Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)"

Transcript

1 Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx, t) che soddisfa l equazione differenziale alle derivate parziali seguente: La soluzione può essere scritta come: vx, t) = µ v + E I v IV = ) u k x) E k sin t + F k cos t) ) dove le u k x) si ottengono risolvendo l equazione differenziale del quarto ordine: E I u IV k x) µ u kx) = 3) Il rispetto delle condizioni al contorno consentono di determinare i valori di ωk per cui la 3) ha soluzione diversa dalla banale, mentre le condizioni iniziali per t = consentono di determinare E k e F k. Si prenda ora in considerazione il moto della trave sotto forzante generica qx, t). L equazione differenziale che governa il moto è: di cui si cerca una soluzione del tipo: µ v + E I v IV = qx, t) 4) vx, t) = u k x) ϕ k t) 5) dove le ϕ k svolgono un ruolo analogo alle coordinate normali nei sistemi discreti. Posto che: v = u k ϕ k 6) la 4) diviene: v IV = u IV k ϕ k t) 7) µ u k ϕ k + E I u IV k ϕ k t) = qx, t) [ µ uk ϕ k + E I u IV k ϕ k t) = qx, t) 8)

2 Moltiplicando ambo i membri per u h x) ed integrando tra ed L ed assumendo E I e µ costanti lungo x: [ ) ) µu h u k dx ϕ k + E Iu h u IV k dx ϕ k t) = qx, t) u h x)dx 9) da cui per le proprietà di ortogonalità dei modi, e normalizzando gli stessi: { se k = h µ u h u k dx = se k h ϕ h t) + ω h ϕ ht) = E I u h u IV k dx = { ω h se k = h se k h ) ) ) qx, t) u h x)dx per h =,,..., 3) Si riconoscono nel membro di destra una funzione del solo tempo, quindi: ϕ h t) + ω h ϕ ht) = F t) per h =,,..., 4) ovvero si è in presenza di infiniti oscillatori elementari non smorzati) soggetti a forzante generica. La soluzione si può ricavare con l integrale di Duhamel, per cui: che nel presente caso fornisce: ϕ h t) = t [ ϕ h t) = t F τ) sin t τ)dτ 5) qx, τ) u h x)dx sin t τ)dτ 6) Si ricordi che tale soluzione è valida nel caso di condizioni iniziali nulle, per cui va aggiunto il contributo dovuto a v x) e v x) pari a : con: ϕ h t) = ϕ,h sin t + ϕ,h cos t 7) ϕ,h = ϕ,h = µ u h x) v x)dx 8) µ u h x) v x)dx 9) Si osservi come in oscillazioni libere, per cui vi è il solo contributo della 7), si riottiene la soluzione vista in precedenza. La soluzione 5) è quindi: vx, t) = { uk x) t [ qx, τ) u h x)dx sin t τ)dτ + [ } ϕ,k +u k x) sin t + ϕ,k cos t Nel caso di condizioni iniziali nulle, v x) = e v x) = u k x) t [ vx, t) = qx, τ) u k x)dx sin t τ)dτ ) ) )

3 . Esempio Si consideri una trave appoggiata con E I e µ costanti soggetta ad un carico in mezzeria la cui ampiezza varia con legge armonica: Figura : Schema della trave con carico concentrato in mezzeria. Le auto-funzioni u k sono note e valgono si è assunto per semplicità µ = ): u k x) = L sin k π L x 3) Il carico distribuito può essere espresso mediante la funzione delta di Dirac: qx, t) = F sin ωt δ x L ) 4) Figura : Funzione delta di Dirac. con: L integrale in x nella ) vale quindi: qx, τ) u k x)dx = Quindi F sin ωt = F L sin ωt L sin k π L x δ x L ) dx = sin k π L x δ x L sin k π se k =, 5, 9, 3,... = se k = 3, 7,, 5,... se k =, 4, 6, 8,... ) dx = F L sin ωt sin k π 5) 6) vx, t) = k {,5,9,3,...} L sin k π L x t F sin ωt sin t τ)dτ+ L L sin k π L x t F sin ωt sin t τ)dτ 7) L k {3,7,,5,...} 3

