)+f 4 L Fs = 5 4 Fs EF, s (0, L) N(s) = F 4 F = 5 4 F T (s) =F F 4 = 3 4 F M(s) = FL+ Fs L F 4 F 4 (s L) = 5 4 FL+ 3 4 Fs AF, s (0, L) N(s) = F 4 T (s) = F 4 F = F 4 M(s) = F s + F 4 s + F 4 L = F (L s) 4 Nella figura seguente si riportano i diagrammi delle caratteristiche della sollecitazione. 7. Travature reticolari Le travature reticolari piane sono strutture piane caratterizzate dalle seguenti proprietà (figura 7.10): le travi costituenti le varie parti della struttura sono rettilinee; le connessioni sono tutte nodi cerniera; i vincoli esterni sono cerniere, carrelli o pendoli, e sono applicati nei nodi; Corso di Scienza delle Costruzioni 17 A. A Corso di Scienza delle Costruzioni 18 A. A

5 7 Applicazioni ulteriori 7. Travature reticolari 7 Applicazioni ulteriori 7. Travature reticolari Fig Se sono soddisfatte tutte le proprietà elencate, tutte le aste sono soggette esclusivamente a sforzo normale. Infatti se si isola una delle aste (figura 7.11), poiché le connessioni sono cerniere, le forze interne che essa scambia con il resto della struttura sono forze passanti per i suoi estremi. Scomponendo tali forze interne secondo le direzioni parallela a perpendicolare all asse dell asta, ed imponendo l equilibrio dell asta stessa si ottiene: N E N B =0 T E T B =0 T E L BE =0 N E = N B T B =0 T E =0. Di conseguenza il momento flettente ed il taglio sono identicamente nulli, mentre lo sforzo normale è costante su tutta l asta e pari a N BE = N E = N B. Fig. 7.9 i carichi esterni sono forze concentrate applicate nei nodi. Fig Si riportano nelle figure alcune tipologie di travi reticolari di comune utilizzo. Corso di Scienza delle Costruzioni 19 A. A Corso di Scienza delle Costruzioni 130 A. A

6 7 Applicazioni ulteriori 7. Travature reticolari 7 Applicazioni ulteriori 7. Travature reticolari 7..1 Analisi cinematica Si consideri la struttura in figura I gradi di libertà totali sono dati da: l =3n v c = 1 3 ( ) = 0 essendo n = 7 il numero di aste, e 4 la molteplicità delle connessioni in B e C, 6 per la connessione in E. Per strutture con un elevato numero di aste questo calcolo può risultare laborioso, per cui è conveniente considerare la struttura come un insieme di punti materiali (nodi) connessi da aste e vincolati con vincoli esterni. Ciascun nodo ha quindi gradi di libertà nel piano, mentre ciascun asta rappresenta una connessione semplice per i nodi stessi (da un punto di vista cinematico rappresentata da un equazione che impone che la distanza mutua tra due nodi si mantenga costante). Il numero di gradi di libertà può quindi essere calcolato con la formula seguente: l =n nodi a v, ove a rappresenta il numero di aste. Per la struttura in esame risulta l = = 0, dunque la travatura può essere isostatica o al più labile a vincoli inefficaci. Verifichiamo che la struttura sia isostatica internamente con il metodo geometrico. Si consideri l elemento A B E (figura 7.1). Risulta l = 9 ( + + ) = 3, inoltre le tre cerniere, che rappresentano i possibili centri di rotazione relativi delle tre aste, non sono allineate. Per il secondo teorema delle catene cinematiche, questo sistema non può subire spostamenti rigidi infinitesimi relativi, e poiché l = 3 esso si comporta come un unico corpo rigido piano. Aggiungendo di volta in volta una coppia di aste si aggiungono e sottraggono 6 gradi di libertà, e ripetendo il ragionamento precedente si può concludere che la struttura risultante si comporta ancora come un unico corpo rigido piano. In definitiva si può concludere che una struttura reticolare così composta (travatura reticolare triangolata) si comporta come un unico corpo rigido piano, dunque è internamente isostatica, purché non siano verificate condizioni di allineamento tra le cerniere e purché non vi siano aste in numero sovrabbondante (si veda la struttura in figura 7.13, la quale è internamente iperstatica). Verificata dunque l isostaticità interna, è facile verificare l isostaticità esterna della struttura considerandola come un unico corpo rigido vincolato con i vincoli esterni (cerniera in A e carrello in D. 7.. Analisi statica Fig. 7.1 Fig Poiché la struttura è esternamente isostatica, è possibile ricavare le reazioni vincolari con le sole equazioni cardinali della statica. Risulta (figura 7.14): H A =0 V A + V D F =0 4LV D FL 3FL =0 Fig H A =0 V A = F V D = F. Corso di Scienza delle Costruzioni 131 A. A Corso di Scienza delle Costruzioni 13 A. A

