SSL: Laboratorio di fisica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SSL: Laboratorio di fisica"

Transcript

1 Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative SSL SSL: Laboratorio di fisica Resistenza nel vuoto Massimo Maiolo & Stefano Camozzi Giugno 2006 (Doc. SSL ER-it)

2 SSL ER-it 1 Revisioni Rev. Date Author Description 0 may 2006 Maiolo/Camozzi Preparazione Ceppi/G. Salvadè Revisione

3 SSL ER-it 2 Indice 1 Introduzione Scopo Metodo Materiale utilizzato per l esperienza Schema dell esperienza Formule Teoria Resistenza elettrica Effetto Joule Termo resistori (NTC e PTC) Il Pt Calcolo della temperatura Calcolo del flusso di calore Calcolo della conduzione dei fili del Pt Misure 10 4 Grafici 11 5 Osservazioni Osservazioni sull esperienza Osservazioni sulle misure Conclusioni 20 Elenco delle figure 1 Foto dell esperienza Schema dell esperienza Schema dei collegamenti Temperatura in aria Temperatura nel vuoto Temperatura del print piccolo Temperatura del print senza rame Temperatura del print con rame Temperatura della resistenza senza print Dettaglio dell esperienza Esperienza con la resistenza senza print Esperienza con la resistenza senza print I 3 print lato resistenza I 3 print sul retro

4 SSL ER-it 3 15 Resistenza con attaccata il Pt100 vista dal davanti Resistenza con attaccata il Pt100 vista dal retro Foto con l apparecchio all infrarosso Foto con l apparecchio all infrarosso

5 SSL ER-it 4 1 Introduzione 1.1 Scopo Studiare la variazione di temperatura di una resistenza sotto carico nel vuoto. 1.2 Metodo Una resistenza elettrica di valore noto viene messa a contatto con una Pt100 di cui si conosce esattamente il comportamento (resistenza) in funzione della temperatura. Si misura la PT100 a contatto con la resistenza in 4 casi diversi: resistenza montata su un print piccolo (2.5cm x 1.8cm) in metallo; resistenza montata su un print grande (10cm x 8cm) ricoperto di rame; resistenza montata su un print grande (10cm x 8cm) senza rame; resistenza senza print. La resistenza viene collegata ad una sorgente di corrente continua; il valore della corrente viene mantenuto costante per tutte le 4 esperienze e viene tenuto sotto costante controllo. Le 4 esperienze vengono eseguite sia in aria che nel vuoto (vuoto non spinto, pressione residua 1 2 mbar). Alla PT100 è collegato un ohmetro digitale di elevata precisione in cui si prendono le misure con collegamenti a 4 cavi per eliminare il disturbo dovuto ai cavi. La campionatura dei dati è avvenuta manualmente ogni 15 secondi. Si vuole conoscere l andamento della temperatura della resistenza in funzione del tempo e la temperatura stazionaria. 1.3 Materiale utilizzato per l esperienza Per le 4 esperienze abbiamo utilizzato il seguente materiale: campana a vuoto con barometro/manometro digitale o al mercurio; 4 resistenze ohmiche di ugual valore attaccate a diversi print con i relativi Pt100; sorgente di corrente continua e relativi collegamenti elettrici; ohmetro digitale ad alta risoluzione per la Pt100, voltometro e amperometro per le misure della sorgente di corrente; fotocamera per il rilevamento di radiazione infrarossa.

6 SSL ER-it Schema dell esperienza Figura 1: Foto dell esperienza Figura 2: Schema dell esperienza

7 SSL ER-it 6 Figura 3: Schema dei collegamenti

8 SSL ER-it Formule La potenza dissipata in calore (effetto Joule) è uguale a: P = R I 2 dove P è la potenza espressa in watt, R è la resistenza espressa in ohm e I è la corrente espressa in ampere. La resistenza è data da: dove V è la tensione espressa in volt. R = V I La resistenza elettrica di un metallo conduttore: R = R 0 + R 0 α υ dove α è il coefficiente di proporzionalità caratteristico del materiale e R 0 è la resistenza a 0 C. Per i termometri a resistenza vale l equazione seguente: R(υ) = R(υ 0 ) [1 + a (υ υ 0 ) + b (υ υ 0 ) 2 ] dove υ 0 è una temperature di riferimento, a e b sono costanti specifiche del conduttore. La legge di Stefan-Boltzmann per l irraggiamento è: P c.n A = σ T 4 dove P c.n è la potenza irradiata da un corpo nero e σ è la costante di Boltzmann. 1 Il flusso di calore per irraggiamento è dato dall equazione: dove ɛ è il fattore di emittenza. Equazione di Fourier per la conduzione termica: Φ = ɛ A σ (T 4 Tamb 4.) (1) Q = λ υ1 υ 2 L dove λ è la conducibilità del materiale espresso in 1 σ = 5, W m 2 K 4. A. (2) W m K.

9 SSL ER-it 8 2 Teoria 2.1 Resistenza elettrica La resistenza elettrica è una grandezza fisica che misura la tendenza di un componente elettrico di opporsi al passaggio di una corrente elettrica quando è sottoposto ad una tensione. Questa opposizione si manifesta con un riscaldamento del componente (effetto Joule) e dipende dal materiale con cui è realizzato, dalle sue dimensioni, dalla sua temperatura e, nel caso di correnti alternate, dalla frequenza della corrente. 2.2 Effetto Joule L effetto Joule, osservato dal fisico James Prescott Joule, è quel fenomeno per cui un conduttore attraversato da una corrente elettrica continua, genera calore con una potenza (P) pari al prodotto della differenza di potenziale presente ai suoi capi (V) per l intensità di corrente che lo percorre (I). In termini matematici: P = V I. Poiché la potenza (P) è definita come energia (W) in un tempo ( t), si ha che l energia liberata in un intervallo t è (in joule): che può essere scritta anche come: W = V I t Q = I 2 R t dove Q è espresso in joule, I in ampere e t in secondi. Il fenomeno si spiega pensando alla struttura atomica dei componenti: le cariche elettriche si muovono in un conduttore sotto l azione di un campo elettrico, tale campo elettrico accelera gli elettroni liberi per un breve periodo aumentando la loro energia cinetica, ma gli elettroni non si muovono liberamente bensì urtano varie volte contro gli ioni del reticolo cristallino del conduttore. In questo modo l energia assorbita dal campo elettrico si trasforma in energia termica del conduttore. Il conduttore quindi si riscalda. 2.3 Termo resistori (NTC e PTC) I resistori PTC (Positive Temperature Coefficient) aumentano la loro resistenza con l aumento della temperatura, quelli detti NTC (Negative Temperature Coefficient) riducono la loro resistenza con l aumentare della temperatura. I termo-resistori sono impiegati o per la misura diretta della temperatura (nei termometri elettronici) o come elementi di controllo nei circuiti elettrici ed elettronici (per esempio per aumentare o diminuire una corrente od una tensione al variare della temperatura d esercizio). Il Pt 100 è di tipo PTC.

10 SSL ER-it Il Pt100 Pt100 sta per Pt Platino Ni Nickel 100. Dentro l involucro di ceramica c è una pellicola di Platino, 100 è la resistenza in ohm a 0 C. Il Pt100 è il termometro a resistenza più utilizzato in industria e permette delle misure tra 200 C e 850 C. Viene utilizzato il Platino perché questo metallo ha una ben determinate curva di resistenza in funzione della temperatura. Le misure effettuate con il Pt 100 sono affette da due errori caratteristici: un errore di offset (scostamento della misura reale a 0 C da quella teorica) e l errore che ha la resistenza rispetto alla curva teorica. Quest ultimo dipende sia dall errore di offset che dalle impurità del Platino. Entrambi gli errori influenzano la misura minimamente (< 0.2% del valore a 0 C). Per effettuare delle misure più precise il produttore consiglia di costruire dei circuiti di compensazione a 3 o 4 fili. Abbiamo usato questo montaggio. Una delle cause d errore di misura è l auto-riscaldamento dovuto al passaggio di una corrente, seppur lieve, attraverso il sensore. Siccome il nostro esperimento verte più ad un osservazione qualitativa che quantitativa dell effetto, non siamo intervenuti per correggere questo errore. 2.5 Calcolo della temperatura Per temperature 0 C l equazione per calcolare la resistenza è: R = Ω C 2 υ Ω υ + 100Ω (3) Per temperature < 0 C l equazione è: R = (υ 100) Ω C 3 υ3 (4) Ω C 2 υ Ω C υ + 100Ω Per calcolare la temperatura in funzione della resistenza per υ 0 C: υ = ( C 1 ) 2 (R 100) 4 ( ) C (5) Per temperature <0 C: υ = C Ω 5 R Ω 4 R Ω 3 R C Ω 2 C R Ω R C (6) Dalle formule (3) e (5) per il calcolo della temperatura in funzione della resistenza, si nota che il Pt100 non ha una dipendenza lineare dalla temperatura. C C C

11 SSL ER-it Calcolo del flusso di calore La superficie totale della resistenza è stata approssimata calcolandola come se fosse di forma cilindrica con le sequenti misure: lunghezza L: 7mm; raggio R: 1mm. L area totale A tot è quindi: A tot = 2 (R 2 π) + (2 R π) L A tot = 2 [( ) 2 π] + [ π] m 2 L equazione per il flusso di calore per irraggiamento è la seguente: Φ = ɛ A σ (T 4 T 4 amb ) dove σ =5, W m 2 K 4. Con l equazione di Fourier troviamo: Φ = σ [(( ) 4 ( ) 4 )] 0.006W. Abbiamo supposto un ɛ di 0.95 (un corpo nero ideale ha un ɛ pari a 1.0). Come temperature abbiamo utilizzate la temperatura T finale (in regime stazionario) e la temperatura T amb iniziale. 2.7 Calcolo della conduzione dei fili del Pt100 L equazione che permette di calcolare la quantità di calore asportato dai 2 fili che collegano il Pt100 e quelli che collegano la resistenza è la seguente (eq. (2), pag. 7): Φ = λ υ1 υ 2 A L λ = Conduttività termica del rame = 401W m 1 K 1 Φ = (10 3 ) 2 π W Possiamo notare come i fili del Pt100 e della resistenza asportino una quantità di calore di circa metà del calore asportato per irraggiamento. 3 Misure Le misurazioni effettuate in laboratorio sono riportate in allegato.

12 SSL ER-it 11 4 Grafici Qui di seguito i grafici della temperatura in funzione del tempo. Figura 4: Temperatura in aria.

13 SSL ER-it 12 Figura 5: Temperatura nel vuoto.

14 SSL ER-it 13 Figura 6: Temperatura del print piccolo.

15 SSL ER-it 14 Figura 7: Temperatura del print senza rame.

16 SSL ER-it 15 Figura 8: Temperatura del print con rame.

17 SSL ER-it 16 Figura 9: Temperatura della resistenza senza print.

18 SSL ER-it 17 5 Osservazioni 5.1 Osservazioni sull esperienza L esperienza è nata con l esigenza di conoscere il comportamento termico di componenti elettroniche nel vuoto. Per facilitare la costruzione dell esperienza e quindi anche del modello fisico abbiamo usato una resistenza ohmica. La prima esperienza è stata eseguita con una resistenza montata su un print piccolo (vedi fig. 13 e 14). Dopo questa esperienza non ci era chiaro quanto l irraggiamento dipendesse dalla superficie del print su cui la resistenza era montata (notare che (eq. 1, pag. 7) irraggiamento A) e quindi abbiamo eseguito altre esperienze in condizioni differenti. In 2 casi abbiamo scelto tra 2 tipi di fabbricazione delle piastrine differenti: nel primo abbiamo ripulito tutta la superficie di rame mentre nell altro abbiamo lasciato il rame sulla piastra. Dopo queste 3 esperienze abbiamo deciso di effettuarne una quarta incollando il Pt100 direttamente alla resistenza e di sospendere il montaggio senza supporto. Per avere un idea dell andamento della temperatura in funzione del tempo abbiamo scelto un periodo di campionamento che fosse sufficientemente grande per permetterci di prendere manualmente le misure, in questo specifico caso: 15 secondi. In tutte e 4 le esperienze la resistenza ha raggiunto la temperatura stazionaria in ca min. Dopo questo lasso di tempo i cambiamenti di resistenza erano cosí piccoli da poter considerare il sistema stabile. In aria la resistenza senza print aveva però un valore che in fase stazionaria oscillava comunque abbastanza rapidamente. Un ipotesi è che questa fosse sensibile alle correnti d aria presenti in laboratorio, problema che con i print è meno sentito. Per spiegare il fenomeno ci aiutiamo con lo schema seguente:

19 SSL ER-it 18 Nell aria corrente SISTEMA Convezione Conduzione Iraggiamento prints collegamenti al P t100 collegamenti alla resistenza Nel vuoto corrente SISTEMA Conduzione Iraggiamento prints collegamenti al P t100 collegamenti alla resistenza L energia che immettiamo nel sistema è costante in tutti e 4 i casi. Nell aria ha tre maniere per manifestarsi: conduzione, convezione e irraggiamento.

20 SSL ER-it 19 Nel vuoto, proprio a causa della mancanza del mezzo per propagarsi all infuori dell oggetto, non c è convezione. L irraggiamento invece avviene senza nessun mezzo di propagazione quindi anche nel vuoto. La conseguenza è che malgrado l energia immessa nel sistema nei 4 casi sia uguale, il corpo nel vuoto si riscalda di più. Un altra conseguenza è che il corpo a temperature elevate irraggia di più (irraggiamento T 4 ; eq. 1, pag. 7), in quanto per raggiungere una situazione di equilibrio è costretto a scaldarsi maggiormante. L aumento della temperatura comunque non è tale da compromettere il funzionamento del nostro circuito. Resterebbe da provare cosa succede con correnti diverse (nel nostro caso era 15.8mA) e con circuiti più complessi. 5.2 Osservazioni sulle misure Quello che si può osservare dai grafici è un sensibile cambiamento della temperatura causato dalla presenza/assenza di rame e dalla presenza/assenza di aria. Il print grande senza rame e la resistenza senza print sia nell aria che nel vuoto 2 si stabilizzano ad una temperatura di ca. 5 7 C più elevata del print piccolo e del print senza rame. Da questo possiamo dedurre che la presenza del rame favorisce la dispersione del calore per irraggiamento (nel vuoto e nell aria) e per convezione (nell aria). Quest ultima affermazione è vera solamente a patto che l ambiente esterno sia più freddo del print, in caso contrario il print con il rame acquisterebbe calore dall ambiente. Si può osservare dai calcoli che, come ci aspettavamo, il flusso di calore per irraggiamento è maggiore del flusso di calore evacuato dai fili della Pt100. Dai grafici delle figure si nota che la convezione dovuta all aria asporta parecchio calore, infatti in tutte e 4 le esperienze la temperatura della resistenza nel vuoto è di ca. 5 7 C più alta che nell aria. Dalle foto con il rilevatore ad infrarossi di figura 17 (a, b, c) si può osservare che il print con il rame si scalda anche attorno alla resistenza. Infatti nelle figure 17d e 18b la piastra è chiaramente distinguibile mentre nelle altre foto non si riese a distinguerne i contorni: indice che hanno la stessa temperatura dell ambiente. Purtroppo non si sono potute fare le foto all infrarosso dei prints sotto la campana perché questa non fa passare le radiazioni infrarosse. 2 Nella nostra esperienza non raggiugiamo il vuoto spinto, la convezione si riduce però di un fattore 1000 rispetto alla pressione atmosferica.

21 SSL ER-it 20 6 Conclusioni Nel vuoto la temperatura raggiunta dalla resistenza è più elevata rispetto a quella raggiunta nell aria a causa della mancanza di convezione. La presenza di una superficie termoconduttrice aumenta l area di irraggiamento, quindi la quantità di calore asportata per irraggiamento aumenta. La superficie esposta all ambiente ha un influsso importante, se l ambiente esterno è più freddo il corpo cede calore e viceversa. La conduzione incide in maniera minore dell irraggiamento se i canali di trasporto del calore sono di dimensioni trascurabili. La temperatura della resistenza si stabilizza in un range di valori accettabili che non ne compromettono il funzionamento.

22 SSL ER-it 21 Figura 10: Dettaglio dell esperienza.

23 SSL ER-it 22 Figura 11: Esperienza con la resistenza senza print.

24 SSL ER-it 23 Figura 12: Esperienza con la resistenza senza print. In questa foto è visibile l apparecchio che rileva l immagine all infrarosso.

25 SSL ER-it 24 Figura 13: I 3 print lato resistenza. A sinistra il print piccolo, a destra in alto il print con il rame, a destra in basso il print senza rame.

26 SSL ER-it 25 Figura 14: I 3 print sul retro. A sinistra il print piccolo, a destra in alto il print con il rame, a destra in basso il print senza rame.

27 SSL ER-it 26 Figura 15: Resistenza con attaccata il Pt100 vista dal davanti.

28 SSL ER-it 27 Figura 16: Resistenza con attaccata il Pt100 vista dal retro.

29 SSL ER-it 28 a) Print con rame a temperatura ambiente. b) Print con rame visto dal davanti. c) Print con rame visto sul retro. d) Print senza rame a temperatura ambiente. Figura 17: Foto con l apparecchio all infrarosso.

30 SSL ER-it 29 a) Print senza rame verso fine esperienza. b) Print senza rame a fine esperienza. c) Resistenza senza print in aria a temperatura ambiente. d) Resistenza senza print in aria a temperatura finale. Figura 18: Foto con l apparecchio all infrarosso.

31 SSL ER-it 30 Floppy con dati in excel Riferimenti bibliografici [1] [2] [3] [4] [5] [6]

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Sensori di temperatura

Sensori di temperatura Sensori di temperatura La variazione di temperatura è tra le principali cause di cambiamento delle caratteristiche fisiche dei materiali, pertanto, si possono realizzare elementi sensibili alle variazioni

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007

CORRENTE ELETTRICA Corso di Fisica per la Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2007 CORRENTE ELETTRICA INTRODUZIONE Dopo lo studio dell elettrostatica, nella quale abbiamo descritto distribuzioni e sistemi di cariche elettriche in quiete, passiamo allo studio di fenomeni nei quali le

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

La luce proveniente dalla parte immersa dell asticciola viene parzialmente riflessa dalla superficie dell acqua.

La luce proveniente dalla parte immersa dell asticciola viene parzialmente riflessa dalla superficie dell acqua. QUESITO 1 Il grafico rappresenta l andamento della velocità di una palla al passare del tempo. Dalle tre situazioni seguenti quali possono essere state rappresentate nel grafico? I- La palla rotola giù

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

I RESISTORI. I resistori sono a volte utilizzati per convertire energia elettrica in energia termica.

I RESISTORI. I resistori sono a volte utilizzati per convertire energia elettrica in energia termica. I RESISTORI Il resistore è un componente elettrico di grande importanza per le sue molteplici applicazioni sia in apparecchiature elettriche che elettroniche. I resistori sono a volte utilizzati per convertire

Dettagli

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche

E possibile classificazione i trasduttori in base a diversi criteri, ad esempio: Criterio Trasduttori Caratteristiche PREMESSA In questa lezione verranno illustrate la classificazione delle diverse tipologie di trasduttori utilizzati nei sistemi di controllo industriali ed i loro parametri caratteristici. CLASSIFICAZIONE

Dettagli

Corrente elettrica stazionaria

Corrente elettrica stazionaria Corrente elettrica stazionaria Negli atomi di un metallo gli elettroni periferici non si legano ai singoli atomi, ma sono liberi di muoversi nel reticolo formato dagli ioni positivi e sono detti elettroni

Dettagli

LA RESISTENZA ELETTRICA

LA RESISTENZA ELETTRICA LA RESISTENZA ELETTRICA La resistenza elettrica è una grandezza fisica scalare che misura la tendenza di un conduttore di opporsi al passaggio di una corrente elettrica quando è sottoposto ad una tensione.

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore 1 Temperatura e Calore Stati di Aggregazione Temperatura Scale Termometriche Dilatazione Termica Il Calore L Equilibrio Termico La Propagazione del Calore I Passaggi di Stato 2 Gli

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere

Dettagli

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti

Termologia. Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Termologia Introduzione Scale Termometriche Espansione termica Capacità termica e calori specifici Cambiamenti di fase e calori latenti Trasmissione del calore Legge di Wien Legge di Stefan-Boltzmann Gas

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico

Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico Esercitazione N. 1 Misurazione di resistenza con metodo volt-amperometrico 1.1 Lo schema di misurazione Le principali grandezze elettriche che caratterizzano un bipolo in corrente continua, quali per esempio

Dettagli

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica

PRIMA LEGGE DI OHM OBIETTIVO: NOTE TEORICHE: Differenza di potenziale Generatore di tensione Corrente elettrica Liceo Scientifico G. TARANTINO ALUNNO: Pellicciari Girolamo VG PRIMA LEGGE DI OHM OBIETTIVO: Verificare la Prima leggi di Ohm in un circuito ohmico (o resistore) cioè verificare che l intensità di corrente

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

La fisica di Feynmann Termodinamica

La fisica di Feynmann Termodinamica La fisica di Feynmann Termodinamica 3.1 TEORIA CINETICA Teoria cinetica dei gas Pressione Lavoro per comprimere un gas Compressione adiabatica Compressione della radiazione Temperatura Energia cinetica

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

L'energia elettrica e le altre grandezze elettriche

L'energia elettrica e le altre grandezze elettriche 1. Circuito elettrico elementare L'energia elettrica e le altre grandezze elettriche Cominciamo ad analizzare i fenomeni elettrici con una descrizione dei componenti fondamentali di un circuito elettrico,

Dettagli

CLASSE: 1^ CAT. E 1^ GRA

CLASSE: 1^ CAT. E 1^ GRA ITS BANDINI - SIENA MATERIA DI INSEGNAMENTO: FISICA e LABORATORIO CLASSE: 1^ CAT. E 1^ GRA In relazione alla programmazione curricolare ci si prefigge di raggiungere i seguenti obiettivi disciplinari:

Dettagli

Associazione per l Insegnamento della Fisica Giochi di Anacleto

Associazione per l Insegnamento della Fisica Giochi di Anacleto Associazione per l Insegnamento della Fisica Giochi di Anacleto DOMANDE E RISPOSTE 23 Aprile 2007 Soluzioni Quesito 1 La forza con cui la carica positiva 2Q respinge la carica positiva + Q posta nell origine

Dettagli

Limiti d'uso e precisioni delle termoresistenze al platino conformi a EN 60751: 2008

Limiti d'uso e precisioni delle termoresistenze al platino conformi a EN 60751: 2008 Informazioni tecniche Limiti d'uso e precisioni delle termoresistenze al platino conformi a EN 60751: 2008 Scheda tecnica WIKA IN 00.17 Informazioni generali La temperatura è la misurazione dello stato

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

PRINCIPI DI TRASMISSIONE DEL CALORE

PRINCIPI DI TRASMISSIONE DEL CALORE PRINCIPI DI TRASMISSIONE DEL CALORE La trasmissione del calore può avvenire attraverso tre meccanismi: - Conduzione; - Convezione; - Irraggiamento; Nella conduzione la trasmissione del calore è riconducibile

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

ISTITUTO TECNICO NAUTICO "L. GIOVANNI LIZZIO PROF. SALVATORE GRASSO PROGRAMMA SVOLTO MODULO 0 : "RICHIAMI RELATIVI AL PRIMO ANNO"

ISTITUTO TECNICO NAUTICO L. GIOVANNI LIZZIO PROF. SALVATORE GRASSO PROGRAMMA SVOLTO MODULO 0 : RICHIAMI RELATIVI AL PRIMO ANNO 1 ISTITUTO TECNICO NAUTICO "L. RIZZO" - RIPOSTO ------------------------------------ ANNO SCOLASTICO : 2014-2015 CLASSE : SECONDA SEZIONE : D MATERIA D'INSEGNAMENTO : FISICA E LABORATORIO DOCENTI : PROF.

Dettagli

Strumenti di misura per audit energetici

Strumenti di misura per audit energetici Università Roma La Sapienza Dipartimento di Meccanica ed Aeronautica Strumenti di misura per audit energetici Prof. Marco LUCENTINI Università ità degli Studi di Roma "La Sapienza" Analizzatori di rete

Dettagli

TECNOLOGIA DELLE RESISTENZE

TECNOLOGIA DELLE RESISTENZE I RESISTORI (Resistenze) TECNOLOGIA DELLE RESISTENZE Si definiscono i Resistori (o Resistenze) i componenti di un circuito che presentano fra i loro terminali una resistenza elettrica. Le Resistenze servono

Dettagli

TRASFORMAZIONE DELL ENERGIA PRIMO PRINCIPIO DELLA TERMODINAMICA

TRASFORMAZIONE DELL ENERGIA PRIMO PRINCIPIO DELLA TERMODINAMICA TRASFORMAZIONE DELL ENERGIA PRIMO PRINCIPIO DELLA TERMODINAMICA L ENERGIA e IL LAVORO Non è facile dare una definizione semplice e precisa della parola energia, perché è un concetto molto astratto che

Dettagli

Corrente Elettrica. dq dt

Corrente Elettrica. dq dt Corrente Elettrica Finora abbiamo considerato le cariche elettriche fisse: Elettrostatica Consideriamole adesso in movimento! La carica in moto forma una corrente elettrica. L intensità di corrente è uguale

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

Strumentazione spettrometrica per la misura delle caratteristiche di assorbimento, riflessione e trasmissione di vari materiali

Strumentazione spettrometrica per la misura delle caratteristiche di assorbimento, riflessione e trasmissione di vari materiali Strumentazione spettrometrica per la misura delle caratteristiche di assorbimento, riflessione e trasmissione di vari materiali G. Chiani, L. Mercatelli, P. Sansoni, D. Fontani, D. Jafrancesco, M. De Lucia

Dettagli

approfondimento Corrente elettrica e circuiti in corrente continua

approfondimento Corrente elettrica e circuiti in corrente continua approfondimento Corrente elettrica e circuiti in corrente continua Corrente elettrica e forza elettromotrice La conduzione nei metalli: Resistenza e legge di Ohm Energia e potenza nei circuiti elettrici

Dettagli

TERMOMETRI A RESISTENZA

TERMOMETRI A RESISTENZA PRINCIPIO DI FUNZIONAMENTO TERMOMETRI A RESISTENZA Il principio di funzionamento dei termometri a resistenza metallici, più comunemente chiamati termoresistenze, si basa sulla variazione della resistenza

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Sensori e Trasduttori

Sensori e Trasduttori Corso Addetto alle macchine a controllo numerico cod. uff. 222 MODULO DIDATTICO 9 Principi di funzionamento, programmazione, gestione e manutenzione delle Macchine Utensili a C.N.C. Sensori e Trasduttori

Dettagli

SENSORI E TRASDUTTORI

SENSORI E TRASDUTTORI SENSORI E TRASDUTTORI Il controllo di processo moderno utilizza tecnologie sempre più sofisticate, per minimizzare i costi e contenere le dimensioni dei dispositivi utilizzati. Qualsiasi controllo di processo

Dettagli

Unità Didattica 1. La radiazione di Corpo Nero

Unità Didattica 1. La radiazione di Corpo Nero Diapositiva 1 Unità Didattica 1 La radiazione di Corpo Nero Questa unità contiene informazioni sulle proprietà del corpo nero, fondamentali per la comprensione dei meccanismi di emissione delle sorgenti

Dettagli

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una

LA TERMOLOGIA. studia le variazioni di dimensione di un corpo a causa di una LA TERMOLOGIA La termologia è la parte della fisica che si occupa dello studio del calore e dei fenomeni legati alle variazioni di temperatura subite dai corpi. Essa si può distinguere in: Termometria

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

Q t CORRENTI ELETTRICHE

Q t CORRENTI ELETTRICHE CORRENTI ELETTRICHE La corrente elettrica è un flusso di particelle cariche. L intensità di una corrente è definita come la quantità di carica netta che attraversa nell unità di tempo una superficie: I

Dettagli

Corso di Strumentazione e Misure Elettriche

Corso di Strumentazione e Misure Elettriche Uniersità degli Studi di Palermo Facoltà di ngegneria Corso di Laurea in ngegneria Elettrica Corso di Strumentazione e Misure Elettriche Misure su circuiti a regime - sezione di misura Problema: misura

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

SENSORI e TRASDUTTORI. Corso di Sistemi Automatici

SENSORI e TRASDUTTORI. Corso di Sistemi Automatici SENSORI e TRASDUTTORI Sensore Si definisce sensore un elemento sensibile in grado di rilevare le variazioni di una grandezza fisica ( temperatura, umidità, pressione, posizione, luminosità, velocità di

Dettagli

LEZIONE 5-6 ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE) ESERCITAZIONI 2

LEZIONE 5-6 ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE) ESERCITAZIONI 2 LEZIONE 5-6 ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE) ESERCITAZIONI 2 Esercizio 11 Una pentola contiene 2 kg di acqua ad una temperatura iniziale di 17 C. Si vuole portare l'acqua

Dettagli

Pacchetto Termodinamica

Pacchetto Termodinamica La Scienza del millennio Il kit è realizzato in modo tale da permettere agli insegnanti di poter eseguire una serie di semplici ma efficaci esperienze atte ad introdurre vari argomenti di Termodinamica.

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Programma di Fisica Classe I A AFM a.s. 2014/15

Programma di Fisica Classe I A AFM a.s. 2014/15 Classe I A AFM Il metodo sperimentale. Misurazione e misura. Il Sistema Internazionale Grandezze fondamentali: lunghezza, massa e tempo. Grandezze derivate Unità di misura S.I. : metro, kilogrammo e secondo.

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

Si classifica come una grandezza intensiva

Si classifica come una grandezza intensiva CAP 13: MISURE DI TEMPERATURA La temperatura È osservata attraverso gli effetti che provoca nelle sostanze e negli oggetti Si classifica come una grandezza intensiva Può essere considerata una stima del

Dettagli

Informazioni Tecniche

Informazioni Tecniche Informazioni Tecniche Principi di Risparmio Energetico Principio della restituzione dell energia persa per resistenza sotto forma di energia efficace 01 Elettroni di scambio da vibrazioni del reticolo

Dettagli

Sensori termici. Caratterizzazione dei sensori termici: principio di funzionamento e grandezza misurata

Sensori termici. Caratterizzazione dei sensori termici: principio di funzionamento e grandezza misurata Sensori termici Caratterizzazione dei sensori termici: principio di funzionamento e grandezza misurata 1. Il trasferimento di calore 2. Equivalenti elettrici dei parametri termici 3. La misura di temperatura

Dettagli

Trasduttori di Temperatura

Trasduttori di Temperatura Trasduttori di Temperatura Il controllo della temperatura è di fondamentale importanza in moltissimi processi industriali. Per la misura della temperatura sono disponibili diversi tipi di trasduttori,

Dettagli

Il diodo emettitore di luce e la costante di Planck

Il diodo emettitore di luce e la costante di Planck Progetto A1e Un esperimento in prestito di Lauree Scientifiche G. Rinaudo Dicembre 2005 Il diodo emettitore di luce e la costante di Planck Scopo dell esperimento Indagare il doppio comportamento corpuscolare

Dettagli

LA TRASMISSIONE DEL CALORE

LA TRASMISSIONE DEL CALORE LA TRASMISSIONE DEL CALORE Il calore è una forma di energia trasferita tra corpi a temperatura differente. Non è un fluido misterioso contenuto nei corpi ma energia in transito. Possiamo interpretare i

Dettagli

La resistenza elettrica e il resistore

La resistenza elettrica e il resistore La resistenza elettrica e il resistore Gli antichi greci erano rimasti colpiti dalle proprietà di una resina fossile, l ambra, che se strofinata con un panno di lana riusciva ad attirare, senza toccarli,

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è

13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è 1 RISOLUZIONI cap.13 13.1 (a) La quantità di calore dissipata dal resistore in un intervallo di tempo di 24 h è (b) Il flusso termico è 13.2 (a) Il flusso termico sulla superficie del cocomero è (b) La

Dettagli

CORSO DI TERMOGRAFIA DI LIVELLO 1 e 2 UNI EN 473

CORSO DI TERMOGRAFIA DI LIVELLO 1 e 2 UNI EN 473 CORSO DI TERMOGRAFIA DI LIVELLO 1 e 2 UNI EN 473 Luoghi e orari: Prezzi*: Start 17-09-2012 09:00 End 21-09-2012 17:00 Location Roma Spaces left 15 Base fee: 1,500.00 prezzo di esame: 350.00 prezzo del

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 5 Ingegneria Gestionale-Informatica CARICA E SCARICA DEL CONDENSATORE

Fisica Generale - Modulo Fisica II Esercitazione 5 Ingegneria Gestionale-Informatica CARICA E SCARICA DEL CONDENSATORE AIA E SAIA DEL ONDENSATOE a. Studiare la scarica del condensatore della figura che è connesso I(t) alla resistenza al tempo t=0 quando porta una carica Q(0) = Q 0. Soluzione. Per la relazione di maglia,

Dettagli

La corrente elettrica

La corrente elettrica Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente

Dettagli

Collettori solari. 1. Elementi di un collettore a piastra

Collettori solari. 1. Elementi di un collettore a piastra Collettori solari Nel documento Energia solare abbiamo esposto quegli aspetti della radiazione solare che riguardano l energia solare e la sua intensità. In questo documento saranno trattati gli aspetti

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

Diploma in Ingegneria Elettronica Corso di Sensori e Trasduttori Sensori di Temperatura

Diploma in Ingegneria Elettronica Corso di Sensori e Trasduttori Sensori di Temperatura Diploma in Ingegneria Elettronica Corso di Sensori e Trasduttori Sensori di Temperatura (raccolta di lucidi) 1 Trasmissione del Calore... Le due proprietà fondamentali del calore sono che (i) una volta

Dettagli

reticolo di diffrazione

reticolo di diffrazione Lo spettro di emissione di una sorgente è la distribuzione di energia in funzione della frequenza (o della lunghezza d onda). Se accendiamo una lampada essa emette radiazione elettromagnetica composta

Dettagli

Modulo Biosensori Sensori Fisici. mazzei@di.unipi.it

Modulo Biosensori Sensori Fisici. mazzei@di.unipi.it Modulo Biosensori Sensori Fisici mazzei@di.unipi.it Sensori FISICI per misure biomediche Un sensore è quella parte della catena di misura che converte il misurando in un segnale elettrico. Ambiente Sorgente

Dettagli

UNIVERSITA' DEGLI STUDI DI CAGLIARI FACOLTA DI ARCHITETTURA FISICA TECNICA PER EDILIZIA, ARCHITETTURA DELLE

UNIVERSITA' DEGLI STUDI DI CAGLIARI FACOLTA DI ARCHITETTURA FISICA TECNICA PER EDILIZIA, ARCHITETTURA DELLE UNIVERSITA' DEGLI STUDI DI CAGLIARI FACOLTA DI ARCHITETTURA FISICA TECNICA PER EDILIZIA, ARCHITETTURA DELLE COSTRUZIONI, T.C.R.B.C., INGEGNERIA EDILE, EDILE ARCHITETTURA A.A. 2007\2008 Docenti: prof. CARLO

Dettagli

Prevenzione della Corrosione

Prevenzione della Corrosione DL MK1 BANCO DI LAVORO PER LA PROTEZIONE CATODICA La Protezione Catodica è una tecnica di controllo della corrosione di una superficie metallica facendola funzionare come il catodo di una cella elettrochimica.

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011 Liceo Tecnico Chimica Industriale Meccanica Elettrotecnica e Automazione Elettronica e Telecomunicazioni Istituto Tecnico Industriale Statale Alessandro Volta Via Assisana, 40/E - loc. Piscille - 06087

Dettagli

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj

63- Nel Sistema Internazionale SI, l unità di misura del calore latente di fusione è A) J / kg B) kcal / m 2 C) kcal / ( C) D) kcal * ( C) E) kj 61- Quand è che volumi uguali di gas perfetti diversi possono contenere lo stesso numero di molecole? A) Quando hanno uguale pressione e temperatura diversa B) Quando hanno uguale temperatura e pressione

Dettagli

TRASDUTTORI DI TEMPERATURA

TRASDUTTORI DI TEMPERATURA RELAZIONE DI SISTEMI LABORATORIO TRASDUTTORI DI TEMPERATURA RELAZIONE SVOLTA DAGLI ALUNNI : Michele Parrella, Marco Vigano, Andrea Borghetti, Claudio Mariani RELAZIONE N : 3 ANNO SCOLASTICO: 2005/2006

Dettagli

Conduzione e Corrente Elettrica

Conduzione e Corrente Elettrica Conduzione e Corrente Elettrica I conduttori (metallici) sono solidi costituiti da atomi disposti in maniera ordinata nello spazio, che hanno perso uno o più elettroni (negativi) che sono liberi dimuoversinello

Dettagli

La corrente elettrica

La corrente elettrica Unità didattica 8 La corrente elettrica Competenze Costruire semplici circuiti elettrici e spiegare il modello di spostamento delle cariche elettriche. Definire l intensità di corrente, la resistenza e

Dettagli

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI

PANNELLI SOLARI TERMICI PANNELLI SOLARI FOTOVOLTAICI PANNELLI SOLARI I pannelli solari utilizzano l'energia solare per trasformarla in energia utile e calore per le attività dell'uomo. PANNELLI SOLARI FOTOVOLTAICI PANNELLI SOLARI TERMICI PANNELLI SOLARI

Dettagli

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO Scambio termico per irraggiamento L irraggiamento, dopo la conduzione e la convezione, è il terzo modo in cui i corpi possono scambiare calore. Tale fenomeno non

Dettagli

P R E M I O B O N A C I N I 1 9 9 9 I classificato. Liceo Scientifico G.Galilei - Trieste. Lavoro eseguito dagli studenti:

P R E M I O B O N A C I N I 1 9 9 9 I classificato. Liceo Scientifico G.Galilei - Trieste. Lavoro eseguito dagli studenti: P R E M I O B O N A C I N I 1 9 9 9 I classificato Liceo Scientifico G.Galilei - Trieste Lavoro eseguito dagli studenti: Sergio Andri Maria Diodato Riccardo Penco Damiano Vittor Heather Walker della classe

Dettagli

I due apparati per lo studio di una trasformazione isoterma e di una adiabatica sono sostanzialmente uguali, solo che sono fatti com materiale diverso. Vedremo nel seguito la ragione di questa diversità.

Dettagli

Strumentazione Biomedica

Strumentazione Biomedica Sensori termici Univ. degli studi Federico II di Napoli ing. Paolo Bifulco Misure di temperatura In campo biomedico la temperatura ricopre un ruolo molto importante poiché essa rappresenta un fattore condizionante

Dettagli

ST1 Un serbatoio contenente azoto liquido saturo a pressione ambiente (temperatura di saturazione -196 C) ha forma sferica ed è realizzato con due gusci metallici concentrici di spessore trascurabile e

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

TECNICA. Riscaldare secondo natura

TECNICA. Riscaldare secondo natura TECNICA Riscaldare secondo natura DOLMEN Premessa Il nostro lavoro consiste nel riscaldare i materiali naturali ad accumulo di calore, che possono essere le pietre oppure la ceramica. Questi materiali,

Dettagli

I PRINCIPI DEL RISCALDAMENTO A MICROONDE

I PRINCIPI DEL RISCALDAMENTO A MICROONDE I PRINCIPI DEL RISCALDAMENTO A MICROONDE Prof. Paolo ARCIONI Dipartimento di Elettronica Università di Pavia UNIVERSITA DEGLI STUDI DI MODENA E REGGIO EMILIA DIPARTIMENTO DI INGEGNERIA DEI MATERIALI E

Dettagli

1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V

1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V 1 1. determinare la potenza convenzionale di 10 prese monofasi da 10 A, V=220V determinare la potenza convenzionale di 5 prese trifasi da 16 A, V=400V 2. determinare la potenza convenzionale di 5 motori

Dettagli

ESERCIZI DA SVOLGERE PER GLI STUDENTI DELLE CLASSI 2, CON GIUDIZIO SOSPESO IN FISICA PER L ANNO SCOLASTICO 2014-2015

ESERCIZI DA SVOLGERE PER GLI STUDENTI DELLE CLASSI 2, CON GIUDIZIO SOSPESO IN FISICA PER L ANNO SCOLASTICO 2014-2015 ESERCIZI DA SVOLGERE PER GLI STUDENTI DELLE CLASSI 2, CON GIUDIZIO SOSPESO IN FISICA PER L ANNO SCOLASTICO 2014-2015 Sul libro del primo anno: L AMALDI 2.0 Pag 257: n.23 Pag 258: n.28 Pag 259: n.33,n.39

Dettagli

Temperatura e Calore

Temperatura e Calore Temperatura e Calore La materia è un sistema fisico a molti corpi Gran numero di molecole (N A =6,02 10 23 ) interagenti tra loro Descrizione mediante grandezze macroscopiche (valori medi su un gran numero

Dettagli

1. La corrente elettrica

1. La corrente elettrica . Elettrodinamica. La corrente elettrica Finora abbiamo studiato situazioni in cui le cariche elettriche erano ferme. Nell elettrodinamica si studia il moto delle cariche elettriche. Una corrente elettrica

Dettagli

LEZIONE 5-6 CALORE, ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE, IRRAGGIAMENTO) ESERCITAZIONI 3-4: SOLUZIONI

LEZIONE 5-6 CALORE, ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE, IRRAGGIAMENTO) ESERCITAZIONI 3-4: SOLUZIONI LEZIONE 5-6 CALORE, ENERGIA TERMICA, TRASPORTO DEL CALORE (CONDUZIONE, CONVEZIONE, IRRAGGIAMENTO) ESERCITAZIONI 3-4: SOLUZIONI Esercizio 11 Una pentola contiene 2 kg di acqua ad una temperatura iniziale

Dettagli