4 Risolvendo l integrale t sin ωt sin t τ)dτ = sin ωt ) ω sin t ) = ω ωk ω ωk = ω ω k sin t 8) e ricordando che: vx, t) = k {,5,9,3,...} F L 3 k 4 π 4 E I ω k = E I a4 k = E I k4 π 4 ω ω k k {3,7,,5,...} Limitandoci ai primi due termini vx, t) = F L 3 π 4 E I ω ω L 4 9) sin t sin k π L x + F L 3 k 4 π 4 E I ω ω k sin ω t sin π ω L x+ 8 ω ω 3 sin t sin k π L x 3) sin ω 3 t ω 3 sin 3 π L x ) Come si vede, il secondo contributo è al di là di eventuali fenomeni di risonanza/battimenti) quasi due ordini di grandezza più piccolo rispetto al primo, di conseguenza la convergenza è molto rapida. Naturalmente, se la pulsazione della forzante ω è prossima ad una pulsazione naturale allora la componente di risposta k-esima è predominante sulle altre, ovvero si è in condizioni di risonanza e la risposta tende ad aumentare indefinitamente: si noti come un sistema continuo ha infinite possibilità di risonanza. Inoltre se ω è vicina ad la risposta, dominata dalla componente k-esima, presenta una modulazione in ampiezza con pulsazione pari a ω piccola, vista la vicinanza di ω a, ovvero a lunghi periodi), e si è in presenza del fenomeno dei battimenti. Infine, si noti che i modi con k pari non danno contributo alla risposta: ciò è in accordo con quanto osservato nel caso delle travi appoggiate in cui in mezzeria lo spostamento è nullo per tutti i modi pari. Spostamenti impressi Si supponga che i carichi esterni siano nulli, qx, t) =. Siano invece assegnate delle storie di spostamento ai vincoli della trave, che, considerate in maniera statica, generano degli spostamenti 4

5 pari a y g x, t). Gli spostamenti totali sono dati da v t x, t) = vx, t) + y g x, t), e l equazione del moto, con N nullo, può scriversi come: e quindi: µ v t t + E I 4 v t x 4 = 3) µ v t + µ y g t + E I 4 v x 4 + E I 4 y g x 4 = 33) Tenendo conto che gli spostamenti y g sono ottenuti in assenza di carichi, si ha E I 4 y g x 4 = e quindi l equazione del moto diviene: µ v t + E I 4 v x 4 = µ y g t 34) Ad esempio, se in una trave incernierata alle estremità i vincoli sono sottoposti a spostamenti verticali) y A t) e y B t): Figura 3: Schema della trave con spostamenti agli appoggi. y g x, t) = y A t) x ) + y B t) x L L 35) 5

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8)

Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Lezione 8: Sistemi ad un grado di libertà: l oscillatore elementare (8) Federico Cluni 3 marzo 205 Fattore di amplificazione in termini di velocità e accelerazione Nel caso l oscillatore elementare sia

Dettagli

Oscillatore semplice: risposta ad eccitazioni arbitrarie. In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica.

Oscillatore semplice: risposta ad eccitazioni arbitrarie. In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica. Oscillatore semplice: risposta ad eccitazioni arbitrarie In molte applicazioni pratiche l eccitazione dinamica non è né armonica nè periodica. È necessario dunque sviluppare una procedura generale per

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 8 Sistemi a più gradi di liberà: Oscillazioni libere in assenza di smorzamento N equazioni differenziali omogenee accoppiate tramite la matrice delle masse, la matrice

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

OSCILLAZIONI SMORZATE E FORZATE

OSCILLAZIONI SMORZATE E FORZATE OSCILLAZIONI SMORZATE E FORZATE Questo esperimento permette di studiare le oscillazioni armoniche di un pendolo e le oscillazioni smorzate e smorzate-forzate. Studiando il variare dell ampiezza dell oscillazione

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Sistemi vibranti ad 1 gdl

Sistemi vibranti ad 1 gdl Università degli Studi di Bergamo Dipartimento di Ingegneria Sistemi vibranti ad 1 gdl - vibrazioni forzate - rev. 1. Le vibrazioni forzate di un sistema ad 1 gdl sono descritte dall equazione: mẍ + cẋ

Dettagli

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola

CORSO DI COMPLEMENTI DI MECCANICA. Prof. Vincenzo Niola CORSO DI COMPLEMENTI DI MECCANICA Prof. Vincenzo Niola SISTEMI A DUE GRADI DI LIBERTÀ Lo studio dei sistemi a più gradi di libertà verrà affrontato facendo riferimento, per semplicità, solo a sistemi conservativi,