7 7 Applicazioni ulteriori 7. Travature reticolari 7 Applicazioni ulteriori 7. Travature reticolari Le forze interne sono costituite dai soli sforzi normali, costanti lungo ciascun asta. Si utilizza nel seguito il metodo dell equilibrio dei nodi. Se, come in questo caso, è possibile trovare un nodo nel quale convergano due sole aste, è possibile imporre l equilibrio di tale nodo alla traslazione nelle due direzioni e determinare di conseguenza gli sforzi normali nelle aste che vi convergono. Si consideri il nodo A (figura 7.15) e si indichino con N AB e N AE gli sforzi normali nelle aste AB e AE rispettivamente, ipotizzati positivi (quindi uscenti dal nodo). Si ha: F + N AB =0 N AE + N AB =0 N AB = F N AE = F. L asta AB è caratterizzata dunque da sforzo normale negativo, ossia è un asta compressa, mentre al contrario l asta AE è tesa. Analogamente per il nodo E si ottiene: N ED + N EC F =0 N EC =0 Per il nodo D si ottiene: F N CD =0 F + N CD =0 N EC =0 N ED = F. N CD = F. Le equazioni di equilibrio scritte per il nodo C, una volta determinati gli sforzi normali in tutte le aste, sono identicamente soddisfatte: F F =0 F + F =0. Fig A questo punto è possibile studiare l equilibrio del nodo B (figura 7.16) ove lo sforzo in AB è noto, per cui le incognite sono gli sforzi N BC ed N BE. Si ha: F + N BC + N BE =0 N BC = F F F N BE =0 N BE =0. Fig Il diagramma dello sforzo normale può essere tracciato evidenziando con tratto più marcato le aste compresse e con tratteggio le aste scariche (figura 7.17). Corso di Scienza delle Costruzioni 133 A. A Corso di Scienza delle Costruzioni 134 A. A

8 7 Applicazioni ulteriori 7. Travature reticolari 7 Applicazioni ulteriori 7. Travature reticolari Asta Fig Sforzo normale AB F BC F CD F AE F ED F BE 0 CE 0 Nel caso più generale, in cui non è possibile trovare un nodo in cui le incognite siano solo due, è possibile scrivere sempre un sistema di n nodi equazioni di equilibrio in cui le incognite sono le v componenti reattive e gli a sforzi normali. Essendo la struttura isostatica, si ha l =n nodi a v = 0, per cui il sistema è determinato. Nel caso in esame si avrebbe il seguente sistema: H A + N AE + N AB =0 N BC N CE + N CD V A + N AB =0 N AB + N BE + N BC =0 N AB N BE F =0 N CE N CD N ED N CD =0 V D + N CB =0 =0 F =0 N AE N BE + N BC N BE + N BC =0, + N ED =0 che fornisce le medesime soluzioni trovate precedentemente. Corso di Scienza delle Costruzioni 135 A. A Corso di Scienza delle Costruzioni 136 A. A

9 7 Applicazioni ulteriori 7. Travature reticolari 7 Applicazioni ulteriori 7. Travature reticolari Fig Linea Sibari-Cosenza - Ponte a trave reticolare sul torrente Cocchiato Fig. 7.0 Copertura per capannone Fig Corso di Scienza delle Costruzioni 137 A. A Corso di Scienza delle Costruzioni 138 A. A

10 7 Applicazioni ulteriori 7. Travature reticolari Fig. 7.1 Ponte a Binzhou, Shandong Province (China) Fig. 7. Capriate di copertura per una chiesa Corso di Scienza delle Costruzioni 139 A. A

6 Statica delle travi

6 Statica delle travi 6 Statica delle travi 6 Statica delle travi 6.1 Forze esterne Si consideri un generico corpo tridimensionale. possono agire i seguenti tipi di forze esterne: forze di volume b = b(x): [b] =[FL 3 ]; Si

Dettagli

1) IL MOMENTO DI UNA FORZA

1) IL MOMENTO DI UNA FORZA 1) IL MOMENTO DI UNA FORZA Nell ambito dello studio dei sistemi di forze, diamo una definizione di momento: il momento è un ente statico che provoca la rotazione dei corpi. Le forze producono momenti se

Dettagli

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A.

Travature reticolari piane : esercizi svolti De Domenico D., Fuschi P., Pisano A., Sofi A. Travature reticolari piane : esercizi svolti e omenico., Fuschi., isano., Sofi. SRZO n. ata la travatura reticolare piana triangolata semplice illustrata in Figura, determinare gli sforzi normali nelle

Dettagli

11 Teorema dei lavori virtuali

11 Teorema dei lavori virtuali Teorema dei lavori virtuali Teorema dei lavori virtuali Si consideri una trave ad asse rettilineo figura.). Per essa si definisce sistema carichi sollecitazioni CS) l insieme di tutte le grandezze di tipo

Dettagli

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE

STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE ISOSTATICHE REAZIONI VINCOLARI ED AZIONI INTERNE v 1.0 1 I PROVA DI VALUTAZIONE 15 Novembre 2006 - Esercizio 2 Data la struttura di figura, ricavare

Dettagli

STRUTTURE RETICOLARI

STRUTTURE RETICOLARI TRUTTURE RETICOARI i considerino un arco a tre cerniere, costituito da due corpi rigidi rappresentabili come travi collegate da cerniere puntuali. upponiamo che in corrispondenza della cerniera interna

Dettagli

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI

IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI IL TRACCIAMENTO QUALITATIVO DEL MOMENTO FLETTENTE NEI PORTALI Alcune proprietà della deformata dei portali Si esaminano nel seguito alcune proprietà della deformata dei portali. Queste proprietà permettono

Dettagli

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi

Esercizi di Statica. Giacinto A. PORCO Giovanni FORMICA. Corso dell A.A. 2003/2004 titolare prof. G. A. Porco. acuradi Esercizi di Statica Corso dell A.A. 2003/2004 titolare prof. G. A. Porco acuradi Giacinto A. PORCO Giovanni FORMICA Esercizi di Statica A. G. Porco, G. Formica 1 Indice 1 Calcolo delle reazioni vincolari

Dettagli

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione

METODO DELLE FORZE 1. METODO DELLE FORZE PER LA SOLUZIONE DI STRUTTURE IPERSTATICHE. 1.1 Introduzione METODO DELLE FORZE CORSO DI PROGETTZIONE STRUTTURLE a.a. 010/011 Prof. G. Salerno ppunti elaborati da rch. C. Provenzano 1. METODO DELLE FORZE PER L SOLUZIONE DI STRUTTURE IPERSTTICHE 1.1 Introduzione

Dettagli

3 - Analisi statica delle strutture

3 - Analisi statica delle strutture 3 - nalisi statica delle strutture Metodo analitico ü [.a. 11-1 : ultima revisione 3 settembre 11] Si consideri una struttura piana S, costituita da t tratti rigidi, e si immagini di rimuovere tutti i

Dettagli

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria

Dispense del Corso di SCIENZA DELLE COSTRUZIONI. Sistemi di travi. Prof. Daniele Zaccaria Dispense del Corso di SCIENZA DELLE COSTRUZIONI Prof. Daniele Zaccaria Dipartimento di Ingegneria Civile e Ambientale Università di Trieste Piazzale Europa 1, Trieste Sistemi di travi Corsi di Laurea in

