Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi per il corso di Calcolatori Elettronici. svolti da Mauro IACOVIELLO & Fabio LAUDANI"

Transcript

1 Eserizi per il orso i loltori Elettronii svolti Muro OVELLO & Fio LUDN Prte seon : Mhine stti finiti ESERZO : Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un FF tipo D / / / / / / / Tell i oifi /

2 / / / / / / / / / / / / Si ostruise l tell egli stti nelle ui olonne viene visulizzto l nmento egli stti futuri e elle usite in funzione egli stti presenti e egli ingressi / / / / Si utilizz tle oifi poihé risult più effiiente seono l regol euristi. Or si re un tell in ui inserire tutti i ti isposizione: stti presenti, stti futuri, ingressi, usite: OUT, sono gli stti futuri nel flip-flop i tipo D si h sempliemente he: D=, D= 2

3 Quini ostruiso le mppe i Krnugh, on le quli minimizzo gli sti futuri e le usite, per rivre le funzioni i eitzione ei FF: Mpp reltiv D Mpp reltiv D D =! + Mpp reltiv Out D =! +! +! Out =! l iruito sintetizzto è: D! D! OUT 3

4 ESERZO 2 : ONTTORE Sintetizzre un iruito he relizzi il seguente onttore, utilizzno un FF i tipo D: f(,3,5,6,7) D ={,2,4} si ostruise un tell in ui inserire in orine i numeri oifiti, e gli stti suessivi: Utilizzo FF i tipo D, per ui: D= D= D= 4

5 Quini per rivre il iruito oorre sempliemente minimizzre le funzioni,,,e ottenere osì le funzioni i eitzione el FF. L minimizzzione si effettu on il metoo elle mppe i Krnugh D D D =! +! +! D =! +! D D =! +! l iruito sitetizzto è: D! D! D! 5

6 6 ESERZO 3: ONTTORE Sintetizzre un iruito he relizzi il seguente onttore, utilizzno un FF i tipo JK : f(,,3,5,7,8,,4) vlori D sono: 2,4,6,9,,2,3,5 Quini si ostruise l tell in ui vengono inseriti i vlori el onttore, quelli essi suessivi e i D D D

7 Poihé si eve utilizzre il FF i tipo JK, è neessrio rere l tell on le funzioni J, K, J, K, J, K,J, K: J K J K J K J K J K D D J = K = J K D D J = K = 7

8 J J D D J = D + K =! + J D K D J =! K = + l iruito sitetizzto è: J K! J K! J K! J K D!D 8

9 ESERZO 4 : Mhin i MELY Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un FF tipo D Tell i oifi ome primo psso si effettu un oifi egli stti rispettno le regole i ienz, per ottenere un sintesi più effiiente: 9

10 Si ostruise l tell egli stti nelle ui olonne viene visulizzto l nmento egli stti futuri e elle usite in funzione egli stti presenti e egli ingressi: / --- / / / / --- / NOT: trttini inino onizioni non efinite Or si re un tell in ui inserire tutti i ti isposizione: stti presenti, stti futuri, ingressi, usite: OUT, sono gli stti futuri è l ingresso nel flip-flop i tipo D si h sempliemente he: D = D =

11 Quini ostruiso le mppe i Krnugh, on le quli minimizzo gli sti futuri e le usite, per rivre le funzioni i eitzione ei FF: D D D =! +! =!( + ) D =! +! = (! +!) OUT OUT = l iruito sitetizzto è: D! D!

12 ESERZO 5 : Mhin i MOORE Si t l seguente mhin i Moore, sintetizzre un iruito he l implementi, utilizzno un FF tipo JK / / / / Gli stti vengono oifii in se lle loro ienze, l fine i renere più effiiente l sintesi el iruito. Riorno he in un mhin i Moore le usite ipenono solo gli stti, si re un tell in ui inserire gli stti presenti e quelli futuri in funzione egli ingressi: stto Out 2

13 Si ostruise l tell in ui inserire tutti i ti isposizione, he servono per l suessiv minimizzzione elle funzioni i eitzione el FF-JK: J K J K Out Si minimizz on le mppe i Krnugh: J K J =! + K =! J K J = K =!! + 3

14 OUT Out = l iruito sintetizzto è:! J K! J K! Out ESERZO 6 : Mhin i Moore Si t l seguente mhin i Moore, sintetizzre un iruito he l implementi, utilizzno un FF tipo D / / / / 4

15 Si effettu l oifi egli stti, rispettno l regol elle ienze (in questo so l oifi i,,, vri un solo it ) Si re un tell in ui inserire gli stti presenti e quelli futuri in funzione egli ingressi: ingresso stto Out 5

16 Si ostruise un tell in ui inserire gli stti presenti, quelli futuri gli ingressi e le usite: OUT Si effettu l minimizzzione on le mppe i Krnugh, riorno he: D = D = D D D = +! D =! OUT OUT =! +! 6

17 l iruito sintetizzto è: D!! D! ESERZO 7: Mhin i Mely Si t l seguente mhin i Mely, sintetizzre un iruito he l implementi, utilizzno un FF tipo D 7

18 ome primo psso si effettu un oifi egli stti rispettno le regole i ienz, per ottenere un sintesi più effiiente: Si ostruise l tell egli stti nelle ui olonne viene visulizzto l nmento egli stti futuri e elle usite in funzione egli stti presenti e egli ingressi: / / / / / / / / Si ostruise un ulteriore tell in ui vnno inseriti gli stti presenti, gli ingressi, gli stti futuri e le usite; iò permette i rivre irettmente, ll minimizzzione egli stti futuri, le funzioni i eitzione ei FF: OUT 8

19 Si usno le mppe i Krnugh: D D D =! +!! D =!++!+!! = =!(+)++!! OUT Out =! +! l iruito sintetizzto è:! D! D! OUT 9

20 2 ESERZO 8: ONTTORE Sintetizzre un iruito he relizzi il seguente onttore,utilizzno un FF i tipo D f(2,8,9,,2,5) SVOLGMENTO: vlori D sono:,,3,4,5,6,7,3,4,6 esso si ostruise l tell in ui vengono inseriti i vlori el onttore,quelli essi suessivi e i D. D D

21 D D D D D D =! +! +! DD D =! +! D D D = +!! D DD=! l iruito sintetizzto è: D! D! D! DD!D 2

22 ESERZO 9: MHN D MELY Si t l seguente mhin i MELY,sintetizzre un iruito he l implementi,utilizzno un FF tipo D SOLUZONE: ome primo psso si effettu un oifi egli stti rispettno le regole i ienz prtire l igrmm egli stti si ostruise,senz ggiungere o moifire informzione,l TELL DEGL STT he h tnte righe qunti sono gli stti e tnte olonne qunte sono le possiili onfigurzioni i vlori elle vriili i ingresso. / / / / / / / / 22

23 OUT Si usno le mppe i Krnugh: D D D = D = OUT OUT =!! + 23

24 l iruito sintetizzto è :! D! D! OUT ESERZO : RELZZZONE D UN MULTPLEER,D UN DEMULTPLEER E D UN ROM Si onsieri l seguente funzione oolen i tre vriili: F(,3,5,7) Si implementi suett funzione utilizzno un multipleer

25 SVOLGMENTO: ome primo psso oorre esrivere l funzione oolen on un tell i verit F esso è possiile relizzre il multipleer: Multipleer MU 4 25

26 l iruito finle sr el tipo inito ome in figur: F esso oorre suiviere il MU 4 in un LERO D MU (ovvero si relizz quell he si him un ST D MULTPLEER ) io he è suessivmente riportto è l rppresentzione ell suivisione in ue ell tvol i verit, onsierno ostnte. PER = 2 3 Z 2 3 PER = 26

27 esso onsierno l preeente funzione oolen si relizz un DEMULTPLEER seon el vlore ei tre selettori --, viene ilitt un elle usite. Si relizzi esso,onsierno sempre l preeente funzione oolen un ROM. Un ROM h l possiilit i funzionre seono un logi negtiv, ui orrispone l uno logio(e lo volt),oppure seono un logi positiv ui orrispone lo zero logio (e i 5 volt). Si è selto i onsierre l logi i funzionmento ell ROM negtiv,perio il pllino in figur st rppresentre un ORTORUTO. 27

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del quinto appello, 3 luglio 2017 Testi 1 nlisi Mtemti I per Ingegneri Gestionle,.. 6-7 Sritto el quinto ppello, 3 luglio 7 Testi Prim prte, gruppo.. Dire per quli R l funzione f() := sin( 3 ) + 3 è resente su tutto R.. Disporre le seguenti funzioni

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2

Tecniche di Progettazione Digitale Progettazione e layout di porte logiche combinatorie CMOS p. 2 Tenihe i Progettzione Digitle Progettzione e lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

Capitolo 8 - Complementi vari

Capitolo 8 - Complementi vari ppunti i Elettroni igitle pitolo 8 omplementi vri iruiti per il oie Hmming... onttori sinroni (ripple ounters) e onttori non inri... onttori non inri... onttori in st... iruito omprtore i ue numeri inri...

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 3 Aspetti tenologii 4 Reti logihe omintorie Anlisi M.

Dettagli

Scomposizione di polinomi 1

Scomposizione di polinomi 1 Somposizione i un polinomio Cpitolo Somposizione i polinomi 1 erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data...

Monomi e polinomi. Verifica per la classe prima COGNOME... NOME... Classe... Data... Cpitolo Monomi e polinomi Monomi Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS

Elettronica dei Sistemi Digitali Disegno del layout di porte logiche combinatorie CMOS Elettroni ei Sistemi Digitli Disegno el lout i porte logihe omintorie CMOS Vlentino Lierli Diprtimento i Tenologie ell Informzione Università i Milno, 26013 Crem e-mil: lierli@ti.unimi.it http://www.ti.unimi.it/

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

Algebra Relazionale. Operazioni nel Modello Relazionale

Algebra Relazionale. Operazioni nel Modello Relazionale lger Relzionle lger Relzionle Operzioni nel Moello Relzionle Le operzioni sulle relzioni possono essere espresse in ue ormlismi i se: lger relzionle: le interrogzioni (query) sono espresse pplino opertori

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli.

Componenti per l elaborazione binaria dell informazione. Sommario. Sommario. Approfondimento del corso di reti logiche. M. Favalli. Sommrio Componenti per l elorzione inri ell informzione Approfonimento el orso i reti logihe M. Fvlli Engineering Deprtment in Ferrr Porte logihe 2 Il livello swith 3 Aspetti tenologii 4 Reti logihe omintorie

Dettagli

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl

Unità logico-aritmetica (ALU) Architetture dei Calcolatori (Lettere. Blocchi di base per costruire l ALUl. Passi per costruire l ALUl Unità logio-ritmeti (ALU) Arhitetture dei Cloltori (Lettere A-I) Unit Logio-Aritmeti (ALU) Prof. Frneso Lo Presti E l prte del proessore he svolge le operzioni ritmetio- logihe Rete omintori Operzioni

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintesi Sequenzile Sinron Sintesi Comportmentle di Reti Sequenzili Sinrone Riduzione del numero degli stti per Mhine Non Completmente Speifite Comptiilità Versione del 9/12/03 Mhine non ompletmente speifite

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Elettronica dei Sistemi Digitali Progetto di sottosistemi in tecnologia CMOS

Elettronica dei Sistemi Digitali Progetto di sottosistemi in tecnologia CMOS Elettroni dei Sistemi Digitli Progetto di sottosistemi in tenologi CMOS Vlentino Lierli Diprtimento di Tenologie dell Informzione Università di Milno, 2613 Crem e-mil: lierli@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Elettronica dei Sistemi Digitali Progetto di sottosistemi in tecnologia CMOS (parte II)

Elettronica dei Sistemi Digitali Progetto di sottosistemi in tecnologia CMOS (parte II) Elettroni dei Sistemi Digitli Progetto di sottosistemi in tenologi CMOS (prte II) Vlentino Lierli Diprtimento di Tenologie dell Informzione Università di Milno, 2613 Crem e-mil: lierli@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU

Unità logico-aritmetica (ALU) Unità logico-aritmetica. Passi per costruire l ALU. Blocchi di base per costruire l ALU Unità logio-ritmeti (ALU) Unità logio-ritmeti Arhitetture dei Cloltori (lettere A-I) E l prte del proessore he svolge le operzioni ritmetio-logihe Potenz di lolo del proessore Insieme di iruiti omintori

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Verifica per la classe seconda COGNOME... NOME... Classe... Data...

Verifica per la classe seconda COGNOME... NOME... Classe... Data... L rett Cpitolo Rett erifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt............................... Rett Rette

Dettagli

Unità D1.2 Selezione e proiezione

Unità D1.2 Selezione e proiezione (A) CONOSCENZA TEMINOLOGICA Dre un reve esrizione ei termini introotti: ienominzione Selezione Proiezione Composizione i operzioni (B) CONOSCENZA E COMPETENZA isponere lle seguenti omne proueno nhe qulhe

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Logiche programmabili. Dispositivi Programmabili. Logiche programmabili - Modalità di programmazione. Connessioni

Logiche programmabili. Dispositivi Programmabili. Logiche programmabili - Modalità di programmazione. Connessioni Logihe progrmmili ispositivi Progrmmili ispositivi Progrmmili: lle ROM i CPL Introduzione ROM (Red Only Memory) (Progrmmle Logi Arry) PAL (Progrmmle Arry Logi) e PAL vnzte CPL(Complex Progrmmle Logi evies)

Dettagli

Esercizio Planning. Dati:

Esercizio Planning. Dati: Eserizio Plnning Dti: - lo stto inizile rppresentto in figur 1 e esritto lle seguenti formule tomihe: [ontle(,p1), ontle(,p2), ontle(,p3), on(,), ler(), ler(), ler(), hnempty] (,, rppresentno ei lohi e

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

5. La sintesi logica.

5. La sintesi logica. Mrello Slmeri - Progettzione Automti di Ciruiti e Sistemi Elettronii Cpitolo 5-1 5. L sintesi logi. Introduzione. L sintesi logi onsiste nel trsformre l desrizione omportmentle di lohi logii nell orrispondente

Dettagli

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE

! è l'insieme A degli attributi di ! $ B IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE IL PROBLEMA DELLE VISTE MATERIALIZZATE: PROBLEMI Le viste nei DBMS relzionli Utilità elle viste mterilizzte per l'eseuzione i interrogzioni Venite(ProutI, NegozioI,

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Probabilità e statistica Statistica Probabilità

Probabilità e statistica Statistica Probabilità Proilità e sttisti Sttisti Proilità Sttisti Risolvi i seguenti prolemi. SEZ. Q Polo h sull su lireri liri i nrrtiv spessi 3 m, 3 volumi i un enilopei i spessore m ognuno e voolri spessi 9, m. Clol lo spessore

Dettagli

Appunti di Logica Ternaria: Operatori Monadici

Appunti di Logica Ternaria: Operatori Monadici Appunti di Logi Ternri: Opertori Mondii Giuseppe Tlrio 11 Gennio 2014 Nell logi binri o Boolen il simbolo utilizzto è il Bit. Il numero di tutte le funzioni mondihe (di un simbolo binrio) è pri : 2 2 =4,

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni

a b c d e x = operai addetti a un lavoro y = tempo impiegato per svolgere il lavoro Un operaio impiega 10 giorni ) Iniviu tr questi grfici quelli in cui è rppresentt un situzione i irett e un situzione i invers; poi inic il rispettivo nome ei grfici scelti. c e ) Per ognun elle seguenti telle te, stilisci il tipo

Dettagli

Il problema da un milione di dollari

Il problema da un milione di dollari Il prolem un milione i ollri SienzOrient: Informti Ginlu Rossi www.informti.unirom2.it (www.informti.unirom2.it) Prolem $ 000 000 / 9 Algoritmi Requisiti i un uon lgoritmo: Correttezz; Effiienz ovvero

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE II Ingegneri Elettric Politecnico di Torino Luc Crlone ControlliAutomticiI LEZIONE II Sommrio LEZIONE II Sistemi lineri e proprietà di unicità Concetto di Stilità Stilità intern ed estern Criterio di Routh

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

- - 5 o 6 d. Comando o attribuzioni, servizio Imbarco Titoli, esami, corsi

- - 5 o 6 d. Comando o attribuzioni, servizio Imbarco Titoli, esami, corsi Supplemento orinrio n. 29/L ll GAZZETTA UFFICIALE Serie generle n. 143 (rt. 1136is, omm 1) Quro I: Ruolo normle el Corpo i Stto Mggiore Anni i nzinità minim i gro rihiesti per: Perioi minimi rihiesti per

Dettagli

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO

Esercitazione n. 2. Gian Carlo Bondi VERO/FALSO Eseritzioni svolte 2010 Suol Duemil 1 Eseritzione n. 2 Aspetti eonomii e lusole el ontrtto i omprvenit Risultti ttesi Spere: gli spetti tenii, giuriii e eonomii el ontrtto i omprvenit. Sper fre: eterminre

Dettagli

Le basi della geometria piana Punti, rette, piani Segmenti, angoli, rette parallele e perpendicolari

Le basi della geometria piana Punti, rette, piani Segmenti, angoli, rette parallele e perpendicolari Le si ell geometri pin Punti, rette, pini Segmenti, ngoli, rette prllele e perpeniolri SEZ. D Punti, rette, pini 1 Stilisi se le seguenti ffermzioni sono vere o flse. e f g Per un punto pssno infinite

Dettagli

Analisi di stabilità

Analisi di stabilità Anlisi di stilità Stilità intern modi propri degli stti utovlori di A Stilità estern modi propri dell usit poli dell fdt.-. Stilità : se tutti i modi propri rimngono limitti per ogni t. Stilità : se tutti

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Multipla 9V LCD. Pag. 1. 6mm. TSP 4x30 FREQUENCY. 24h 2d 3d. 12h START +...HOURS TEST/MANUAL RESET MULTIPLA DC 9V LCD. Ponticello.

Multipla 9V LCD. Pag. 1. 6mm. TSP 4x30 FREQUENCY. 24h 2d 3d. 12h START +...HOURS TEST/MANUAL RESET MULTIPLA DC 9V LCD. Ponticello. Multipl 9V LCD Pg. Guid ll utilizzo Fissre prete il progrmmtore in un lole hiuso, riprto d genti tmosferii e shizzi d qu e on temperture di 0 i 0 C. Non instllre l pprehitur ll perto o ll interno di pozzetti

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.5 Automi a Stati Finiti. Nicola Fanizzi Linguggi di Progrmmzione Corso C Prte n.5 Automi Stti Finiti Nicol Fnizzi (fnizzi@di.uni.it) Diprtimento di Informtic Università degli Studi di Bri Automi Stti Finiti Dto un lfeto X, un utom stti finiti

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere,

Dettagli

Multipla AC LCD. Pag. 1. 6mm. TSP 4x30 FREQUENCY. 24h 2d 3d. 12h START +...HOURS TEST/MANUAL RESET MULTIPLA AC 230/24V LCD. Ponticello.

Multipla AC LCD. Pag. 1. 6mm. TSP 4x30 FREQUENCY. 24h 2d 3d. 12h START +...HOURS TEST/MANUAL RESET MULTIPLA AC 230/24V LCD. Ponticello. Multipl AC LCD Pg. Guid ll utilizzo Fissre prete il progrmmtore in un lole hiuso, riprto d genti tmosferii e shizzi d qu e on temperture di 0 i 0 C. Non instllre l pprehitur ll perto o ll interno di pozzetti

Dettagli

Scrivere una relazione

Scrivere una relazione Srivere una relazione La relazione sull esperienza fatta in laboratorio eve essere sritta supponeno he hi la legge non sappia osa avete fatto, non pensate he sarà il oente he vi ha seguito a orreggerla.

Dettagli

In generale i piani possono essere tra loro

In generale i piani possono essere tra loro Leione 7 - Alge e Geometi - Anno emio 9/ In genele i pini possono essee t loo Pini istinti inienti in un ett ppesentt l sistem sop sitto se. Pini plleli se istinti se, oinienti se. Eseiio tem esme) Si

Dettagli

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze:

Codici di Huffman. Codici prefissi. Sia dato un file di 120 caratteri con frequenze: Codii di Huffmn Codii di Huffmn I odii di Huffmn vengono mpimente usti nell ompressione dei dti (pkzip, jpeg, mp3). Normlmente permettono un risprmio ompreso tr il 2% ed il 9% seondo il tipo di file. Sull

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Il piano cartesiano e la retta

Il piano cartesiano e la retta Cpitolo Eserizi Il pino rtesino e l rett Teori p. Coorinte rtesine nel pino Stilisi ove si trov isuno ei punti ti. (I I qurnte, II II qurnte, III III qurnte, IV IV qurnte, x sse x, y sse y) A(0, 8) B(,

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Terz Suol..........................................................................................................................................

Dettagli

T11 Codifica di sorgente, di canale e di linea

T11 Codifica di sorgente, di canale e di linea T11 Codifi di sorgente, di nle e di line T11.1 Nell trsmissione dti, l fine di ridurre il tsso di errore si effettu l odifi: di sorgente di nle di line T11.2 - Qule delle seguenti ffermzioni è fls? L selt

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Appunti di Logica Ternaria: Operatori Diadici

Appunti di Logica Ternaria: Operatori Diadici Appunti di Logia Ternaria: Operatori Diadii Giuseppe Talario 27 Gennaio 2014 Nella logia ternaria, una taella di verità on due ingressi ha nove righe, per ui ne onsegue he il numero totale delle funzioni

Dettagli

Cometa. 3 max. 50 C OK! NO! Guida all utilizzo. b TSP 4x30

Cometa. 3 max. 50 C OK! NO! Guida all utilizzo. b TSP 4x30 Comet Gui ll utilizzo Pg. 1 Fissre prete il progrmmtore in un lole hiuso, riprto genti tmosferii e shizzi qu e on temperture i 0 i 50 C. Non instllre l pprehitur ll perto o ll interno i pozzetti interrti.

Dettagli

Sondaggio piace l eolico?

Sondaggio piace l eolico? Songgio pie l eolio? Durnte l inugurzione i Stell sono stti istriuiti ei questionri per vlutre l inie i grimento ell eolio prte ell popolzione Sono stti ompilti e quini nlizzti 50 questionri Quest presentzione

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Trasformatori amperometrici e Shunt

Trasformatori amperometrici e Shunt Trsformtori mperometrii e Shunt L presente sezione present un vst gmm di trsformtori mperometrii T e Shunt dediti ll misur di orrente C e CC, d utilizzre in inmento i misurtori, nlizztori, onttori presentti

Dettagli

Millenium 3 Interfaccia di comunicazione M3MOD Guida all'uso della Directory operativa 04/2006

Millenium 3 Interfaccia di comunicazione M3MOD Guida all'uso della Directory operativa 04/2006 Millenium 3 Interfi i omunizione M3MOD Gui ll'uso ell Diretory opertiv 04/2006 160633105 Pnormi AGui ll'uso ell Diretory opertiv Introuzione L Diretory opertiv è un file i testo generto l softwre i progrmmzione

Dettagli

Alberi. Cosa sono gli alberi? Strutture gerarchiche di ogni tipo. Corso di Informatica 2. Generale. Colonnello 1. Colonnello k

Alberi. Cosa sono gli alberi? Strutture gerarchiche di ogni tipo. Corso di Informatica 2. Generale. Colonnello 1. Colonnello k Alei Coso i Infomti 2 Cos sono gli lei? Stuttue gehihe i ogni tipo Genele Colonnello 1 Colonnello k Mggioe 1,1 Mggioe 1,m Cpitno Mggioe k,1 Mggioe k,n Stuttue gehihe i ogni tipo Stuttue ti 1. Tipi i to

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

BLv. BdA BLvdt. L v c) La fem relativa al primo magnete non cambia; il segno della fem relativa al secondo magnete e` opposto rispetto al punto (a).

BLv. BdA BLvdt. L v c) La fem relativa al primo magnete non cambia; il segno della fem relativa al secondo magnete e` opposto rispetto al punto (a). Elettroinamia Una spira quarata i lato L e` montata su un nastro hiuso he sorre on veloita` v tra le espansioni polari i ue magneti (vei igura). Sia l la lunghezza el nastro e (>L) la larghezza elle espansioni

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Operare con i file. 3.1 Come operare sull unità di memorizzazione. t à. p p. r e n d. t o i m. Competenze specifiche

Operare con i file. 3.1 Come operare sull unità di memorizzazione. t à. p p. r e n d. t o i m. Competenze specifiche u n i t à i p p Operre on i file t o e n i m r e n Competenze speifihe Lo spostmento, l opi, l rienominzione e l nellzione ei file L stmp i un file i testo 3.1 Come operre sull unità i memorizzzione Floppy

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Capitolo Equazioni i seono grao. Desrizione el metoo geometrio Consieriamo una generia equazione i seono grao, in ui aiamo già iviso per il oeffiiente el termine i grao maggiore: x + x + =. (.) Aggiungeno

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

SOLUZIONI DEI SECONDI ALLENAMENTI PER I GIOCHI D AUTUNNO 2007

SOLUZIONI DEI SECONDI ALLENAMENTI PER I GIOCHI D AUTUNNO 2007 SOLUZIONI DEI SECONDI ALLENAMENTI PER I GIOCHI D AUTUNNO 2007 1. IL NUMERO MISTERIOSO Riassumiamo: il numero è minore i32, i 22 e i 24, quini è minore i 22; il numero è maggiore i 18, i16 e i 20, quini

Dettagli

LA PROPAGAZIONE DEGLI ERRORI:

LA PROPAGAZIONE DEGLI ERRORI: LA PROPAGAZIOE DEGLI ERRORI: Fio d or io visto coe deterire l errore di u grdezz isurt direttete. Spesso però cpit ce il vlore dell grdezz ce si vuole deterire o è isurile, deve essere ricvto prtire d

Dettagli

PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1

PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1 PARAMETRI DI VALUTAZIONE PER AUTOBUS INTERURBANI E CRITERI PER L'ASSEGNAZIONE DEI PUNTEGGI ALLEGATO 6/lotto 1 PUNTEGGIO PARAMETRI INTERURBANO NORMALE Punteggio Vlutzioni 1 PREZZO DEL VEICOLO COMPLETO (vesi

Dettagli

Modulo 9V OK! OK! Guida all utilizzo

Modulo 9V OK! OK! Guida all utilizzo Moulo 9V ui ll utilizzo Pg. Y RY TT LK Y SLCT OK! I ISTLLZIO L MOULO I COMO. Il moulo i omno è perfett tenut stgn e funzion nhe immerso permnentemente in qu fino un metro i profonità (gro i protezione

Dettagli

Technology Mapping. Librerie di celle

Technology Mapping. Librerie di celle Tehnology Mpping lusso i progetto Algoritmo Sintesi lto livello RTL Ottimizzzione logi Inipenente ll tenologi : stime pprossimte i osti e ritri Rete logi (teh. inepenent) Tehnology mpping Rete logi (teh.

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

CAPITOLO VII CIRCUITI SEQUENZIALI SINCRONI

CAPITOLO VII CIRCUITI SEQUENZIALI SINCRONI Ciruiti seuezili siroi CAPIOLO VII CIRCUII SEUENZIALI SINCRONI 7.) Itrouzioe. Nel pitolo preeete soo stti presi i osierzioe gli spetti essezili, si l puto i vist teorio he pplitivo, ei iruiti seuezili

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica

LEZIONE 13 MINIMIZZAZIONE DEI COSTI. Condizione per la minimizzazione dei costi. Efficienza tecnica ed efficienza economica LEZIONE 3 MINIMIZZAZIONE DEI COSTI Lungo periodo Soluzione nlitic Condizione per l minimizzzione dei costi Efficienz tecnic ed efficienz economic Rppresentzione grfic Isocosto ed isoqunto Sentiero di espnsione

Dettagli

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine

tan tan = angolo formato dalla normale p,q = lunghezze dei segmenti misurati a partire dall origine n = distanza della retta dall origine G. Di Mri Forulrio i geoetri nliti Forulrio i geoetri nliti G. Di Mri Rette For generle (ipliit) For riott (espliit) For norle 0 q For segentri os sin n 0 p q p,q = lunghezze ei segenti stti ll rett sugli

Dettagli

LISTA DI CONTROLLO PER IL MONITORAGGIO DEGLI STUDI DI MICROZONAZIONE SISMICA E DELLE ANALISI DELLA CLE

LISTA DI CONTROLLO PER IL MONITORAGGIO DEGLI STUDI DI MICROZONAZIONE SISMICA E DELLE ANALISI DELLA CLE Commissione Teni per il supporto e il monitorggio degli studi di Mirozonzione Sismi (rtiolo 5, omm 7 dell OPCM 13 novemre 2010, n. 3907) LISTA DI CONTROLLO PER IL MONITORAGGIO DEGLI STUDI DI MICROZONAZIONE

Dettagli