Dettagli

Controlli Automatici Compito del - Esercizi

Controlli Automatici Compito del - Esercizi Compito del - Esercizi. Data la funzione di trasferimento G(s) = s (s +),sicalcoli a) La risposta impulsiva g(t); b) L equazione differenziale associata al sistema G(s); c) Si commenti la stabilità del

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Lezione 34 - I vincoli imperfetti

Lezione 34 - I vincoli imperfetti ezione 34 - I vincoli imperfetti [Ultima revisione: 26 febbraio 29] In quanto si e detto finora, si e sempre ipotizzato che il vincolo sia in grado di svolgere perfettamente la sua funzione, annullando

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Lezione 1/ Prof. Adolfo Santini - Dinamica delle Strutture 1 Disaccoppiamento delle equazioni

Dettagli

Esperimenti computazionali con Mathematica: la trasformata di Fourier

Esperimenti computazionali con Mathematica: la trasformata di Fourier Matematica Open Source http://www.extrabyte.info Quaderni di Analisi Matematica 06 Esperimenti computazionali con Mathematica: la trasformata di Fourier Marcello Colozzo 3 0 5 5 0 Ω LA TRASFORMATA DI FOURIER

Dettagli

Lezione 33- Le travi ad una campata II

Lezione 33- Le travi ad una campata II ezione 33- e travi ad una campata II ü [.a. 2011-2012 : ultima revisione 14 giugno 2012] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu'

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

Lezione 33- Le travi ad una campata II

Lezione 33- Le travi ad una campata II ezione 33- e travi ad una campata II [Ultima revisione: 5 febbraio 009] In questa lezione si studiano le travi ad una sola campata con i piu' comuni tipi di vincolo e soggetti ai piu' comuni tipi di carico

Dettagli

Diagrammi di Nyquist o polari

Diagrammi di Nyquist o polari 0.0. 3.3 1 qualitativa Ampiezza Diagrammi di Nyquist o polari Esempio di diagramma polare senza poli nell origine: 40 20 G(s) = 100(1+ s 50 ) (1+ s 10 )2 (1+ s 20 )(1+ s 100 ) Imag 0 20 15 20 30 80 0.1

Dettagli

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità

Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

Elaborazione di segnali e immagini: modulo segnali

Elaborazione di segnali e immagini: modulo segnali Elaborazione di segnali e immagini: modulo segnali 30 gennaio 014 Esame parziale con soluzioni Esercizio 1 Dato un sistema LTI descritto dalla seguente equazione alle differenze: v(k) + v(k 1) 10v(k )

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

VELOCITA' CRITICHE FLESSIONALI

VELOCITA' CRITICHE FLESSIONALI VELOCITA' CRITICHE FLESSIONALI Si consideri un albero privo di massa recante in posizione intermedia un corpo puntiforme di massa "M". Se la massa viene spostata dalla sua posizione di equilibrio in direzione

Dettagli

DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTA DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI TRENTO

DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTA DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI TRENTO DIPARTIMENTO DI INGEGNERIA MECCANICA E STRUTTURALE FACOLTA DI INGEGNERIA, UNIVERSITÀ DEGLI STUDI DI TRENTO Corso di Aggiornamento su Problematiche Strutturali Verona, Aprile - Maggio 2005 INTRODUZIONE

Dettagli

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale

Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Fenomeni Oscillatori: Equazioni di Base della Meccanica del Punto Materiale Lezione del Corso di Esercitazioni di Laboratorio di Meccanica, Roma, 5 Maggio, 2014 Roberto Bonciani 1, Diparto di Fisica dell

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. La funzione di Green Sia, indicati con x e y due punti di R 3 E(x, y) = x y Consideriamo la rappresentazione integrale di u(x) C 2 (), anche rinunciando all ipotesi che sia armonica

Dettagli

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE Automation Robotics and System CONTROL Università degli Studi di Modena e Reggio Emilia Corso di Laurea in Ingegneria Meccatronica SISTEMI ELEMENTARI DEL o E 2 o ORDINE CA 5 Cesare Fantuzzi (cesare.fantuzzi@unimore.it)

Dettagli

Valutazione della capacità dissipativa di un sistema strutturale

Valutazione della capacità dissipativa di un sistema strutturale Tecniche innovative per l identificazione delle caratteristiche dinamiche delle strutture e del danno Valutazione della capacità dissipativa di un sistema strutturale Prof. Ing. Felice Carlo PONZO - Ing.

Dettagli

Trasformata di Fourier e applicazioni

Trasformata di Fourier e applicazioni Trasformata di Fourier e applicazioni Docente:Alessandra Cutrì Trasformata di Fourier della funzione gaussiana Esempio: Calcoliamo la trasformata di Fourier di f (x) = e x 2 x n f (x) L 1 (R) per ogni

Dettagli

T= 2π/ ω; ν=1/t = ω/2π Quindi ω = 2π/T = 2πν

T= 2π/ ω; ν=1/t = ω/2π Quindi ω = 2π/T = 2πν Moti periodici In generale possiamo definire periodici quei fenomeni che si ripetono ad intervalli regolari rispetto ad una variabile indipendente come il tempo, lo spazio o una combinazione di entrambi.

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Lezione 40 - I corollari di Mohr

Lezione 40 - I corollari di Mohr ezione 40 - I corollari di Mohr ü [.a. 011-01 : ultima revisione 9 agosto 011] In questa ezione si illustra un metodo per calcolare lo spostamento o la rotazione di un punto di una trave rettilinea, sfruttando

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

+ h(τ) x(t τ)dτ (2.1) Figura 2.1: Sistema lineare

+ h(τ) x(t τ)dτ (2.1) Figura 2.1: Sistema lineare Capitolo Metodo di Volterra.1 Introduzione Per un sistema lineare, come riportato in figura.1, si può sempre definire una risposta impulsiva ht che relaziona, tramite un integrale di convoluzione, il segnale

Dettagli

Gradi di libertà e vincoli. Moti del corpo libero

Gradi di libertà e vincoli. Moti del corpo libero Gradi di libertà e vincoli Moti del corpo libero Punto materiale Il punto materiale descrive un corpo di cui interessa individuare solo la sua posizione Nel piano la posizione di un punto si individua

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

Controlli Automatici L-A - Esercitazione

Controlli Automatici L-A - Esercitazione Controlli Automatici L-A - Esercitazione 1. Si consideri lo schema a blocchi di figura. d(t) K d x(t) e(t) R(s) u(t) G(s) y(t) - R(s) = K τs + 1 s + 1, G(s) = K d = 2 s(s 2 + 6s + ), a) Considerando gli

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 212/13 9 novembre 212 - Domande Teoriche Nome: Nr. Mat. Firma: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si

Dettagli

APPUNTI DI DINAMICA DELLE STRUTTURE

APPUNTI DI DINAMICA DELLE STRUTTURE APPUNTI DI DINAMICA DELLE STRUTTURE Giacomo Navarra Università degli Studi di Enna "Kore" FACOLTÁ DI INGEGNERIA ED ARCHITETTURA INDICE Introduzione vii PARTE I ELEMENTI DI DINAMICA DETERMINISTICA 1 Vibrazioni

Dettagli

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2

Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier p. 2 Elettronica II Segnali periodici; serie di Fourier; trasformata di Fourier Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

x Indice Valutazione dell efficienza di isolamento delle vibrazioni Esercizio Determinaz

x Indice Valutazione dell efficienza di isolamento delle vibrazioni Esercizio Determinaz Indice 1 Modelli lineari ad 1 g.d.l. 1 1.1 Introduzione................................. 1 1.2 Equazione differenziale del moto..................... 1 1.3 Vibrazioni libere..............................

Dettagli

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b

Regola dei trapezi. a, b punti fissi a priori. non fissi a priori (indeterminati) errore di integrazione. a, b INTEGRAZIONE NUMERICA (Quadratura di Gauss) Regola dei trapezi I ( b a) f ( a) + f ( b) f (x) errore di integrazione f (x) f (a) f (b) a b x a a ' b' b x a, b punti fissi a priori a, b non fissi a priori

Dettagli

Applicazione Comparata di Metodi Risolutivi di Piastre Sottili

Applicazione Comparata di Metodi Risolutivi di Piastre Sottili Applicazione Comparata di etodi Risolutivi di Piastre Sottili I. Presentazione dei casi studio Di seguito viene analizzata una piastra in acciaio appoggiata sui bordi con carico costante uniformemente

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Introduzione e modellistica dei sistemi Introduzione allo studio dei sistemi Modellistica dei sistemi dinamici elettrici Modellistica dei sistemi dinamici meccanici Modellistica

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto

Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Il Metodo degli Elementi Finiti Assemblaggio degli Elementi: Soluzione del Problema Strutturale Discreto Dalle dispense del prof. Dario Amodio e dalle lezioni del prof. Giovanni Santucci Per ottenere la

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

Compito di Analisi Matematica III. Compito A

Compito di Analisi Matematica III. Compito A c.d.l. Ingegneria elettronica e c.d.l. Ingegneria Informatica (M Z) 7 gennaio 2008. Determinare i residui nei punti singolari e nel punto all infinito della funzione z 2 sen z + 2. Determinare la trasformata

Dettagli

REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti

REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti UNIVERSITÀ DEGLI STUDI CAGLIARI FACOLTÀ DI INGEGNERIA E ARCHITETTURA REGISTRO DELLE LEZIONI di Metodi agli Elementi Finiti dettate dal prof. Filippo Bertolino nell Anno Accademico 2013-14 ARGOMENTO DELLA

Dettagli

Linea elastica, scalata per la rappresentazione grafica

Linea elastica, scalata per la rappresentazione grafica Esercizio N.1 a trave a mensola ha sezione trasversale costante e porta un carico F nella sua estremità libera. Determinare l euazione della linea elastica, lo spostamento e la rotazione in. Ricordiamo

Dettagli

Introduzione all esperienza sul Tubo di Kundt

Introduzione all esperienza sul Tubo di Kundt Introduzione all esperienza sul Tubo di Kundt 29-04-2013 Laboratorio di Fisica con Elementi di Statistica, Anno Accademico 2012-2013 Responsabile: Paolo Piseri Date: Turno 1: 06-05-2013, 13-05-2013, 20-05-2013

Dettagli

Metodi di calcolo nella dinamica delle strutture

Metodi di calcolo nella dinamica delle strutture FRANCESCO CESARI Metodi di calcolo nella dinamica delle strutture PITAGOR~ EDITRICE BOLOGN~ ellunl AAlE --"-- -- ---~!'. di Architettura ersitano lstitito Unt~ E N E Z I A ostr B 769 BIBLIOTECA CENTRALE

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Esercizi sulle vibrazioni

Esercizi sulle vibrazioni Esercizi sulle vibrazioni 1. Frequenza propria di una boa Una boa cilindrica avente sezione circolare di area A e massa totale m viene spostata dalla configurazione di equilibrio e lasciata libera di oscillare

Dettagli

Lezione 39 - Le equazioni di congruenza

Lezione 39 - Le equazioni di congruenza Lezione 9 - Le equazioni di congruenza ü [.a. 0-0 : ultima revisione 7 agosto 0] Per definizione, in una trave iperstatica non e' possibile calcolare le reazioni vincolari con sole equazioni di equilibrio.

Dettagli

1 - Matrice delle masse e delle rigidezze

1 - Matrice delle masse e delle rigidezze Cilc per tutti gli appunti (AUOMAZIONE RAAMENI ERMICI ACCIAIO SCIENZA delle COSRUZIONI ) e-mail per suggerimenti SEMPLICE ESEMPIO NUMERICO DEL MEODO DI ANALISI DINAMICA Si vuole qui chiarire con un semplice

Dettagli

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1

ESERCIZI SVOLTI. Travi. 4 Forze in equilibrio e vincoli 4.2 Vincoli e reazioni vincolari 1 4 Forze in equilibrio e vincoli 4. Vincoli e reazioni vincolari 1 ESERCIZI SVOLTI Travi 1 Si richiede il calcolo grafico e analitico delle reazioni vincolari della trave riportata in figura appoggiata

Dettagli

M, R. δu A δu G G. k α

M, R. δu A δu G G. k α Esercizi sulla statica di corpi rigidi. Risoluzione mediante PLV. Esercizio n.17 Un sistema è composto da un disco di peso p e raggio R e da una massa puntiforme di peso q collegati da un filo inestensibile,

Dettagli

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI.

ESERCIZI SULLA DINAMICA DI CORPI RIGIDI. ESERCIZI SULL DINMIC DI CRPI RIIDI. Risoluzione mediante equazioni di Lagrange, equilibrio relativo (forze aarenti), stazionarietà del otenziale U; stabilità dell equilibrio e analisi delle iccole oscillazioni.

Dettagli

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier

Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Esercizi sulla soluzione dell equazione delle onde con il metodo della serie di Fourier Corso di Fisica Matematica 2, a.a. 2013-2014 Dipartimento di Matematica, Università di Milano 13 Novembre 2013 1

Dettagli

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

La serie di Fourier. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro La serie di Fourier Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione. Notazione............................. Analisi spettrale

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) =

5. Per ω = 1/τ il diagramma reale di Bode delle ampiezze della funzione G(jω) = Fondamenti di Controlli Automatici - A.A. 211/12 3 luglio 212 - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

1 Oscillazioni libere (oscillatore armonico)

1 Oscillazioni libere (oscillatore armonico) C. d. L. Ingegneria Inforatica e delle Telecounicazioni A.A. / Fisica Generale PROCESSI OSCILLATORI Oscillazioni liere (oscillatore aronico) Siao in presenza di un sistea la cui equazione che esprie il

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà Circuiti C Carica e scarica del condensatore (solo le formule) Consideriamo un condensatore di capacità C collegato in serie ad una resistenza di valore. I due elementi sono collegati ad una batteria che

Dettagli

H = H 0 + V. { V ti t t f 0 altrove

H = H 0 + V. { V ti t t f 0 altrove Esercizio 1 (Regola d oro di Fermi Determinare la probabilità di transizione per unità di tempo da uno stato a ad uno stato b al primo ordine perturbativo di un sistema per cui si suppone di aver risolto

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare

Dettagli

Sistemi LTI a Tempo Continuo

Sistemi LTI a Tempo Continuo Capitolo 3 Sistemi LTI a Tempo Continuo 3.1 Proprietà di Linearità e Tempo Invarianza 3.1.1 Linearità Si indichi con T [.] la trasormazione ingresso-uscita, o unzione di traserimento, di un sistema S 1,

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Esercizio 1. Un corsoio di massa m scorre su un piano orizzontale con attrito radente di coefficiente f d. Al corsoio, in C, è collegata la biella B C, di lunghezza b e

Dettagli

Formulario Meccanica

Formulario Meccanica Formulario Meccanica Cinematica del punto materiale 1 Cinematica del punto: moto nel piano 3 Dinamica del punto: le leggi di Newton 3 Dinamica del punto: Lavoro, energia, momenti 5 Dinamica del punto:

Dettagli

CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO

CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO VERIFICA DI RIGIDEZZA DI ALBERO CORSO DI LAUREA IN ING. ELETTRICA CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE ANNO ACCADEMICO 25-6 VERIFICA DI RIGIDEZZA DI ALBERO E' dato l'albero riportato in Figura, recante all'estermità

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Setti in C.A. -Trave parete forata

Setti in C.A. -Trave parete forata Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE

29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE 29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando

Dettagli

Moto armonico. A.Solano - Fisica - CTF

Moto armonico. A.Solano - Fisica - CTF Moto armonico Moti periodici Moto armonico semplice: descrizione cinematica e dinamica Energia nel moto armonico semplice Il pendolo Oscillazioni smorzate Oscillazioni forzate e risonanza Moto periodico

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

Cinematica: derivate e integrali che ci servono: appunti

Cinematica: derivate e integrali che ci servono: appunti 1. Cinematica: derivate e integrali che ci servono: appunti Primo esempio: moto uniforme Iniziamo con le derivate. Supponiamo una legge oraria del tipo: x(t) a+bt, dove a, b sono dei coefficienti costanti.

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Setti in C.A. -Trave parete forata

Setti in C.A. -Trave parete forata Setti in C.A. -Trave parete forata Rif. Bibliografico Pozzati, vol IIa pag.379 Consideriamo una parete di irrigidimento costituito da un setto in c.a. in cui sono praticate delle aperture (es. parete di

Dettagli

Richiami sulle oscillazioni smorzate

Richiami sulle oscillazioni smorzate Richiami sulle oscillazioni smorzate Il moto armonico è il moto descritto da un oscillatore armonico, cioè un sistema meccanico che, quando perturbato dalla sua posizione di equilibrio, è soggetto ad una

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

ENERGIA DI UN ONDA. INTENSITA

ENERGIA DI UN ONDA. INTENSITA ENEGIA DI UN ONDA. INTENSITA O- 1 Un onda si propaga perche ogni parte del mezzo comunica il moto alle parti adiacenti Poiche iene fatto del laoro, iene trasferita energia Quanta energia si sposta per

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli