Facoltà di Scienze MM.FF.NN. Corso di Studi in Matematica- A.A Corso di ANALISI NUMERICA 1: Esempi di esercizi svolti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Facoltà di Scienze MM.FF.NN. Corso di Studi in Matematica- A.A Corso di ANALISI NUMERICA 1: Esempi di esercizi svolti"

Transcript

1 Facoltà di Scienze MM.FF.NN. Corso di Studi in Matematica- A.A. - Corso di ANALISI NUMERICA : Esempi di esercizi svolti ) Determinare se il problema del calcolo delle radici reali dell equazione x x+c = risulta malcondizionato al variare di c sulla retta reale. Le radici dell equazione sono: x (c) = c, x (c) = + c, c Consideriamo ad esempio x (c). Il coefficiente di amplificazione risulta c c( c) = + c c tale espressione risulta illimitata quando c mentre risulta limitata sia per c che per c. Quindi il problema è malcondizionato per valori di c prossimi ad, c. Analogamente si conclude per x (c). ) Dato un triangolo, siano a,b le lunghezze di due lati e sia θ l ampiezza (in radianti) dell angolo fra essi compreso. Analizzare il condizionamento del calcolo dell area del triangolo al variare di θ. L area del triangolo risulta A = absin(θ). Quindi il coefficiente di amplificazione (rispetto a θ ) è: θ cos(θ) sin(θ) per cui il problema é malcondizionato per θ prossimo a π. 3) Determinare la rappresentazione in base di. Vogliamo determinare d,d,,d n, tali che Risulta = d + d + + d n n + =: (.d d ) = 5 < d = 5 = 5 < d = 5 = 4 5 < d 3 = 4 5 = 8 5 = d 4 = 3 5 = 6 5 = + 5 d 5 =.

2 quindi (.) = = (...) = 3 (.). Ne segue che ha una rappresentazione periodica (per cui non ammette una rappresentazione con un numero finito di cifre) in base. 4) Dato l insieme di numeri di macchina F(,3, 3,3) ed i numeri reali a = 7, b = 8, determinare: i) la rappresentazione di a e b in base ; ii) le approssimazioni ã, b di a e b in F(,3, 3,3) operando con troncamento; iii) i corrispondenti errori di rappresentazione e confrontarli con la precisione di macchina. i) Risulta 7 = 7 < d = 7 = 4 7 < d = 4 7 = 8 7 = + 7 d 3 =. quindi Osservando che 8 = 7 si ha inoltre 7 = (...) = (.). 8 = (...) = 4 (.). ii) ã = (.) = 8, mentre b = perché si ha una condizione di underflow. iii) La precisione di macchina risulta ǫ M =. Inoltre ã a a = 8 < ǫ M, b b b =. 5) Dato l insieme di numeri di macchina F(β,t,L,U) ove si operi con troncamento, mostrare che la precisione di macchina é il piú piccolo numero positivo, x, appartenente all insieme per cui risulta x >.

3 Il valore della precisione di macchina, ǫ M, é ǫ M = β t. Quindi ǫ M = tr(β +β t )β = β(β +β t ) > mentre per ogni x F(β,t,L,U), < x < ǫ M si ha x = β( β + + β t + d β t++k + + d t βt+k), per qualche intero k per cui x = tr(+x) =. 6) Siano x > y > z > numeri di macchina. Stabilire quale delle seguenti espressioni è preferibile dal punto di vista della propagazione degli errori: (x y) z, x (y z). Risulta, in assenza di overflow e underflow, e x y = (x+y)(+ǫ ), ǫ < ǫ M (x y) z = ((x+y)(+ǫ )+z)(+ǫ ), ǫ < ǫ M. Quindi, tralasciando i termini di grado superiore al primo, (x y) z (x+y +z) x+y x+y +z < (+ x+y +z )ǫ M. Analogamente x (y z) (x+y +z) x+y +z < (+ y +z x+y +z )ǫ M. Ne segue che, essendo x > y > z, la seconda espressione è preferibile. 7) Dato l insieme di numeri di macchina F(,5,m,M) in cui si opera con troncamento ed i numeri reali a = 6, b = 7, determinare: i) la rappresentazione di a e b in base ; ii) le approssimazioni ã, b di a e b in F(,5,m,M); iii) i corrispondenti errori di rappresentazione e confrontarli con la precisione di macchina; iv) il valore ã b e valutare l errore relativo rispetto ad a b. i) Risulta a = 6 = 3 (.), 7 = (...) = 4 (.).