Dettagli

Definizione Statico-Cinematica dei vincoli interni

Definizione Statico-Cinematica dei vincoli interni Definizione Statico-Cinematica dei vincoi interni Esempi deo schema strutturae di una struttura in cemento armato e di due strutture in acciaio in cui sono presenti dei vincoi interni cerniera. Vincoo

Dettagli

Le coperture in legno

Le coperture in legno CORSO DI RECUPERO E CONSERVAZIONE DEGLI EDIFICI A.A. 2010-2011 Le coperture in legno LA CAPRIATA Tra scienza ed arte del costruire «Il forte intreccio di storia, tecnologia, architettura e cultura materiale,

Dettagli

Prova d esame del 30 giugno 2010 Soluzione

Prova d esame del 30 giugno 2010 Soluzione UNIVERSITÀ I PIS Facoltà di Ingegneria Meccanica nalitica e dei Continui (CS Ing. Nucleare e della Sicurezza Industriale) Scienza delle Costruzioni (C Ing. Nucleare e della Sicurezza e Protezione) Scienza

Dettagli

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano

APPUNTI DI SCIENZA DELLE COSTRUZIONI. Giulio Alfano PPUNTI DI SCIENZ DEE COSTRUZIONI Giulio lfano nno ccademico 004-005 ii Indice 1 TRVTURE PINE 1 1.1 Geometria, equilibrio e vincoli...................... 1 1.1.1 Piani di simmetria........................

Dettagli

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011

Sussidi didattici per il corso di COSTRUZIONI EDILI. Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì TRAVI RETICOLARI AGGIORNAMENTO DEL 7/11/2011 Le travi reticolari sono strutture formate da aste rettilinee, mutuamente collegate

Dettagli

McGraw-Hill. Tutti i diritti riservati

McGraw-Hill. Tutti i diritti riservati Copyright 004 The Companies srl e Corbusier - Progetto per il palazzo dei Soviet a Mosca 1931 Problema 1. Arco Trave di copertura Tirante bielle Membrana di copertura Fig. P1.1 Analizzare il sistema in

Dettagli

17 - I corollari di Mohr per il calcolo degli spostamenti

17 - I corollari di Mohr per il calcolo degli spostamenti 17 - I corollari di ohr per il calcolo degli spostamenti ü [.a. 011-01 : ultima revisione settembre 01] Relazioni fondamentali : l' analogia In questo capitolo si utilizza la teoria dell'analogia di ohr

Dettagli

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2

1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale... 1 1.2 Un esempio... 2 Indice 1 Introduzione alla Meccanica Razionale 1 1.1 Che cos è la Meccanica Razionale..................... 1 1.2 Un esempio................................. 2 2 Spazi Vettoriali, Spazio e Tempo 7 2.1 Cos

Dettagli

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto.

SISTEMI VINCOLATI. 1. Punto fisso: il vincolo impedisce ogni spostamento del punto. SISTEMI VINCOLATI Definizione 1 Si dice vincolo una qualunque condizione imposta ad un sistema materiale che impedisce di assumere una generica posizione e/o atto di moto. La presenza di un vincolo di

Dettagli

Analisi limite di un telaio

Analisi limite di un telaio Analisi limite di un telaio Si consideri il portale sotto, tre volte iperstatico, dotato di un momento limite superiore ed inferiore costante e pari a M0 Si assuma inoltre che lo sforzo normale (ed il

Dettagli

24 - Strutture simmetriche ed antisimmetriche

24 - Strutture simmetriche ed antisimmetriche 24 - Strutture simmetriche ed antisimmetriche ü [.a. 2011-2012 : ultima revisione 1 maggio 2012] In questo capitolo si studiano strutture piane che presentano proprieta' di simmetria ed antisimmetria sia

Dettagli

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II

Risoluzione di travature reticolari iperstatiche col metodo delle forze. Complemento alla lezione 43/50: Il metodo delle forze II Risouzione di travature reticoari iperstatiche co metodo dee forze ompemento aa ezione 3/50: I metodo dee forze II sercizio. er a travatura reticoare sotto riportata, determinare gi sforzo nee aste che

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

TRAVE SU SUOLO ELASTICO

TRAVE SU SUOLO ELASTICO Capitolo 3 TRAVE SU SUOLO ELASTICO (3.1) Combinando la (3.1) con la (3.2) si ottiene: (3.2) L equazione differenziale può essere così riscritta: (3.3) La soluzione dell equazione differenziale di ordine

Dettagli

Elaborato di Meccanica delle Strutture

Elaborato di Meccanica delle Strutture Università degli Studi di Roma La Sapienza Facoltà di Ingegneria Dipartimento di Meccanica ed Aeronautica Corso di Laurea Triennale in Ingegneria Meccanica Elaborato di Meccanica delle Strutture Docente

Dettagli

2. TEORIA DEI CARICHI ECCEZIONALI

2. TEORIA DEI CARICHI ECCEZIONALI . TEORIA DEI CARICHI ECCEZIONAI Si vuole costruire un modello di ponte di riferimento e un modello di carico eccezionale che consenta una verifica automatica della possibilità di passaggio del carico su

Dettagli

Per calcolare agevolmente strutture con travi reticolari miste, tipo NPS SYSTEM di Tecnostrutture, è stato necessario introdurre in MasterSap molti

Per calcolare agevolmente strutture con travi reticolari miste, tipo NPS SYSTEM di Tecnostrutture, è stato necessario introdurre in MasterSap molti Per calcolare agevolmente strutture con travi reticolari miste, tipo NPS SYSTEM di Tecnostrutture, è stato necessario introdurre in MasterSap molti accorgimenti indispensabili per una rapida ed efficiente

Dettagli

Collegamenti nelle strutture

Collegamenti nelle strutture 1 Collegamenti nelle strutture Le tipologie delle unioni bullonate o saldate sono molteplici e dipendono essenzialmente da: caratteristiche dell unione: nell ambito di quelle bullonate si possono avere

Dettagli

ESERCIZI CINEMATICA IN UNA DIMENSIONE

ESERCIZI CINEMATICA IN UNA DIMENSIONE ESERCIZI CINEMATICA IN UNA DIMENSIONE ES. 1 - Due treni partono da due stazioni distanti 20 km dirigendosi uno verso l altro rispettivamente alla velocità costante di v! = 50,00 km/h e v 2 = 100,00 km

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile

Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Programma dettagliato del corso di MECCANICA RAZIONALE Corso di Laurea in Ingegneria Civile Anno Accademico 2015-2016 A. Ponno (aggiornato al 19 gennaio 2016) 2 Ottobre 2015 5/10/15 Benvenuto, presentazione

Dettagli

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013.

Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. Corso di orientamento e preparazione ai concorsi di ammissione ai Corsi di Laurea della Facoltà di Medicina e Chirurgia nell'aa 2012/2013. FISICA NEVIO FORINI PROGRAMMA 11 LEZIONI DI 2 ORE + VERIFICA :

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase

Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase Corso di elettrotecnica Materiale didattico. Cenni sui sistemi trifase A. Laudani 19 gennaio 2007 Le reti trifase sono reti elettriche in regime sinusoidale (tutte le variabili di rete hanno andamento

Dettagli

ISTITUTO TECNICO INDUSTRIALE Leonardo da Vinci con sez. Commerciale annessa BORGOMANERO (NO) PIANO DI LAVORO. Anno Scolastico 2015 2016

ISTITUTO TECNICO INDUSTRIALE Leonardo da Vinci con sez. Commerciale annessa BORGOMANERO (NO) PIANO DI LAVORO. Anno Scolastico 2015 2016 pag. 1 di 6 ISTITUTO TECNICO INDUSTRIALE Leonardo da Vinci con sez. Commerciale annessa BORGOMANERO (NO) PIANO DI LAVORO Anno Scolastico 2015 2016 Materia: Meccanica Macchine ed Energia Classe: III^ Meccanica

Dettagli

Progettazione di un unità di apprendimento: Le travi reticolari

Progettazione di un unità di apprendimento: Le travi reticolari Scuola di Specializzazione Interateneo per la Formazione degli Insegnanti della Scuola Secondaria del Veneto IX ciclo - indirizzo SAT a.a. 2008/2009 Progettazione di un unità di apprendimento: Le travi

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella

di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, Adesso sostituiamo nella Equazione di Ohm nel dominio fasoriale: Legge di Ohm:. Dalla definizione di operatore di Heaveside: ricaviamo:. Associamo alle grandezze sinusoidali i corrispondenti fasori:, dove Adesso sostituiamo nella

Dettagli

30/05/2012. PDF Lezioni sul sito: www2.unibas.it/ponzo. Mettere figura. Prof. Ing. Felice Carlo Ponzo. Prof. Ing. Felice Carlo Ponzo

30/05/2012. PDF Lezioni sul sito: www2.unibas.it/ponzo. Mettere figura. Prof. Ing. Felice Carlo Ponzo. Prof. Ing. Felice Carlo Ponzo PDF Lezioni sul sito: www2.unibas.it/ponzo Mettere figura 1 Cinematica delle strutture Produzione di profilati e lamiere in acciaieria Trasformazione in elementi strutturali e preassemblaggi Trasporto

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture 1 Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-32012

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Capitolo II Le reti elettriche

Capitolo II Le reti elettriche Capitolo II Le reti elettriche Fino ad ora abbiamo immaginato di disporre di due soli bipoli da collegare attraverso i loro morsetti; supponiamo ora, invece, di disporre di l bipoli e di collegarli tra

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MECCANICA PROGETTAZIONE ASSISTITA DA COMPUTER I PROVA DI ESAME DEL / / ALLIEVO MATRICOLA

CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MECCANICA PROGETTAZIONE ASSISTITA DA COMPUTER I PROVA DI ESAME DEL / / ALLIEVO MATRICOLA CORSO DI LAUREA SPECIALISTICA IN INGEGNERIA MECCANICA PROGETTAZIONE ASSISTITA DA COMPUTER I PROVA DI ESAME DEL / / ALLIEVO MATRICOLA Data la MOLLA CONICA mostrata in Figura, proporre uno schema di elaborazione

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

La modellazione delle strutture

La modellazione delle strutture La modellazione delle strutture Programma 31-1-2012 Introduzione e brevi richiami al metodo degli elementi finiti 7-2-2012 La modellazione della geometria 14-2-2012 21-2-2012 28-2-2012 6-3-2012 13-3-2012

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE

ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU STRUTTURE IPERSTATICHE 1 PROVA SCRITTA 11 gennaio 2013 - Esercizio 2 Data la struttura di figura, ricavare le equazioni delle azioni interne (M, N, T) e tracciarne

Dettagli

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso.

Scheda I. 3 La non possibilità di duplicare il cubo con riga e compasso. Scheda I. La non possibilità di duplicare il cubo con riga e compasso. Dopo Menecmo, Archita, Eratostene molti altri, sfidando gli dei hanno trovato interessante dedicare il loro tempo per trovare una

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Esercitazioni di Meccanica Applicata alle Macchine A cura di Andrea Bracci Marco Gabiccini Università di Pisa Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione Anno Accademico 008-009 Indice

Dettagli

Tecnica delle Costruzioni Esercitazione 02

Tecnica delle Costruzioni Esercitazione 02 TECNICA DELLE COSTRUZIONI ESERCITAZIONI 1 Strutture reticolari METODO DEI NODI Si procede nell isolare un nodo della struttura reticolare tagliando le aste che vi convergono. Si esplicitano quindi gli

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 1 Sistemi di primo grado

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PROBLEMA Se il polinomio

Dettagli

o p e n p r o j e c t. w o r k s h o p LA STRUTTURA DEL CENTRO DI POMPIDOU di Igor Malgrati

o p e n p r o j e c t. w o r k s h o p LA STRUTTURA DEL CENTRO DI POMPIDOU di Igor Malgrati LA STRUTTURA DEL CENTRO DI POMPIDOU di Igor Malgrati Nel 1970 si bandì un concorso internazionale per la costruzione di un centro per la cultura nel cuore di Parigi, con l intento di proporre la cultura

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012

Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Prova scritta di Fisica Generale I Corso di studio in Astronomia 22 giugno 2012 Problema 1 Due carrelli A e B, di massa m A = 104 kg e m B = 128 kg, collegati da una molla di costante elastica k = 3100

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Dinamica del corpo rigido: Appunti.

Dinamica del corpo rigido: Appunti. Dinamica del corpo rigido: Appunti. I corpi rigidi sono sistemi di punti materiali, discreti o continui, che hanno come proprietà peculiare quella di conservare la loro forma, oltre che il loro volume,

Dettagli

za Bozza - Appunti di Meccanica dei Solidi/Statica, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - Travature Piane con Elementi Elastici

za Bozza - Appunti di Meccanica dei Solidi/Statica, dalle lezioni del prof. P. Podio-Guidugli, a.a. 2007/8 - Travature Piane con Elementi Elastici 6 Travature Piane con Elementi Elastici 24 Introduzione La meccanica, sotto lo stimolo delle diverse applicazioni, costruisce modelli di comportamento dei corpi materiali che si possono ordinare per complessità

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI L.S. IN INGEGNERIA STRUTTURALE E GEOTECNICA (STREGA) Corso di Calcolo Anelastico e a Rottura delle Strutture DOCENTE: Prof. Ing.

Dettagli

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1)

Consideriamo una forza di tipo elastico che segue la legge di Hooke: F x = kx, (1) 1 L Oscillatore armonico L oscillatore armonico è un interessante modello fisico che permette lo studio di fondamentali grandezze meccaniche sia da un punto di vista teorico che sperimentale. Le condizioni

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB

ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ELETTROMAGNETISMO CARICHE E LEGGE DI COULOMB ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA 1. La Legge di Coulomb Esercizio 1. Durante la scarica a terra di un fulmine scorre una corrente di.5 10 4 A per

Dettagli

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x).

3. Sia g(x) = 4. Si calcoli l area del triangolo mistilineo ROS, ove l arco RS appartiene al grafico di f(x) o, indifferentemente, di g(x). Esame liceo Scientifico : ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMI Problema. Sia ABCD un quadrato di lato, P un punto di AB e γ la circonferenza

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014

SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 2014 SOLUZIONE DEL PROBLEMA 1 CORSO SPERIMENTALE P.N.I. 01 1. Determiniamo l espressione analitica di g() dividendo il suo dominio in intervalli. La circonferenza di diametro AO ha equazione (+) + = + + = 0

Dettagli

Capriate in legno I edizione aprile 2011. Indice Introduzione

Capriate in legno I edizione aprile 2011. Indice Introduzione Capriate in legno I edizione aprile 2011 Indice Introduzione 1. Il legno e sue applicazioni 1.1. Il legno come materiale da costruzione 1.2. diffusione del legno 1.3. Standardizzazione della produzione

Dettagli

Moti e sistemi rigidi

Moti e sistemi rigidi Moti e sistemi rigidi Dispense per il corso di Meccanica Razionale 1 di Stefano Siboni 1. Moto rigido di un sistema di punti Sia dato un sistema S di N 2 punti materiali P i, i = 1,..., N. Per configurazione

Dettagli

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4G 4 dicembre 2008. VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4G 4 dicembre 8 VERIFIC DI FISIC: lavoro ed energia Domande ) Energia cinetica: (punti:.5) a) fornisci la definizione più generale possibile di energia cinetica, specificando l equazione

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE

TRAVI SU SUOLO ALLA WINKLER, INTERAZIONE TERRENO-FONDAZIONE Università degli Studi di Palermo Facoltà di Ingegneria Dipartimento di Ingegneria Strutturale e Geotecnica TRAVI SU SUOO AA WINKER, INTERAZIONE TERRENO-FONDAZIONE Prof.. Cavaleri Ing. F. Di Trapani TRAVI

Dettagli

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio

DUE PROPOSTE ANALISI MATEMATICA. Lorenzo Orio DUE PROPOSTE DI ANALISI MATEMATICA Lorenzo Orio Introduzione Il lavoro propone argomenti di analisi matematica trattati in maniera tale da privilegiare l intuizione e con accorgimenti nuovi. Il tratta

Dettagli

Relazione di fine tirocinio. Andrea Santucci

Relazione di fine tirocinio. Andrea Santucci Relazione di fine tirocinio Andrea Santucci 10/04/2015 Indice Introduzione ii 1 Analisi numerica con COMSOL R 1 1.1 Il Software.................................... 1 1.1.1 Geometria................................

Dettagli

CONI, CILINDRI, SUPERFICI DI ROTAZIONE

CONI, CILINDRI, SUPERFICI DI ROTAZIONE CONI, CILINDRI, SUPERFICI DI ROTAZIONE. Esercizi x + z = Esercizio. Data la curva x, calcolare l equazione del cilindro avente γ y = 0 come direttrice e con generatrici parallele al vettore v = (, 0, ).

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio

Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio PIANO DI LAVORO DEL DOCENTE anno scolastico 2015/2016 Prof.ssa Maria Angela Michelini ITP : Salvatore Giorgio MATERIA Progettazione, Costruzioni e Impianti classe e indirizzo 3A CTT n. ore settimanali:

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Definizione: Si chiama successione numerica una funzione definita su IN a valori in IR, cioè una legge che associa ad ogni intero n un numero reale a n. Per abuso di linguaggio, si

Dettagli

5 - Sul grado di labilita' ed iperstaticita'

5 - Sul grado di labilita' ed iperstaticita' 5 - Sul grado di labilita' ed iperstaticita' ü [.a. 2011-2012 : ultima revisione 14 ottobre 2012] Una struttura e' labile se presenta una possibilita' di meccanismo rigido, e' isostatica se e' possibile

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

Macchine semplici. Vantaggi maggiori si ottengono col verricello differenziale (punto 5.5.) e col paranco differenziale (punto 5.6).

Macchine semplici. Vantaggi maggiori si ottengono col verricello differenziale (punto 5.5.) e col paranco differenziale (punto 5.6). Macchine semplici Premessa Lo studio delle macchine semplici si può considerare come una fase propedeutica allo studio delle macchine composte, poiché il comportamento di molti degli organi che compongono

Dettagli

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE

75 CAPITOLO 6: PROVE EDOMETRICHE CAPITOLO 6: PROVE EDOMETRICHE 75 CAPTOLO 6: PROVE EDOMETRCE CAPTOLO 6: PROVE EDOMETRCE La prova edometrica è una prova di compressione assiale senza deformazione laterale, serve a determinare le caratteristiche di comprimibilità dei

Dettagli

a t Esercizio (tratto dal problema 5.10 del Mazzoldi)

a t Esercizio (tratto dal problema 5.10 del Mazzoldi) 1 Esercizio (tratto dal problema 5.10 del Mazzoldi) Una guida semicircolare liscia verticale di raggio = 40 cm è vincolata ad una piattaforma orizzontale che si muove con accelerazione costante a t = 2

Dettagli

0. Piano cartesiano 1

0. Piano cartesiano 1 0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine

Dettagli

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore

BILANCIAMENTO. 8-1 Bilanciamento statico di un rotore 8 BILANCIAMENTO Come si è visto al capitolo 7-3.3, quando il baricentro di un rotore non coincide con l asse di rotazione possono insorgere fenomeni vibratori di entità rilevante, talvolta tali, in condizioni

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura

GEOTECNICA. ing. Nunziante Squeglia 13. OPERE DI SOSTEGNO. Corso di Geotecnica Corso di Laurea in Ingegneria Edile - Architettura GEOTECNICA 13. OPERE DI SOSTEGNO DEFINIZIONI Opere di sostegno rigide: muri a gravità, a mensola, a contrafforti.. Opere di sostegno flessibili: palancole metalliche, diaframmi in cls (eventualmente con

Dettagli