DIARIO DEL CORSO DI ALGEBRA A.A. 2009/10 DOCENTE: ANDREA CARANTI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DIARIO DEL CORSO DI ALGEBRA A.A. 2009/10 DOCENTE: ANDREA CARANTI"

Transcript

1 DIARIO DEL CORSO DI ALGEBRA A.A. 2009/10 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 14 settembre 2009 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero , e perché? Divisibilità fra interi. Proprietà riflessiva e transitiva. Non vale la proprietà simmetrica. Determinazione delle coppie (a, b) tali che a divide b e b divide a. Lezione 2. martedí 15 settembre 2009 (2 ore) Divisione con resto non negativo. Unicità di quoziente e resto. Criterio di divisibilità in base all annullarsi del resto. Massimo comun divisore: definizione elementare. Problema: non esiste il MCD di 0 e 0. Definizione ufficiale. Modalità di calcolo: l approccio mediante la fattorizzazione fallisce con numeri grandi. Esistenza e costruzione mediante l algoritmo di Euclide (inizio). Lezione 3. mercoledí 16 settembre 2009 (2 ore) Algoritmo di Euclide. L algoritmo di Euclide su due numeri grandi all incirca N termina in al più 2 log 2 (N) passi. Algoritmo di Euclide esteso per esprimere il massimo comun divisore di due numeri come loro combinazione lineare. Lezione 4. giovedí 17 settembre 2009 (2 ore) Secondo metodo per scrivere il massimo comun divisore come combinazione lineare. Lemmi aritmetici. Applicazioni: il minimo comune multiplo (formula (a, b) [a, b] = a b, e interpretazione in termini di fattori comuni e non comuni). Sessione con GAP sul massimo comun divisore. Date: Trento, A. A. 2009/10.

2 2 DIARIO DEL CORSO ALGEBRA 2009/10 Lezione 5. lunedí 21 settembre 2009 (2 ore) Tutte le combinazioni per esprimere il massimo comun divisore come combinazione lineare. Congruenze. Esempi: le congruenze modulo 0, 1, 2, 3. La congruenza è una relazione di equivalenza. Assioma di specificazione e paradosso di Russell. Non esiste l insieme di tutti gli insiemi. Classi rispetto a una relazione di equivalenza, e loro proprietà. Lezione 6. martedí 22 settembre 2009 (2 ore) Relazioni di equivalenza e partizioni. Le classi formano una partizione. Classi di congruenza (o resto) modulo un intero n. Modulo n ci sono esattamente n classi resto, che sono [0], [1],..., [n 1]. Notazione Z/nZ. Si può calcolare con le classi resto. La prova del nove. Lezione 7. mercoledí 23 settembre 2009 (2 ore) Criteri di divisibilità per 9, 11, 2, 4, 8, 2 a 5 b, 7. Lezione 8. giovedí 24 settembre 2009 (2 ore) Criterio di divisibilità per 13. Il problema della buona definizione. Buona definizione di somma e prodotto fra le classi resto. Anelli. a 0 = 0. Unicità dell opposto. Z/nZ è un anello commutativo con unità. In Z/nZ non vale in generale la legge di annullamento del prodotto. Inversi. Lezione 9. lunedí 28 settembre 2009 (2 ore) Calcolo degli inversi in Z/nZ mediante l algoritmo di Euclide esteso. [a] Z/nZ è invertibile se e solo se (a, n) = 1, e l inverso si trova mediante l algoritmo di Euclide esteso. Se invece (a, n) > 1, allora [a] è un divisore dello zero. Esempi. In Z l unico divisore dello zero è zero, e gli unici invertibili sono 1, 1. In un anello finito (commutativo, con unità) gli elementi sono o invertibili o divisori dello zero. Lemma dei cassetti. Lezione 10. martedí 29 settembre 2009 (2 ore) Lemma dei cassetti: su un insieme finito, l iniettività implica la suriettività. Inverse destre, inverse sinistre, iniettività, suriettività. Una funzione iniettiva ma non suriettiva, e una suriettiva ma non iniettiva, definite sui numeri naturali. Di nuovo gli anelli finiti: gli elementi sono o invertibili o divisori dello zero. Gruppi: notazione neutra, additiva e moltiplicativa.

3 DIARIO DEL CORSO ALGEBRA 2009/10 3 Monoidi, lemma sugli inversi, gli elementi invertibili di un monoide formano un gruppo. Lezione 11. mercoledí 30 settembre 2009 (2 ore) Unicità dell inverso in un monoide. Dimostrazione del lemma sugli inversi, e del fatto che gli elementi invertibili di un monoide formano un gruppo. Il gruppo delle classi invertibili modulo n. Funzione di Eulero. Valore della funzione di Eulero per la potenze di un primo. Potenze, regole delle potenze. Periodo infinito. Principio del minimo intero. Lezione 12. giovedí 1 ottobre 2009 (2 ore) Periodo di un elemento in un gruppo. Eguaglianza di due potenze. Periodi dello sviluppo di frazioni come numeri decimali. Il periodo di un elemento divide l ordine del gruppo. (Dimostrazione solo nel caso commutativo.) Eulero-Fermat per un numero primo. Lezione 13. lunedí 5 ottobre 2009 (2 ore) Riepilogo su: invertibili e divisori dello zero in anelli finiti; il caso di Z/nZ e la caratterizzazione degli elementi invertibili; da monoidi a gruppi; U(Z/nZ); funzione di Eulero; periodo; il periodo divide l ordine del gruppo. Sviluppo decimale di una frazione. Spiegazione dell Esercizio 1.2. Il primo teorema di isomorfismo fra insiemi (inizio). Lezione 14. martedí 6 ottobre 2009 (2 ore) Il primo teorema di isomorfismo fra insiemi. Un applicazione: potenze in un gruppo. Il logaritmo. Il gioco del tris. Introduzione al teorema cinese dei resti, e ai sistemi di congruenze. Lezione 15. mercoledí 7 ottobre 2009 (2 ore) Il primo teorema di isomorfismo fra insiemi: esistenza di una soluzione all equazione f(x) = b, e come trovare tutte le soluzioni se ce n una. Sistemi di congruenze: quando hanno soluzione, e come si trovano una/tutte le soluzioni. Calcolo della funzione di Eulero: se (m, n) = 1, allora ϕ(mn) = ϕ(m) ϕ(n). Calcolate la funzione di Eulero (per un numero n = pq, ove p, q sono primi distinti) equivale a fattorizzare n. Lezione 16. giovedí 8 ottobre 2009 (3 ore) Prima provetta intermedia.

4 4 DIARIO DEL CORSO ALGEBRA 2009/10 Lezione 17. lunedí 12 ottobre 2009 (2 ore) Crittografia. Messaggi in chiaro, messaggi cifrati. Cifrario di Cesare e one-time pad. Teorema di Eulero-Fermat. RSA (inizio). Lezione 18. martedí 13 ottobre 2009 (2 ore) Crittografia simmetrica: ancora il cifrario di Cesare, e il paradigma di Shannon. Crittografia a chiave pubblica: RSA. Scrittura di un intero positivo in base arbitraria. Lezione 19. mercoledí 14 ottobre 2009 (2 ore) Scrittura di un intero positivo in base arbitraria: unicità, algoritmo, esistenza. Il caso di base 10, 2, 16. Algoritmo per l elevazione a potenza modulare. L albergo di Hilbert. Criteri di primalità (inizio). Lezione 20. giovedí 15 ottobre 2009 (2 ore) Criterio di primalità mediante Eulero-Fermat. Numeri di Carmichael. Analogia con le monete. Criteri probabilistici e deterministici di primalità. Rappresentazione di blocchi di lettere come numeri, scritti in base 26. Polinomi. Lezione 21. lunedí 19 ottobre 2009 (2 ore) Calcoli con GAP su criteri di primalità e RSA. Domini. Polinomi: il grado del prodotto è la somma dei gradi dei fattori, purché l anello dei coefficienti sia in un dominio. Divisibilità fra polinomi: prime proprietà. Lezione 22. martedí 20 ottobre 2009 (2 ore) Divisibilità fra polinomi. Divisione con resto fra polinomi: quando si può fare. Un polinomio ha α come radice se e solo se è divisibile per x α. In un dominio un polinomio ha al più tante radici quant è il grado. Massimo comun divisore fra polinomi. Lezione 23. mercoledí 21 ottobre 2009 (2 ore) Massimo comun divisore fra polinomi: relazione fra due MCD, e un esempio di razionalizzazione. Quadrati modulo un primo (dispari): quanti sono, come si vede se un numero è un quadrato, quando -1 è un quadrato.

5 DIARIO DEL CORSO ALGEBRA 2009/10 5 Lezione 24. giovedí 22 ottobre 2009 (2 ore) Algoritmo per il calcolo delle radici quadrate modulo un primo: il caso p 3 (mod 4). Teorema cinese dei resti: isomorfismo. Lezione 25. lunedí 26 ottobre 2009 (2 ore) Un esempio di RSA con n = 77, r = 17. Morfismi e isomorfismi di anelli. Cenno al Primo Teorema di Isomorfismo in generale. Teorema cinese dei resti: isomorfismo fra Z/pqZ e Z/pZ Z/qZ. Calcolo delle radici quadrate modulo pq: esempi. Lezione 26. martedí 27 ottobre 2009 (2 ore) Un esempio di decifrazione in RSA. Radici quadrate modulo pq e testa o croce per telefono: fattorizzare equivale a trovare le quattro radici quadrate. Come trovare una radice quadrata di 1 modulo un primo p 1 (mod 4). Lezione 27. mercoledí 28 ottobre 2009 (2 ore) Costruzione formale dei polinomi come funzioni sui naturali quasi ovunque nulle, con la somma per componenti, e il prodotto di convoluzione. Lezione 28. giovedí 29 ottobre 2009 (3 ore) Seconda provetta intermedia. Lezione 29. lunedí 2 novembre 2009 (2 ore) Estensioni semplici: struttura. La valutazione di un polinomio in un elemento è un morfismo di anelli. Proprietà universale dell anello dei polinomi. Esempi: Z[i], Z[ 2], Q[ 2]. Irrazionalià di, 2. Norme. Lezione 30. martedí 3 novembre 2009 (2 ore) Norme su Z, polinomi, interi di Gauss Z[i], Z[ 2]. Per quest ultimo, si passa per matrici e determinanti. La norma di un elemento invertibile è 1. Il viceversa non vale in generale, per esempio in Z[x]. Domini euclidei: la divisione con resto negli interi di Gauss. Lezione 31. mercoledí 4 novembre 2009 (2 ore) Divisione con resto e massimo comun divisore negli interi di Gauss. Non unicità di quoziente e resto. Un numero primo congruo a 1 modulo 4 è somma di due quadrati: l algoritmo.

6 6 DIARIO DEL CORSO ALGEBRA 2009/10 Lezione 32. giovedí 5 novembre 2009 (2 ore) Z[ 2] è un dominio euclideo. In un dominio euclideo, un elemento ha norma 1 se e solo se è invertibile. Primi e irriducibili in un dominio. Un primo è sempre irriducibile. In Z[i 5] si ha che 2 è irriducibile, ma non primo. Lezione 33. lunedí 9 novembre 2009 (2 ore) In un dominio euclideo, un irriducibile è anche primo. In un dominio in cui la norma è speciale (cioè un elemento ha norma 1 se e solo se è invertibile) ogni elemento si scrive come prodotto di irriducibili. In un dominio in cui gli irriducibili sono primi, la fattorizzazione di un elemento come prodotto di irriducibili, se c è, è unica. I primi negli interi di Gauss: un primo di Gauss divide un primo degli interi. Lezione 34. martedí 10 novembre 2009 (2 ore) I primi negli interi di Gauss. Terne pitagoriche. Lezione 35. mercoledí 11 novembre 2009 (2 ore) Radici dell unità. Cenni all ultimo teorema di Fermat. Elementi algebrici e trascendenti. Lezione 36. giovedí 12 novembre 2009 (2 ore) Primo teorema di isomorfismo per anelli. Applicazione: morfismo valutazione, polinomio minimo. Lezione 37. lunedí 16 novembre 2009 (2 ore) Calcolo in anelli di classi resto modulo un polinomio. Esempi: Q[x] modulo x 2 2, R[x] modulo x 2 + 1, Z/2Z[x] modulo x 2 + x + 1, e Z/3Z[x] modulo x 2 + x + 1. Degli ultimi due, il primo è un campo, il secondo no. Polinomi riducibili e irriducibili. Grado uno. Un polinomio di grado maggiore di uno che ha una radice è riducibile, ma il polinomio (x 2 + 1) 2 non ha radici in R[x], eppure è riducibile. Lezione 38. martedí 17 novembre 2009 (2 ore) Un polinomio di grado 2 o 3 è irriducibile se e solo se non ha radici. Se un polinomio monico, che si annulla su un elemento, è irriducibile, allora ne è polinomio minimo. Un polinomio minimo può essere riducibile, ma se l ambiente è un dominio, allora è irriducibile. Calcolo di polinomi minimi: radice terza di 2. Una estensione semplice in un dominio è un campo. Razionalizzazione.

7 DIARIO DEL CORSO ALGEBRA 2009/10 7 Lezione 39. mercoledí 18 novembre 2009 (2 ore) L irriducibilità di un polinomio, e il polinomio minimo di un elemento, dipendono dal campo cche si considera. Divisibilità di polinomi minimi su campi diversi. Estensioni come spazi vettoriali. Grado di una estensione. Il grado dell estensione semplice mediante un elemento algebrico è eguale al grado del polinomio minimo. Lezione 40. giovedí 19 novembre 2009 (3 ore) Terza provetta intermedia. Lezione 41. lunedí 23 novembre 2009 (2 ore) Il polinomio di su Q. Formula dei gradi (senza dimostrazione). (Valutazione della didattica.) Se una estensione di K ha grado finito, ogni suo elemento è algebrico su K, di grado un divisore del grado dell estensione. Lezione 42. martedí 24 novembre 2009 (2 ore) Costruzioni con riga e compasso. Lezione 43. mercoledí 25 novembre 2009 (0 ore) Lezione sospesa in occasione della Conferenza di Facoltà. Lezione 44. giovedí 26 novembre 2009 (2 ore) Campo di riducibilità completa (spezzamento) di un polinomio. Campi finiti: inizio. Lezione 45. lunedí 30 novembre 2009 (2 ore) Ancora sul campo di riducibilità completa (spezzamento) di un polinomio. Un campo finito ha caratteristica un numero primo. Un campo finito ha ordine p n, ove p è un primo, e i suoi elementi sono le radici del polinomio x pn x Z/pZ[x]. Costruzione di un campo finito di ordine p n, come campo di spezzamento del polinomio x pn x (inizio). Criterio della derivata per radici distinte.

8 8 DIARIO DEL CORSO ALGEBRA 2009/10 Lezione 46. martedí 1 dicembre 2009 (2 ore) Costruzione di un campo finito di ordine p n, come campo di spezzamento del polinomio x pn x. Un sottogruppo finito del gruppo moltiplicativo di un campo è ciclico: il caso dei numeri complessi. Un campo finito di ordine p n è estensione di Z/pZ mediante una radice di un polinomio irriducibile di grado n. Campi di ordine 4 e 8. Lezione 47. mercoledí 2 dicembre 2009 (2 ore) Campi di ordine 8, 16, 9. Lezione 48. giovedí 3 dicembre 2009 (2 ore) Codici a rivelazione e correzione d errore. Codice fiscale. ISBN-10. Codici a ripetizione 2 e 3 volte. Codice a controllo di parità. Codici lineari. Distanza di Hamming. Lezione 49. mercoledí 9 dicembre 2009 (2 ore) Codici lineari. Distanza di Hamming: sue proprietà. Un codice rivela un errore se ha distanza minima almeno 2, e ne corregge uno se ha distanza minima almeno 3. Matrice di un codice. Lezione 50. giovedí 10 dicembre 2009 (2 ore) Descrizione di un codice mediante un sistema di equazioni lineari: matrice di controllo di parità di un codice. Come si legge la rivelazione e la correzione di un errore sulla matrice di controllo di parità. Codice di Hamming basato sul campo con 8 elementi. Lezione 51. lunedí 14 dicembre 2009 (2 ore) Il codice di Hamming basato sul campo con 8 elementi, visto con entrambi i polinomi. Codifica e decodifica. Uso dell aritmetica polinomiale. Il codice di Hamming basato sul campo con 4 elementi è il codice a ripetzione tre volte. Lezione 52. martedí 15 dicembre 2009 (2 ore) Sottogruppi, classi laterali e teorema di Lagrange. In un gruppo finito, l ordine di un elemento divide l ordine del gruppo. Ideali, anelli quoziente e nuclei di morfismi.

9 DIARIO DEL CORSO ALGEBRA 2009/10 9 Lezione 53. mercoledí 16 dicembre 2009 (2 ore) Sette domande, una menzogna. Cappelli rossi, cappelli blu, e codici a correzione d errore. Lezione 54. giovedí 17 dicembre 2009 (3 ore) Quarta provetta intermedia. Dipartimento di Matematica, Università degli Studi di Trento, via Sommarive 14, Povo (Trento) address: URL:

DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI Lezione 1. mercoledí 15 settembre 2010 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 16 settembre 2013 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 142857,

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI Nota. L eventuale descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione. Lezione 1. martedí 15 settembre

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016

COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016 COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016 Istruzioni: (1) Questo compito consiste di sei facciate e ventidue esercizi. (2) Risolvete tutti gli esercizi seguenti. (3) Giustificate, possibilmente in modo

Dettagli

DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA. (41 ore complessive di lezione)

DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA. (41 ore complessive di lezione) DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA DOCENTE: SANDRO MATTAREI (41 ore complessive di lezione) Prima settimana. Lezione di martedí 22 febbraio 2011 (due ore) Rappresentazione di numeri interi

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index

Dettagli

Appunti di Aritmetica. Carmine Frascella

Appunti di Aritmetica. Carmine Frascella Appunti di Aritmetica Carmine Frascella 27 Settembre 2014 C Indice 5 Nomenclatura di base 7 Relazione d ordine, coerenza con 7 somma e prodotto. Principio del 7 buon ordinamento dei naturali e 7 principio

Dettagli

Università degli studi di Trieste Corso di Studi in Matematica. Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico:

Università degli studi di Trieste Corso di Studi in Matematica. Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico: 1 Richiami/premesse Università degli studi di Trieste Corso di Studi in Matematica Algebra 2 (9 cfu) docente: prof. Alessandro Logar anno accademico: 2013-2014 Richiami su gruppi, anelli, campi; omomorfismi,

Dettagli

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora)

DIARIO DEL CORSO DI TEORIA DEI GRUPPI. Prima settimana. Lezione di mercoledí 27 febbraio 2013 (un ora) DIARIO DEL CORSO DI TEORIA DEI GRUPPI SANDRO MATTAREI A.A. 2012/13 Prima settimana. Lezione di mercoledí 20 febbraio 2013 (un ora) Monoidi. Gli elementi invertibili di un monoide formano un gruppo. Esempi:

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 10 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Programma del Corso di Matematica Discreta (Elementi) lettere P-Z anno accademico 2004/2005

Programma del Corso di Matematica Discreta (Elementi) lettere P-Z anno accademico 2004/2005 Programma del Corso di Matematica Discreta (Elementi) lettere P-Z anno accademico 2004/2005 27 gennaio 2005 1. Logica 2. Insiemi e Funzioni 3. Numeri naturali 4. Numeri interi 5. Relazioni 6. Classi di

Dettagli

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari:

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari: Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2006/2007 AL1 - Algebra 1, fondamenti Seconda prova di valutazione intermedia 11 Gennaio 2006 Cognome Nome Numero di matricola

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K

POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K POLINOMI 1. Funzioni polinomiali e polinomi Sono noti campi infiniti (es. il campo dei complessi C, quello dei reali R, quello dei razionali Q) e campi finiti (es. Z p la classe dei resti modp con p numero

Dettagli

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006

Programma del Corso di Matematica Discreta (Elementi) anno accademico 2005/2006 Programma del Corso di Matematica Discreta (Elementi) lettere M-Z anno accademico 2005/2006 2 febbraio 2006 1. Logica 2. Insiemi e Funzioni 3. Numeri naturali 4. Numeri interi 5. Relazioni 6. Classi di

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

Matematica Discreta e Algebra Lineare (per Informatica)

Matematica Discreta e Algebra Lineare (per Informatica) Matematica Discreta e Algebra Lineare (per Informatica) Docente: Alessandro Berarducci Anno accademico 2016-2017, versione 14 Marzo 2017 Tipiche domande d esame La seguente lista di domande non intende

Dettagli

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi

Strutture algebriche. Leggi di composizione. Leggi di composizione. Gruppi Insiemi di numeri Polinomi Introduzione S S S S Le strutture algebriche sono date da insiemi con leggi di composizione binarie (operazioni) ed assiomi (proprietà) Una legge di composizione binaria è una funzione : I J K, una legge

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

APPUNTI DI ALGEBRA 2

APPUNTI DI ALGEBRA 2 niversità degli Studi di Roma La Sapienza Dipartimento di Matematica G.Castelnuovo A.A. 2006-2007 GILIO CAMPANELLA APPNTI DI ALGEBRA 2 con oltre 150 esercizi svolti l ideale primo (2), determinare il campo

Dettagli

Fattorizzazione di interi e crittografia

Fattorizzazione di interi e crittografia Fattorizzazione di interi e crittografia Anna Barbieri Università degli Studi di Udine Corso di Laurea in Matematica (Fattorizzazione e crittografia) 14 Maggio 2012 1 / 46 Il teorema fondamentale dell

Dettagli

1 Proprietà elementari delle congruenze

1 Proprietà elementari delle congruenze 1 Proprietà elementari delle congruenze Un altro metodo di approccio alla teoria della divisibilità in Z consiste nello studiare le proprietà aritmetiche del resto della divisione euclidea, o, come si

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

Dal messaggio a sequenze di numeri

Dal messaggio a sequenze di numeri Dal messaggio a sequenze di numeri Le classi resto modulo n := Z n Due numeri interi a, b, si dicono congrui modulo n (con n intero >1) se divisi per n hanno lo stesso resto: a=bmodn a= kn+b a-b = kn con

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2 Prova scritta di Algebra 4 Luglio 013 1. Si risolva il seguente sistema di congruenze lineari x mod 3 x 1 mod 5 x 3 mod. In S 9 sia α (1, 3(3, 5, 6(5, 3(4,, 7(, 1, 4, 7(8, 9 a Si scriva α come prodotto

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Università degli Studi di Verona Corso di Laurea in Matematica Applicata * * * Prof. Lidia Angeleri Anno accademico 2009-2010 Indice

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Congruenze. Classi resto

Congruenze. Classi resto Congruenze. Classi resto Congruenze modulo un intero DEFINIZIONE Siano a e b due numeri interi relativi; fissato un intero m si dice che a è congruo a b modulo m se la differenza a b è multipla di m, e

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE

Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Richiami e approfondimenti di Algebra per il Corso ALGEBRA COMPUTAZIONALE Università degli Studi di Verona Corso di Laurea in Matematica Applicata * * * Prof. Lidia Angeleri Anno accademico 2011/12 Indice

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011

ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO

LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI PROGRAMMA DIDATTICO LICEO CLASSICO-SCIENTIFICO EUCLIDE CAGLIARI Materia: Matematica Anno scolastico: 010 011 Classe: 1 A Insegnante: Maria Maddalena Alimonda PROGRAMMA DIDATTICO NUMERI NATURALI E NUMERI INTERI Operazioni

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Argomenti delle lezioni.

Argomenti delle lezioni. Argomenti delle lezioni. 1 settimana Lunedì 1 ottobre Presentazione del corso. Martedì 2 ottobre Il campo ordinato dei numeri reali. Utilizzo degli assiomi nelle dimostrazione di alcune proprietà. Equazioni

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Crittografia Aritmetica modulare

Crittografia Aritmetica modulare Crittografia Aritmetica modulare Ottavio G. Rizzo Ottavio.Rizzo@mat.unimi.it Università di Milano Progetto lauree scientifiche p.1/16 Massimo comun divisore Definizione. Dati a, b N, il massimo comun divisore

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

REGISTRO DELLE LEZIONI 2005/2006. Tipologia. Addì 20-04-2006. Tipologia. Addì 21-04-2006. Tipologia

REGISTRO DELLE LEZIONI 2005/2006. Tipologia. Addì 20-04-2006. Tipologia. Addì 21-04-2006. Tipologia Introduzione al corso. Definizione di gruppo e sue proprietà. Addì 19-04-2006 Addì 20-04-2006 Esercizi introduttivi ed esempi sui gruppi. Definizione di sottogruppo e sue proprietà. Addì 20-04-2006 Addì

Dettagli

APPUNTI DI ALGEBRA 1

APPUNTI DI ALGEBRA 1 Università degli Studi di Roma La Sapienza Dipartimento di Matematica G.Castelnuovo A.A. 2004-2005 G. CAMPANELLA APPUNTI DI ALGEBRA 1 bbiamo osservato [cfr. Cap. III, Teor. 3.1] che ogni polinomio di grado

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni

Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5

Dettagli

CAPITOLO 6. Polinomi. (f(0), f(1),..., f(n),... ).

CAPITOLO 6. Polinomi. (f(0), f(1),..., f(n),... ). CAPITOLO 6 Polinomi I polinomi compaiono già nella scuola media; tuttavia il modo in cui sono presentati è spesso lacunoso. Cercheremo in questo capitolo di fondare la teoria dei polinomi su basi più solide.

Dettagli

Lo stesso procedimento ci permette di trovare due interi x, y tali che M.C.D. = ax + by. Ma quando esistono x, y soluzioni dell equazione diofantea

Lo stesso procedimento ci permette di trovare due interi x, y tali che M.C.D. = ax + by. Ma quando esistono x, y soluzioni dell equazione diofantea 1. Massimo comun divisore tra due interi; soluzione di alcune equazioni diofantee Definizione Siano a, b Z non entrambi nulli; si dice che d Z è un Massimo Comun Divisore tra a e b se sono verificate le

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Facoltà di DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI" anno accademico 2013/14 Registro lezioni del docente CHIRIVI' ROCCO

Facoltà di DIPARTIMENTO DI MATEMATICA E FISICA ENNIO DE GIORGI anno accademico 2013/14 Registro lezioni del docente CHIRIVI' ROCCO Facoltà di DIPARTIMENTO DI MATEMATICA E FISICA "ENNIO DE GIORGI" anno accademico 2013/14 Registro lezioni del docente CHIRIVI' ROCCO Attività didattica COMPLEMENTI DI ALGEBRA [A002755] Periodo di svolgimento:

Dettagli

AL220 - Gruppi, Anelli e Campi

AL220 - Gruppi, Anelli e Campi AL220 - Gruppi, Anelli e Campi Prof. Stefania Gabelli - a.a. 2013-2014 Settimana 1 - Traccia delle Lezioni Funzioni tra insiemi Ricordiamo che una funzione o applicazione di insiemi f : A B è una corrispondenza

Dettagli

Esercizi e soluzioni relativi al Capitolo 10

Esercizi e soluzioni relativi al Capitolo 10 Esercizi e soluzioni relativi al Capitolo 1 Esercizio 1.1 Sia (Mat 2 2 (R), +, ) l anello delle matrici quadrate di ordine 2 a coefficienti reali. [ Gli ] elementi unitari sono tutte e sole le matrici

Dettagli

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002

Università degli studi di Verona Corso di laurea in Informatica Prova scritta di Algebra 3 settembre 2002 Prova scritta di Algebra settembre 2002 1) Si consideri il sottoinsieme del gruppo Q \{0} dei numeri razionali non nulli rispetto alla moltiplicazione: { m X = n } m 0, n Si dimostri che X è un sottosemigruppo;

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

Esercizi di Algebra 2, C.S. in Matematica, a.a

Esercizi di Algebra 2, C.S. in Matematica, a.a 26 Esercizi di Algebra 2, C.S. in Matematica, a.a.2008-09. Parte V. Anelli Nota. Salvo contrario avviso il termine anello sta per anello commutativo con identità. Es. 154. Provare che per ogni intero n

Dettagli

623 = , 413 = , 210 = , 203 =

623 = , 413 = , 210 = , 203 = Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE: Le definizioni ed i risultati fondamentali per poter studiare con profitto sono scritti in

Dettagli

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007

Polinomi. Docente: Francesca Benanti. 16 Febbraio 2007 Polinomi Docente: Francesca Benanti 16 Febbraio 2007 1 L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli interi poichè

Dettagli

CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari

CODICI CICLICI. TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A Prof.ssa Bambina Larato - Politecnico di Bari CODICI CICLICI TEORIA DEI CODICI CORSO DI GRAFI E COMBINATORIA A.A. 2011-2012 Prof.ssa Bambina Larato - larato@poliba.it Politecnico di Bari CODICI CICLICI Qualche richiamo Sia F=GF(q) e sia F[x] l insieme

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso

MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso MATEMATICA DEL DISCRETO (Informatica) Docenti BONZINI e TURRINI esercizi di preparazione alla prova di metà corso NOTA - Negli esercizi che seguono verranno adottate le seguenti notazioni: il simbolo Z

Dettagli

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA

Dettagli

Indice. 5 Basi di Gröbner Ideali monomiali Basi di Gröbner... 22

Indice. 5 Basi di Gröbner Ideali monomiali Basi di Gröbner... 22 Prefazione In questo breve testo delineiamo la teoria delle basi di Gröbner avendo presente il problema della discussione e della risoluzione di un sistema di equazioni polinomiali come si presenta ad

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI

Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Liceo scientifico Leonardo da Vinci PROGRAMMA DI MATEMATICA ANNO SCOLASTICO 2013/2014 II A LE EQUAZIONI LINEARI Le identità; Le equazioni; Le equazioni equivalenti; I principi di equivalenza; Le equazioni

Dettagli

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi

Teoria dei Numeri. Lezione del 31/01/2011. Stage di Massa Progetto Olimpiadi Teoria dei Numeri Lezione del 31/01/2011 Stage di Massa Progetto Olimpiadi Criteri di Divisibilità 2: ultima cifra pari 3: somma (o somma della somma) delle cifre divisibile per 3 4: ultime due cifre divisibili

Dettagli

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n

ESERCITAZIONE N.8. Il calcolatore ad orologio di Gauss. L aritmetica dell orologio di Gauss. Operazioni e calcoli in Z n Il calcolatore ad orologio di Gauss ESERCITAZIONE N.8 18 novembre L aritmetica dell orologio di Gauss Operazioni e calcoli in Z n 1, 1, -11, sono tra loro equivalenti ( modulo 12 ) Rosalba Barattero Sono

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano

Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano Costruzioni geometriche: perché gli origami battono la riga ed il compasso. Francesco Veneziano 5 agosto 2008 I problemi classici della geometria euclidea Quadratura del cerchio Costruire un quadrato avente

Dettagli

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se ( a, b Z) (p ab = (p a p b). Teorema 1. Sia p Z, p ±1. Allora p è primo se e solo se ( a, b Z)

Dettagli

Gruppi, Anelli, Campi

Gruppi, Anelli, Campi Gruppi, Anelli, Campi (A1) Chiusura per addizione (A2) Associatività addizione (A3)Elemento neutro addizione (A4)Esistenza inversi additivi Campo (A5) Commutatività addizione (M1) Chiusura per moltiplicazione

Dettagli

matematica discreta note di Maria Welleda Baldoni Ciro Ciliberto Giulia Maria Piacentini Cattaneo con la collaborazione di A.

matematica discreta note di Maria Welleda Baldoni Ciro Ciliberto Giulia Maria Piacentini Cattaneo con la collaborazione di A. Maria Welleda Baldoni Ciro Ciliberto Giulia Maria Piacentini Cattaneo con la collaborazione di A. Calabri note di matematica discreta parte seconda (capitoli 6 10) SONO CONTRAFFATTE LE COPIE SPROVVISTE

Dettagli

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1

Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Algebra Lineare ed Elementi di Geometria Corso di Laurea in Matematica Applicata MODULO 1 Prof. Lidia Angeleri Anno accademico 2015-2016 1 1 appunti aggiornati in data 14 gennaio 2016 Indice I Gruppi 3

Dettagli

Esercizi di Algebra commutativa e omologica

Esercizi di Algebra commutativa e omologica Esercizi di Algebra commutativa e omologica Esercizio 1. Sia A un anello non nullo. Dimostrare che A è un campo se e solo se ogni omomorfismo di A in un anello non nullo B è iniettivo. Esercizio 2. Sia

Dettagli

0 Insiemi, funzioni, numeri

0 Insiemi, funzioni, numeri Giulio Cesare Barozzi, Giovanni Dore, Enrico Obrecht Elementi di analisi matematica - Volume 1 Zanichelli 0 Insiemi, funzioni, numeri Esercizi 0.1. Il linguaggio degli insiemi 0.1.1. Esercizio Poniamo

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli.

Polinomi. 2 febbraio Docente: Francesca Benanti. L Anello dei Polinomi. Divisibilità in K[x] Scomposizione di... Prodotti Notevoli. Polinomi Docente: Francesca Benanti 2 febbraio 2008 Page 1 of 25 1. L Anello dei Polinomi Lo studio dei polinomi in una indeterminata a coefficienti in un campo è posto immediatamente dopo lo studio degli

Dettagli

PROGRAMMA DI MATEMATICA CONTENUTI.

PROGRAMMA DI MATEMATICA CONTENUTI. PROGRAMMA DI MATEMATICA CLASSE 1 a A commerciale L ISEGNANTE Dilena Calogero CONTENUTI. MODULO 1: INSIEMI NUMERICI E FUNZIONI (40 ore) I NUMERI NATURALI 1) Conoscere termini, simboli e definizioni riguardanti

Dettagli

Matematica Discreta e Logica Matematica ESERCIZI

Matematica Discreta e Logica Matematica ESERCIZI Matematica Discreta e Logica Matematica ESERCIZI Proff. F. Bottacin e C. Delizia Esercizio 1. Scrivere la tavola di verità della seguente formula ben formata e determinare se essa è una tautologia: A ((A

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Polinomi. Corso di accompagnamento in matematica. Lezione 1

Polinomi. Corso di accompagnamento in matematica. Lezione 1 Polinomi Corso di accompagnamento in matematica Lezione 1 Sommario 1 Insiemi numerici 2 Definizione di polinomio 3 Operazioni tra polinomi 4 Fattorizzazione Corso di accompagnamento Polinomi Lezione 1

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R

X Settimana = 0 R. = 0 R x, x R. + (x 0 R. ) x 0 R = = x 0 R X Settimana 1 Elementi basilari della teoria degli anelli (I parte) Un anello (R, +, ) è un insieme non vuoto R dotato di due operazioni (binarie), denotate per semplicità con i simboli + e + : R R R,

Dettagli

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo.

Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo. Capitolo 3 Il campo Z n 31 Introduzione Introduciamo ora un altro campo, formato da un numero finito di elementi; il campo delle classi resto modulo n, con n numero primo 32 Le classi resto Definizione

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

IST. MAT. SFP 2015/2016-ESERCIZI

IST. MAT. SFP 2015/2016-ESERCIZI IST. MAT. SFP 2015/2016-ESERCIZI LOGICA (1) Esprimere la negazione delle seguenti proposizioni: Ogni cinese è asiatico Esiste un cinese che é biondo Nessun europeo è americano Tutti i cinesi non sono asiatici

Dettagli

Aritmetica modulare, numeri primi e crittografia

Aritmetica modulare, numeri primi e crittografia Università di Pavia 14 Giugno 2016 Numeri primi Definizione Un intero n > 1 è un numero primo se non esistono due interi a, b > 1 tali che n = ab. Sono dunque numeri primi: 2, 3, 5, 7, 11, 13, 17, 19,

Dettagli

Elementi di Algebra dal punto di vista superiore

Elementi di Algebra dal punto di vista superiore Elementi di Algebra dal punto di vista superiore A.A. 2012/13 Orario delle lezioni: lunedì 11-13, mercoledì 11-13, giovedì 9-11 aula Enriques Programma del corso 2012-13 Algebra di base: Funzioni, biiezioni,

Dettagli

Anello commutativo. Un anello è commutativo se il prodotto è commutativo.

Anello commutativo. Un anello è commutativo se il prodotto è commutativo. Anello. Un anello (A, +, ) è un insieme A con due operazioni + e, dette somma e prodotto, tali che (A, +) è un gruppo abeliano, (A, ) è un monoide, e valgono le proprietà di distributività (a destra e

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

PROGRAMMA CONSUNTIVO

PROGRAMMA CONSUNTIVO PAGINA: 1 PROGRAMMA CONSUNTIVO A.S.2014-2015 SCUOLA Liceo Linguistico Manzoni DOCENTE: Marina Barbàra MATERIA: Matematica e Informatica Classe 1 Sezione A OBIETTIVI: le parti sottolineate sono da considerarsi

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA

ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ISTITUTO TECNICO AGRARIO STATALE E. SERENI ROMA ANNO SCOLASTICO 2016/2017 MATEMATICA CLASSE I SEZ. Az PROGRAMMA SVOLTO DALL INSEGNANTE Prof. Alessandro Di Marco Testo adottato: MATEMATICA.VERDE 1 LD 1.

Dettagli

Aritmetica 2016/2017 Esercitazione guidata - decima settimana

Aritmetica 2016/2017 Esercitazione guidata - decima settimana Aritmetica 2016/2017 Esercitazione guidata - decima settimana Massimo Caboara caboara@dm.unipi.it 2016 1. Elencare i polinomi irriducibili di Z2[x] di grado 4. x x + 1 x 2 + x + 1 x 3 + x 2 + 1 x 3 + x

Dettagli