4 ii) ã = a mentre b = 4 (.) = iii) La precisione di macchina risulta ǫ M = 4. Inoltre ã a a = < ǫ M, b b b = 8 < ǫ M. iv) ã b = (..) 3 = 8 mentre a b = differenza risulta ( 56 )7 = 4 7 assai maggiore degli errori relativi sui dati. 7 per cui l errore relativo sulla

5 8) Analizzare, al variare di x sulla retta reale, la convergenza delle successionicostruite mediante il metodo di Newton per le seguenti funzioni f (x) = x, f (x) = x 3, f3 (x) = x 3. Per ciascuna delle funzioni assegnate esiste una sola radice α =. Per la funzione f risulta { f (x) = if x >, x x if x <, quindi la successione generata dal metodo di Newton risulta essere un ciclo, per ogni punto iniziale x, infatti Analogamente, per x i x i+ = x i f (x i ) f (x i) = x i x i = x i, x i. x i+ = x i f (x i ) f (x i) = x i 3 x i = x i; x i+ = x i f 3(x i ) f 3 (x i) = x i 3x i = x i. Per cui nel secondo caso si ha convergenza a per ogni punto iniziale, mentre nel terzo la successione è divergente ( x i + ). 9) Analizzare, al variare di k sulla retta reale, la convergenza delle successioni costruite mediante il metodo iterativo x i+ = g(x i ), g(x) = k e x. La funzione g ammette punti fissi, ossia punti tali che x = g(x), solo se k. Per k = esite un solo punto fisso, α e risulta α =. Da un esame grafico si ha che la successione x i+ = g(x i ) converge ad α in modo monotono decrescente per ogni x mentre risulta divergente a se x <. Per k > esitono due punti fissi, α e β con α >, β < ( si veda la figura per il caso k =.) Da un esame grafico si ha che la successione x i+ = g(x i ) converge ad α in maniera monotona per ogni x > β mentre risulta divergente a se x < β. Si noti che, per ogni valore del parametro k, risulta g (x) = e x <, x >.

6 Figura ) Analizzare, la convergenza delle successioni costruite mediante il metodo di Newton per approssimare gli zeri della funzione f(x) = 3 3 x3 +x. La funzione ha una radice doppia in α = 3 ed una radice semplice β (,) (vedere figura ). Dal grafico risulta che il metodo di Newton origina una succesione convergente ad α in modo monotono (al più dopo la prima iterazione) per ogni x <. Analogamente si ha una succesione monotona decrescente (al piú dopo la prima iterazione) convergente a β per ogni x >. L ordine di convergenza é per α in quanto si tratta di una radice doppia e per β. ) Analizzare la convergenza del metodo iterativo x i+ = g(x i ), g(x) = acos(x), x (, π ) nei casi a (, π 3 ) ed a (π 3,π). Per ogni valore positivo del parametro a la funzione g ammette un unico punto fisso α (, π ) (si veda in proposito la Figura 3 a sinistra, per il caso a = ) e risulta a = α cos(α).

7 Figura Se g (α) = a sen(α) = αtg(α) < il metodo iterativo produce successioni convergenti ad α purché il punto iniziale x sia sufficientemente vicino al punto fisso. Analiziamo quindi per quali valori di α (, π ) risulta tg(α) < α. Da uno studio grafico ( si veda Figura 3 a destra), risulta che tale disuguaglianza vale per α π 4 mentre non vale per α π α. La funzione a(α) = é una funzione 3 cos(α) monotona crescente per α (, π ) e risulta π 4 cos( π 4 ) = π π > 4 3 mentre π 3 cos( π 3 ) = π 3. Quindiilmetodoiterativoconverge(conordinediconvergenzainquantog (α) ) per a (, π 3 ), mentre non converge nell altro caso. ) Analizzare, al variare di k sulla retta reale, la convergenza delle successioni costruite mediante il metodo iterativo x i+ = g(x i ), g(x) = k x x, x >. La funzione g ha punti fissi positivi unicamente se k >. In tale ipotesi l unico punto fisso positivo é α = k. Inoltre g(x) = per x =, 4k e g (x) = per x = α = k (si veda la figura 4 per k = ). La successione generata dal metodo

8 Figura Figura 4 iterativo converge in modo monotono crescente (al piú dopo la prima iterazione) ad α per ogni < x < 4k.L ordine di convergenza éinquantog (α) =, g (α). 3) Un valore approssimato di ln si può ottenere approssimando gli zeri della funzione f(x) = e x ; i) determinare per quali x IR il metodo di Newton per l approssimazione degli zeri di f origina una successione convergente a ln; ii) determinare x ed ǫ in modo che la successione {x i } costruita tramite il metodo di

9 Newton a partire da x sia decrescente e tale che x i+ x i < ǫ x i ln < 5 i) La funzione f è monotona crescente e convessa in IR, quindi esiste un solo zero di f che é appunto dato da ln. Per ogni x IR il metodo di Newton origina una successione convergente a ln. La convergenza é monotona decrescente al piú dopo la prima iterazione. ii) Scegliendo x = si ha una successione monotona decrescente convergente a ln. Inoltre, posto g(x) = x f(x) f (x) = x ex e x risulta Quindi x i+ x i = (g (ξ i ) )(x i ln) = (x e ξ i ln), ln < ξ i < x i <. i x i ln = eξ i x i+ x i < e x i+ x i. Ne segue che, per aver assicurata la disuguaglianza richiesta, sarà sufficiente porre ǫ e 5.

10 4) Data la matrice 7 3 i) stabilire se ammette autovalori complessi; ii) localizzarne il raggio spettrale. i) Il polinomio caratteristico della matrice è un polinomio di terzo grado a coefficienti reali; quindi la matrice ha almeno un autovalore reale e gli altri due autovalori, in caso siano complessi, devono essere complessi coniugati. I cerchi di Gershgorin per colonne sono disgiunti ed hanno centro sull asse reale. Ne segue che, dal secondo teorema di Gerschgorin, in ogni cerchio si trova esattamente un autovalore. La matrice non può quindi avere autovalori complessi perchè due autovalori complessi coniugati, avendo la stessa parte reale, dovrebbero appartenere ad uno stesso cerchio. ii) Dati i cerchi di Gershgorin per colonne, risulta che la matrice ha un solo aurtovalore di modulo massimo e che questo si trova nel cerchio di centro 7 e raggio. Quindi per il raggio spettrale della matrice valgono le seguenti limitazioni 5 < ρ(a) < 9. Si noti che valgono le disuguaglianze strette perché, essendo la matrice irriducibile, dal terzo teorema di Gershgorin l autovalore in questione non puó appartenere alla frontiera del cerchio suddetto. 5) Dati i sistemi lineari ( + 5 Ax = b, A = ), b = ( ), () (A+δA)(x+δx) = b, () ( ) ( ) δa = 5 +ǫ, b =, ǫ IR, < ǫ < 5 ; i) determinare µ (A) e valutare b, δa. ii) Calcolare la soluzione x del sistema () e la soluzione x+δx del sistema (). Valutare δx x e commentare il risultato. i) Risulta A = 5 ( + 5 quindi µ (A) = (A) A = 5 = 4 5, mentre b =, δa = 5 ǫ. ii) Si ha ( 5 x = 5 ), ) ( ) ǫ, x+δx = ǫ

11 quindi δx x = ǫ 5. (3) Quindi l errore relativo sulla soluzione puó essere arbitrariamente elevato quando ǫ si avvicina a. Si noti che la matrice A é malcondizionata ma l esplosione dell errore relativo ottenuta in (3) non può essere completamente descritta tramite la maggiorazione δx x µ (A) δa ( A δa ) A per ogni ǫ (, 5 ) ma solo per i valori di ǫ per cui risulta A δa < ossia per 5 < ǫ < 5. 6) Mostrare che una matrice a diagonale dominante in senso stretto ammette la fattorizzazione LU. Si ricorda che, per il primo teorema di Gerschgorin, una matrice a diagonale dominante in senso stretto non puó avere autovalori nulli e quindi risulta non singolare. Inoltre per una matrice a diagonale dominante in senso stretto si ha a i,i > n j=, j i a i,j k j=, j i a i,j, i k n. Ne segue che, in una matrice a diagonale dominante in senso stretto, tutti i minori principali di testa sono a diagonale dominante in senso stretto ossia sono non singolari. Da cui si ha che la matrice ammette la fattorizzazione LU. 7) Calcolare la fattorizzazione QR della matrice A =, 4 5 Risulta x =, x = 3, P = I v Tv v v T, v = x+ x e = 4, quindi P = I =

12 Ne segue che A () = P A () = P A = = Quindi ossia x = Quindi ( ), x 3 = 3, P = I ( ) v Tv v v T 3, v = x+ x e = 3 P = I ( ) 9 9 = R = A (3) = P A () = ( ) e P = , Q = P P = ) Data la matrice A = analizzare la convergenza del metodo di Jacobi e del metodo di Gauss-Seidel per il sistema lineare Ax = b, b IR 3. Indicata con J la matrice di iterazione del metodo di Jacobi risulta J = = i cui autovalori sono λ =, λ =, λ 3 = quindi ρ(j) = ed il metodo non risulta convergente. Indicata con GS la matrice di iterazione del metodo di Gauss-Seidel si ha GS = = 4 4 i cui autovalori sono 8 λ =, λ = 6 (5+i 7), λ 3 = 6 (5 i 7) 3 8

13 quindi ρ(gs) = 5+7 = 6 4 < ed il metodo risulta convergente. Tale risultato, riguardo alla convergenza del metodo di Gauss-Seidel, poteva essere stabilito anche osservando che la matrice A ha elementi diagonali positivi e risulta definita positiva in quanto i determinanti dei suoi minori principali di testa sono positivi. 9) Analizzare la convergenza del metodo di Jacobi per il sistema lineare Ax = b, b IR n con A = La matrice A é irriducibile ed a diagonale dominante quindi il metodo di Jacobi per il sistema assegnato converge. ) Data la matrice A = α α α α, α > i) analizzare la convergenza del metodo di Jacobi e del metodo di Gauss-Seidel per il sistema lineare Ax = b, b IR 3. ii) per i valori di α per cui entrambi i metodi convergono, si dica quale dei due, asintoticamente, converge piú velocemente. i) Indicata con J la matrice di iterazione del metodo di Jacobi risulta J = α α α α il cui polinomio caratteristico é per cui il raggio spettrale risulta λ 3 +( α +α)λ ρ(j) = α α ; quindi il metodo di Jacobi é convergente quando α α <

14 ossia per α < +,α ( si ricordi che α > ). Analogamente, indicata con GS la matrice di iterazione del metodo di Gauss-Seidel, si ha GS = α α α α il gui raggio spettrale risulta ( si ricordi che α > ) ρ(gs) = α; quindi il metodo di Gauss-Seidel converge per α <. ii) Poiché per < α < risulta α α > α = α α α α α il metodo di Gauss-Seidel ha, asintoticamente, velocità di convergenza maggiore.

15 ) Dati i punti x =, x =, x = e la funzione f(x) = e x ; i) determinare il polinomio, nella forma di Lagrange, che interpola la funzione data sui punti assegnati; ii) determinare il polinomio, nella forma di Newton, che interpola la funzione data sui punti assegnati; iii) dare una maggiorazione dell errore che si commette nel sostituire, nell intervallo [, ], alla funzione data il polinomio interpolante. i) Il polinomio interpolante nella forma di Lagrange è ove p n (x) = L i,n (x) = Nel caso specifico é n = e risulta n f(x i )L i,n (x) i= n j=,j i (x x j ) (x i x j ). L, (x) = (x )(x ) ( )( ) = (x )(x ), L, (x) = x(x ) ( ) = 4x(x ), L, (x) = x(x ) () = x(x ), quindi p (x) =(x )(x ) 4x(x ) e+x(x )e =+x( 3+4 e e)+x ( e+e+). ii) Il polinomio interpolante nella forma di Newton è p n (x) = f[x ]+f[x,x ](x x )+ +f[x,x,,x n ](x x ) (x x n ) ove f[x,x,,x k ] indica la differenza divisa di ordine k di f relativa ai punti x,x,,x k. Nel caso specifico risulta f[x ] = f(x ) =, f[x,x ] = f(x ) f(x ) x x = ( e ), f[x,x,x ] = f[x,x ] f[x,x ] x x = ( e )

16 quindi p (x) = +( e )x+( e ) x(x ) = +x( 3+4 e e)+x ( e+e+). iii) Risulta in generale, se la funzione f é di classe C n+, f(x) p n (x) = nel caso specifico abbiamo quindi (n+)! f(n+) (ξ)(x x ) (x x n ) max x [,] ex p (x) = 6 max x [,] eξ x(x )(x ) 6 e ) Determinare la retta, r(x), e la parabola, q(x), che meglio approssimano nel senso dei minimi quadrati i punti x i : y i : 8 8. La retta in questione, r(x) = a +a x, si determina risolvendo il sistema i= i= x i a = i= y i i= x i i= x i a i= y ix i nel caso specifico N = 4 ed il sistema suddetto diviene 5 a = 5 da cui a =, a = 7, ossia r(x) = 7 x. a 7 8 La parabola, q(x) = a +a x+a x, si determina risolvendo il sistema i= i= x i i= x i i= x i i= x i i= x3 i i= x i i= x3 i i= x4 i a a a i= y i = i= y ix i i= y ix i

17 nel caso specifico N = 4 ed il sistema suddetto diviene da cui a =, a = 7, a = ossia come si poteva dedurre dal grafico. a a a q(x) = r(x) = 7 x ) Assegnata la funzione f(x) = x ed i nodi = 7 8 x = h, x = h, < h ; i) determinare il polinomio, p(x), che interpola la funzione f(x) sui nodi assegnati ii) determinare, se possibile, il valore del parametro h per cui risulta minima la quantità max f(x) p(x). x [,] i) da un semplice esame grafico p(x) = h. ii) per quanto visto al punto precedente max f(x) p(x) = max x [,] x [,] h x = max{h, h } quindi la quantità risulta minima quando h = h, ossia h =.

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 Sia data la matrice A A(α) = Esercizio α 2 2α 2 2, α R.) determinare per quali valori del parametro reale α é verificata la condizione necessaria e sufficiente di convergenza per il metodo di Jacobi;.2)

Dettagli

A.A Prof. R. Morandi

A.A Prof. R. Morandi Svolgimento di alcuni esercizi del corso di Calcolo Numerico A.A. - Prof. R. Morandi Versione in aggiornamento ( gennaio ): ogni segnalazione di imprecisioni è gradita Aritmetica Finita Esercizio : Assegnati

Dettagli

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011

Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 Esame di Calcolo Numerico per Informatica A.A. 2010/11 Proff. S. De Marchi e M. R. Russo 20 giugno 2011 L esame consiste di 4 domande aperte e 10 esercizi a risposta multipla. Per gli esercizi ci sono

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del

Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del Calcolo Numerico per Ingegneria. Corso estivo di Bressanone. Prof. L. Bergamaschi SOLUZIONE DELLA PROVA SCRITTA del 9.8.2. Data l equazione x x = (a) Mostrare che essa ammette una e una sola soluzione

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi per la soluzione di sistemi di equazioni non lineari Sistemi di equazioni non lineari Un sistema di equazioni

Dettagli

Osservazione. Convergenza dei metodi di Gauss-Seidel e di Jacobi. Condizioni sufficienti per la convergenza. Definizione

Osservazione. Convergenza dei metodi di Gauss-Seidel e di Jacobi. Condizioni sufficienti per la convergenza. Definizione Osservazione Convergenza dei metodi di Gauss-Seidel e di Jacobi Fallimento dei metodi. (Es. Gauss- Seidel Condizioni sufficienti; teoremi di localizzazione degli autovalori; dimostrazione di convergenza

Dettagli

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A =

Esercitazione di Calcolo Numerico 1 27 Maggio Calcolare la fattorizzazione P A = LU della matrice A = Esercitazione di Calcolo Numerico 1 27 Maggio 29 1. Calcolare la fattorizzazione P A = LU della matrice 1 2 3 A = 2 3 3, ed utilizzarla per risolvere il sistema lineare Ax = b, con b = (1, 2,, 16) T. 2.

Dettagli

Metodi per il calcolo degli zeri di funzioni non lineari

Metodi per il calcolo degli zeri di funzioni non lineari Metodi per il calcolo degli zeri di funzioni non lineari N. Del Buono 1 Introduzione Le radici di un equazione non lineare f(x) = 0 non possono, in generale, essere espresse esplicitamente e anche quando

Dettagli

Autovalori e autovettori

Autovalori e autovettori Capitolo 3 Autovalori e autovettori 3. Richiami di teoria Prerequisiti: nozioni elementari di algebra lineare, numeri complessi. Sia A R n n. Un numero λ per cui esiste un vettore x 0 tale che valga la

Dettagli

RICHIAMI PER IL CORSO DI ANALISI NUMERICA

RICHIAMI PER IL CORSO DI ANALISI NUMERICA RICHIAMI PER IL CORSO DI ANALISI NUMERICA Anno accademico 211 212 1 RICHIAMI: PRECISIONE FINITA (USO DI UN COMPUTER) IN UN COMPUTER UNA QUALUNQUE INFORMAZIONE VIENE RAPPRESENTATA COME UNA SEQUENZA FINITA

Dettagli

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel

Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Metodi iterativi per la soluzione di sistemi lineari: Jacobi e Gauss-Seidel Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica Pura e Applicata 15 aprile 2013 Alvise Sommariva

Dettagli

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari.

Interpolazione. Corso di Calcolo Numerico, a.a. 2008/2009. Francesca Mazzia. Dipartimento di Matematica Università di Bari. Interpolazione Corso di Calcolo Numerico, a.a. 2008/2009 Francesca Mazzia Dipartimento di Matematica Università di Bari 17 Aprile 2009 Francesca Mazzia (Univ. Bari) Interpolazione 17/04/2006 1 / 37 Interpolazione

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Autovalori ed Autovettori di una matrice Siano Se A = (a i,j ) i,j=1,...,n R n n, 0 x = (x i ) i=1,...,n R n λ R Ax = λx (1) allora λ è detto autovalore di

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Algebra Lineare Autovalori

Algebra Lineare Autovalori Algebra Lineare Autovalori Stefano Berrone Sandra Pieraccini Dipartimento di Matematica Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy e-mail: sberrone@calvino.polito.it sandra.pieraccini@polito.it

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002 Università di Foggia - Facoltà di Economia Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 00 Cognome e nome............................................ Numero di matricola...........

Dettagli

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a

Corso di Matematica per la Chimica. Dott.ssa Maria Carmela De Bonis a.a Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni non lineari Sia F C 0 ([a, b]), cioé F è una funzione continua in un intervallo [a, b] R, tale che F(a)F(b) < 0 1.5 1 F(b) 0.5 0 a

Dettagli

Claudio Estatico Equazioni non-lineari

Claudio Estatico Equazioni non-lineari Claudio Estatico (claudio.estatico@uninsubria.it) Equazioni non-lineari 1 Equazioni non-lineari 1) Equazioni non-lineari e metodi iterativi. 2) Metodo di bisezione, metodo regula-falsi. 3) Metodo di Newton.

Dettagli

Prova in itinere di Matematica Pisa, 26 novembre 2005

Prova in itinere di Matematica Pisa, 26 novembre 2005 Università di Pisa - Corso di Laurea in Ingegneria Informatica Prova in itinere di Matematica Pisa, 26 novembre 25 Numero compito: 256 Tempo ora. Non si possono usare calcolatrici. Segnare le risposte

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Autovalori ed autovettori di una matrice

Autovalori ed autovettori di una matrice Autovalori ed autovettori di una matrice Lucia Gastaldi DICATAM http://www.ing.unibs.it/gastaldi/ Indice 1 Definizioni di autovalori ed autovettori Autovalori ed autovettori 2 Metodo delle potenze 3 Calcolo

Dettagli

Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame

Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1 Cognome: Nome: Matricola: Corso di laurea in Informatica Calcolo Numerico Prof.ssa L. D Amore 12 Dicembre 2008 Esercizi di riepilogo tipo prova d esame 1. Si consideri il sistema aritmetico f. p. a precisione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni

Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni Universita degli Studi di Ancona - Facolta di Ingegneria Laurea in Ing. Elettronica (VO) Ing. Informatica e Automatica - Ing. delle Telecomunicazioni ANALISI NUMERICA - Primo Parziale - TEMA A (Prof. A.M.Perdon)

Dettagli

Cancellazione numerica e zeri di funzione. Dott. Marco Caliari

Cancellazione numerica e zeri di funzione. Dott. Marco Caliari Cancellazione numerica e zeri di funzione Dott. Marco Caliari PLS a.s. 01 013 Capitolo 1 Aritmetica floating point 1.1 I numeri macchina Data la capacità finita di un calcolatore, solo alcuni dei numeri

Dettagli

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo

Capitolo 1. Esercizi a.a Esercizi. Esercizio 1.1 Dimostrare che il metodo iterativo Capitolo Esercizi a.a. 206-7 Esercizi Esercizio. Dimostrare che il metodo iterativo x k+ = Φ(x k ), k = 0,,..., se convergente a x, deve verificare la condizione di consistenza x = Φ(x ). Ovvero, la soluzione

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Un sistema lineare si rappresenta in generale come

Un sistema lineare si rappresenta in generale come SISTEMI LINEARI Un sistema lineare si rappresenta in generale come n j=1 a ij x j = b i i = 1, 2,..., m o anche AX = B. La soluzione esiste se e solo se B appartiene allo spazio lineare generato dalle

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti Filosofia generale dei metodi iterativi Metodi iterativi per Sistemi Lineari Convergenza

Dettagli

8 Metodi iterativi per la risoluzione di sistemi lineari

8 Metodi iterativi per la risoluzione di sistemi lineari 8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Risoluzione di equazioni non lineari

Risoluzione di equazioni non lineari Risoluzione di equazioni non lineari Si considera il problema di determinare la soluzione dell equazione f(x) = 0 ove f(x) è una funzione definita in un intervallo [a, b], chiuso e limitato. Ogni valore

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni

Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Calcolo Numerico Laurea di base in Ingegneria Elettronica, Ingegneria delle Comunicazioni Prof.ssa Laura Pezza (A.A. 2016-2017) IV Lezione del 06.03.2017 http://www.dmmm.uniroma1.it/ laura.pezza 1 Equazioni

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

PIANO CARTESIANO:EQUAZIONI

PIANO CARTESIANO:EQUAZIONI PIANO CARTESIANO:EQUAZIONI {(x,c) x R} = {(x,y) R 2 y=c} R 2 è una retta parallela all asse delle ascisse L asse delle ascisse è una retta di equazione y=0 Analogamente {(c,y) y R} = {(x,y) R 2 x=c} R

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esercizi Svolti di UNIVERSITÀ. prof. Anna Maria Perdon FACOLTÀ DI INGEGNERIA DIPARTIMENTO DI MATEMATICA DEGLI STUDI - ANCONA -

Esercizi Svolti di UNIVERSITÀ. prof. Anna Maria Perdon FACOLTÀ DI INGEGNERIA DIPARTIMENTO DI MATEMATICA DEGLI STUDI - ANCONA - Esercizi Svolti di UNIVERSITÀ DEGLI STUDI - ANCONA - CALCOLO NUMERICO FACOLTÀ DI INGEGNERIA prof. Anna Maria Perdon FACOLTÀ DI INGEGNERIA a cura del tutor Marco Orlandi DIPARTIMENTO DI MATEMATICA ESERCIZI

Dettagli

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Il Metodo di Newton, o delle Tangenti Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Il Metodo di Newton, o delle Tangenti 6 Novembre 2016 Indice 1 Metodo di Newton, o delle tangenti 2 1.1

Dettagli

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano

Capitolo 3: Ottimizzazione non vincolata parte III. E. Amaldi DEI, Politecnico di Milano Capitolo 3: Ottimizzazione non vincolata parte III E. Amaldi DEI, Politecnico di Milano 3.4 Metodi di ricerca unidimensionale In genere si cerca una soluzione approssimata α k di min g(α) = f(x k +αd k

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013

Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo. Universitá del Salento, 9 Aprile 2013 Prova di ammissione al Dottorato di Ricerca in Matematica XXVIII ciclo Universitá del Salento, 9 Aprile 2013 1 1 TEMA I Il candidato svolga una ed una sola delle dissertazioni proposte, illustrando sinteticamente

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

INTERPOLAZIONE POLINOMIALE

INTERPOLAZIONE POLINOMIALE Capitolo 5 INTERPOLAZIONE POLINOMIALE Un problema che frequentemente si presenta in matematica applicata è quello dell approssimazione di funzioni, che consiste nel determinare una funzione g, appartenente

Dettagli

Corso di Analisi Numerica - AN410. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti

Corso di Analisi Numerica - AN410. Parte 3: metodi iterativi per sistemi lineari ed. equazioni nonlineari. Roberto Ferretti Corso di Analisi Numerica - AN410 Parte 3: metodi iterativi per sistemi lineari ed equazioni nonlineari Roberto Ferretti UNIVERSITÀ DEGLI STUDI ROMA TRE Filosofia generale dei metodi iterativi Metodi iterativi

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Generare una successione di vettori Metodi iterativi per sistemi lineari convergente alla soluzione del sistema Convergenza in norma Costruzione di un metodo iterativo Per una qualche norma vettoriale

Dettagli

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +

NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R + NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Corso di Geometria III - A.A. 2016/17 Esercizi

Corso di Geometria III - A.A. 2016/17 Esercizi Corso di Geometria III - A.A. 216/17 Esercizi (ultimo aggiornamento del file: 2 ottobre 215) Esercizio 1. Calcolare (1 + 2i) 3, ( ) 2 + i 2, (1 + i) n + (1 i) n. 3 2i Esercizio 2. Sia z = x + iy. Determinare

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Esercizi svolti di Calcolo Numerico. C. Fassino

Esercizi svolti di Calcolo Numerico. C. Fassino Esercizi svolti di Calcolo Numerico. C. Fassino 2 Gli esercizi presentati illustrano alcune nozioni di base di Analisi Numerica e sono quindi principalmente rivolti a tutti gli studenti che, pur non frequentando

Dettagli

Raccolta di esercizi di Calcolo Numerico

Raccolta di esercizi di Calcolo Numerico Annamaria Mazzia Raccolta di esercizi di Calcolo Numerico Dipartimento di Ingegneria Civile Edile e Ambientale Università degli Studi di Padova Creative Commons Attribuzione-Non commerciale-non opere derivate

Dettagli

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento)

Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Soluzioni agli Esercizi di Geometria e Algebra per Ingegneria Aerospaziale (nuovo ordinamento) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile

Dettagli

Equazioni non lineari

Equazioni non lineari Equazioni non lineari Introduzione In molte applicazioni intervengono equazioni che non siamo in grado di risolvere analiticamente, o la cui risoluzione risulta molto complessa e laboriosa. Un importante

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

UNIVERSITÀ DEGLI STUDI DI TRENTO

UNIVERSITÀ DEGLI STUDI DI TRENTO UNIVERSITÀ DEGLI STUDI DI TRENTO PROVA DI AMMISSIONE AI CORSI DI LAUREA IN Fisica Matematica Informatica Ingegneria dell Informazione e Organizzazione d Impresa, Ingegneria dell Informazione e delle Comunicazioni

Dettagli

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI LUCIA GASTALDI 1. Matrici. Operazioni fondamentali. Una matrice A è un insieme di m n numeri reali (o complessi) ordinati, rappresentato nella tabella

Dettagli

Esame di Stato di Liceo Scientifico Corso di Ordinamento

Esame di Stato di Liceo Scientifico Corso di Ordinamento Corso di Ordinamento Soluzione dei Temi di Matematica proposti nella Sessione Ordinaria 006 Sessione Ordinaria 006 Corso di Ordinamento Sommario Problema Punto a) Punto b) Punto c) Punto Finale 4 Problema

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Martedì 27/09/2016, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2016/2017 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2016 1. Martedì 27/09/2016,

Dettagli

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata?

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata? Quale delle seguenti istruzioni MATLAB esegue il calcolo del raggio spettrale di una matrice quadrata A? a. max(eig(abs(a))) b. max(abs(eig(a))) c. abs(max(eig(a))) d. max(abs(eig(a *A))) Il raggio spettrale

Dettagli

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011

Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/ Settembre 2011 Università degli Studi di Perugia - Facoltà di Ingegneria Secondo test d ingresso A.A. 2011/2012-16 Settembre 2011 1. Quale tra i seguenti numeri è razionale? A. 2 3. B. 2 + 3. C. π. D. 2 8. E. 8. 2. Quali

Dettagli

INTERPOLAZIONE. Francesca Pelosi. Dipartimento di Matematica, Università di Roma Tor Vergata. CALCOLO NUMERICO e PROGRAMMAZIONE

INTERPOLAZIONE. Francesca Pelosi. Dipartimento di Matematica, Università di Roma Tor Vergata. CALCOLO NUMERICO e PROGRAMMAZIONE INTERPOLAZIONE Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ INTERPOLAZIONE p./8 INTERPOLAZIONE Nella

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.matefilia.it PNI 010 - SESSIONE SUPPLETIVA QUESITO 1 In cima ad una roccia a picco sulla riva di un fiume è stata costruita una torretta d osservazione alta 11 metri. Le ampiezze degli angoli di depressione

Dettagli

Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente

Metodi iterativi SISTEMI LINEARI. Metodi Iterativi. Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodo di rilassamento successivo e metodi del gradiente Metodi iterativi Metodi iterativi 1 Il metodo di rilassamento successivo Condizioni per la convergenza 2 Metodi del Metodo della

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Approssimazione di funzioni In molti problemi

Dettagli

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11)

Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) Alessio Del Padrone Esercizi di Geometria: Numeri Complessi e Polinomi (Ingegneria A.A. 10/11) 1. Disegnare sul piano di Argand-Gauss e porre in forma trigonometrica-esponenziale (i.e. determinarne modulo

Dettagli

1 Esercizi relativi al Capitolo 1

1 Esercizi relativi al Capitolo 1 1 Esercizi relativi al Capitolo 1 1. (a) x = 7; (b) (x) 4 = (32.1) 4 = (14.25) 10 ; (c) x = 5; (d) (200) x = (18) 10 ; x = 3; y = (11330) 8 = (4824) 10 ; (e) x = 2882.125; y = 231002.02; (f) (x) 3 = (12122.1012)

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

Equazioni non lineari

Equazioni non lineari Capitolo 2 Equazioni non lineari 2.1 Richiami di teoria Prerequisiti: teorema di Gauss, nozioni elementari di calcolo differenziale. In generale, per risolvere una equazione della forma f(x) = 0 dove f

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Corso di Calcolo Scientifico

Corso di Calcolo Scientifico I Modulo del corso integrato di Calcolo Dott.ssa Maria Carmela De Bonis a.a. 2012-13 Approssimazione di Funzioni In molti problemi matematici emerge l esigenza di dover approssimare una funzione f C k

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere:

Esercitazioni di Analisi Matematica FUNZIONI CUBICHE. Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: FUNZIONI CUBICHE Effettuare lo studio completo delle seguenti funzioni di terzo grado intere: 1) y = fx) = x 3 + 2x 2 + x 2) y = fx) = x 3 + x 2 + x + 2 3) y = fx) = x 3 + 2x 2 + x 4 4) y = fx) = x 3 +

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Introduzione al problema

Introduzione al problema INTRODUZIONE AL PROBLEMA 1 di Simone BIANCO 1 Introduzione al problema Lo scopo della tesi svolta e quello di ricalibrare il colore nelle immagini fotografiche, ovvero: si supponga di avere un immagine

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli