Energia potenziale. d l. E p

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Energia potenziale. d l. E p"

Transcript

1 IL LEGAME COVALENTE

2 Legame covalente Si riscontra in composti molecolari i cui atomi costituenti sono uguali o per i quali non si può avere trasferimento elettronico. H 2 N 2 Cl 2 HCl CO in un legame covalente due atomi condividono gli elettroni di valenza o alcuni di essi. I due atomi risultano legati perchè i due nuclei attraggono simultaneamente gli elettroni condivisi.

3 L'approccio corretto per descrivere il legame covalente è basato sulla meccanica quantistica (Heitler-London 1926). Noi vedremo solo alcuni aspetti qualitativi. E' interessante considerare come varia l'energia potenziale di una molecola biatomica in funzione della distanza fra gli atomi. E p Energia potenziale H H 0 d l d H H

4

5 L'energia potenziale è nulla quando gli atomi sono isolati (a distanza infinita) e si abbassa progressivamente quando gli atomi vengono avvicinati fino alla formazione del legame

6 Diminuendo ancora la distanza si ha una repulsione elettrostatica fra i due nuclei positivi e l'energia potenziale torna ad aumentare. Il minimo della curva di energia potenziale rappresenta il bilanciamento tra repulsione ed attrazione. La distanza di legame è la distanza fra gli atomi nel punto di minimo. L'energia di legame è la differenza tra l energia del sistema costituito dai due atomi isolati e del sistema in cui i due atomi si trovano alla distanza di equilibrio. In pratica è l'energia che deve essere fornita per separare gli atomi riportandoli a distanza infinita.

7

8 TEORIA DI LEWIS Quando si formano i legami chimici, gli elettroni di valenza si ridistribuiscono in modo da raggiungere le configurazioni elettroniche dei gas nobili. Questo concetto può essere applicato sia ai composti ionici che molecolari. Quando una coppia di elettroni è condivisa tra due atomi, quella coppia occupa lo stesso strato degli elettroni di valenza di ciascun atomo e contribuisce al raggiungimento della configurazione del gas nobile per ciascun atomo. Dal conteggio degli elettroni di valenza di ciascun atomo si può prevedere il numero di legami che l atomo è in grado di formare. Il numero di legami è pari al numero di elettroni che devono essere condivisi per raggiungere la configurazione tipo gas nobile.

9

10

11

12

13

14

15 ECCEZIONI ALLA REGOLA DELL OTTETTO MOLECOLE CON MENO DI OTTO ELETTRONI DI VALENZA: BF 3. La struttura di Lewis presenta solo 6 elettroni attorno all atomo di boro. Il composto è però molto reattivo e si combina rapidamente con NH 3. La coppia di elettroni solitaria dell azoto fornisce entrambi gli elettroni condivisi in modo che sia B che N raggiungano l ottetto (legame covalente coordinato o dativo). MOLECOLE CON PIU DI OTTO ELETTRONI DI VALENZA: Gli atomi del terzo periodo o dei periodi successivi possono essere circondati da più di quattro coppie di elettroni in alcuni composti perché possiedono orbitali d vuoti con energia sufficientemente bassa da ospitare gli elettroni in eccesso. Es. PF 5, SF 4, etc. MOLECOLE CON UN NUMERO DISPARI DI ELETTRONI DI VALENZA: Vi sono alcune molecole stabili che possiedono un numero dispari di elettroni di valenza. Tali molecole sono spesso radicali liberi a causa della presenza dell elettrone spaiato. Es. NO (11 elettroni), NO 2 (17 elettroni).

16

17

18 LA CARICA FORMALE CARICA FORMALE: la differenza di elettroni tra l atomo libero e quelli attribuitigli formalmente in una data formula di struttura. ATTRIBUZIONE DEGLI ELETTRONI AD UN ATOMO IN UNA DATA MOLECOLA: numero di legami che partono dall atomo + il numero di elettroni di non legame. NUMERO DI OSSIDAZIONE: è una carica positiva o negativa che viene attribuita formalmente ad un atomo di un composto. Viene determinato dal numero di elettroni in più o in meno rispetto all atomo neutro, quando gli elettroni di legame sono attribuiti all atomo più elettronegativo. N = N = O N N-O N-N O La presenza di cariche formali di segno opposto nella stessa formula viene indicata come SEPARAZIONE DI CARICA. Minore è la separazione di carica, maggiore è la stabilità della molecola. Quando la separazione di carica in due formule limite è la stessa, la formula più stabile è quella in cui la carica negativa è sull atomo più elettronegativo.

19

20 Legame covalente polare Nel caso di un legame covalente fra due atomi uguali come in H 2 o Cl 2 gli elettroni di legame sono equamente condivisi. Vale a dire gli elettroni hanno la stessa probabilità di trovarsi su ciascuno dei due atomi. Quando invece i due atomi sono diversi, come in HCl, gli elettroni di legame hanno maggiore probabilità di trovarsi in prossimità di un atomo piuttosto che dell'altro, e si parla di legame covalente polare. Infatti la tendenza ad attrarre gli elettroni di legame (elettronegatività) è diversa per i diversi atomi. Ad esempio per HCl gli elettroni sono maggiormente distribuiti attorno al Cl che acquista una parziale carica negativa (δ-) + H-Cl -

21

22

23 Il legame covalente polare può essere visto come una situazione intermedia fra legame covalente non polare, (Cl 2 ), e legame ionico (NaCl) :Cl:Cl: + H:Cl: - Na + :Cl: -

24

25

26 Una molecola diatomica con legame covalente polare è caratterizzata da un momento dipolare non nullo. Un dipolo elettrico è costituito da due cariche elettriche -q e +q poste a distanza d. Per una tale disposizione di cariche il momento dipolare è definto come un vettore M diretto dalla carica positiva alla carica negativa e con modulo M=q d d - + -q +q M = q d Molecole dotate di momento dipolare sono dette polari. Una molecola quale H-Cl è polare ed ha momento dipolare: + H-Cl d - M = d

27 L'unità di misura del momento dipolare è il Debye (D) Nel sistema SI 1 D = 3,34 x C m Un sistema costituito da due cariche +e e -e a d = 1 Å ha M: 1,6 0 3, C -1 9 M C m /D m 4,8 D

28

29

30

31

32

33

34

35

36

37

38 Se una delle due fosse la struttura effettiva dell ozono, gli angoli di legame non sarebbero uguali. In questo caso si introduce il concetto di RISONANZA per conciliare le osservazioni sperimentali con due o più strutture di Lewis Si ritiene che ciascuna delle strutture di Lewis possibili, dette STRUTTURE DI RISONANZA, contribuisca alla struttura effettiva che non si è in grado di scrivere La struttura effettiva dell ozono non corrisponde effettivamente a nessuna delle due strutture scritte, bensì ad una struttura intermedia detta IBRIDO DI RISONANZA, in cui la linea a puntini rappresenta gli elettroni delocalizzati. O O..... O

39 I legami covalenti polari vengono descritti come ibridi di risonanza tra un legame covalente puro ed un legame ionico Esempio: H-F H F H + F - formule limite I II L energia di risonanza è la differenza tra il valore più basso delle energie delle formule limite e l energia effettiva della molecola E I < E II l energia della molecola reale E < E I Energia di risonanza = E I E Il legame ha circa il 43% di carattere ionico

40 E INDISPENSABILE RICORDARE CHE: 1. Le strutture di Lewis che contribuiscono all ibrido di risonanza differiscono solo per le posizioni assegnate alle coppie di elettroni, in nessun caso differiscono per le posizioni assegnate agli atomi; 2. Le strutture di Lewis che contribuiscono alla risonanza differiscono per il numero di coppie di elettroni di legame tra coppie di atomi; 3. L ibrido si risonanza rappresenta un unica struttura intermedia e non diverse strutture che si interconvertono continuamente.

41 I COMPOSTI DI COORDINAZIONE Gli elementi di transizione sono caratterizzati dal parziale riempimento degli orbitali d di uno strato n e dal riempimento, spesso completo, dell orbitale s dello strato successivo n+1. Nella formazione di ioni positivi, gli elettroni che vengono persi per primi da questi elementi sono gli (n+1)s. Nella formazione di legami covalenti, questi ioni hanno a disposizione sia gli orbitali dello strato n+1, cioè orbitali s, p, e d, che degli orbitali nd. Un atomo o uno ione che si lega ad un metallo di transizione mette a disposizione un orbitale e due elettroni per realizzare un legame covalente. Es. [M(NH 3 ) 6 ] 2+ I legami M-N sono covalenti e i due elettroni sono forniti dall azoto dell ammoniaca. Tali legami sono spesso polari con polarità diretta verso l atomo che mette in compartecipazione la coppia elettronica. Quest atomo si chiama DONATORE e la molecola o ione a cui appartiene l atomo donatore si chiama LEGANTE. Il numero di legami che un metallo di transizione può formare è limitato dalla repulsione sterica tra gli atomi che gli si dispongono intorno, più che dal numero di orbitali vuoti a disposizione. Il numero di atomi donatori a cui e legato l atomo centrale in un composto di coordinazione si chiama numero di coordinazione.

42 I COMPOSTI DI COORDINAZIONE La maggior parte della chimica dei metalli di transizione si basa sulla loro capacità di formare legami covalenti coordinati. Il risultato della formazione di tali legami è di norma uno IONE COMPLESSO, ovvero uno ione costituito da diverse molecole o ioni, legati ad uno ione o ad un atomo metallico mediante legami covalenti coordinati. Le molecole o gli ioni legati allo ione metallico centrale sono detti LEGANTI. Ciascun legante (in questo caso una molecola d acqua, possiede uno o più atomi con coppie solitarie e questi atomi si legano all atomo o allo ione metallico centrale mediante legami covalenti coordinati. La carica di uno ione complesso è determinata dalla carica dello ione metallico o dalle eventuali cariche negative degli ioni legati ad esso.

43 Teoria del legame di valenza

44 TEORIA DEL LEGAME DI VALENZA La teoria del legame di valenza costituisce l interpretazione quantomeccanica della teoria di Lewis. Nell'approccio di Lewis il legame covalente è dovuto alla condivisione di una coppia di elettroni da parte di due atomi. Anche la teoria del legame di valenza (VB) è strettamente collegata al concetto di accoppiamento elettronico, con ogni coppia di elettroni che lega appunto due nuclei. Secondo la teoria VB un legame tra due atomi si forma se sono verificate le seguenti condizioni: 1. Un orbitale di un atomo ed un orbitale dell altro atomo si sovrappongono 2. Il numero complessivo di elettroni contenuti nei due orbitali sovrapposti non è maggiore di due La forza del legame dipende dal grado di sovrapposizione, maggiore è la sovrapposizione e più forte è il legame

45

46 H 1s 1 Cl [Ne] 3s 2 3p 5 z

47 Classificazione dei legami Orbitali s - s + 1s H 1s H 1s H 2 1s Simmetria cilindrica attorno all asse internucleare

48 Orbitali s - p H 1s 1 Cl [Ne] 3s 2 3p 5 + 1s 3p z HCl Simmetria cilindrica attorno all asse internucleare

49 Orbitali p - p Ci sono due modi in cui gli orbitali p si possono sovrapporre (es. F 2 ) F [He] 3s 2 3p 5 + 2p z 2p z F 2 Simmetria cilindrica attorno all asse internucleare

50 Quando si ha simmetria cilindrica attorno all asse internucleare il legame è di tipo. Gli orbitali si sovrappongono frontalmente

51 Orbitali p - p C è un altra maniera in cui gli orbitali p si possono sovrapporre Non c è simmetria cilindrica attorno all asse internucleare. Gli orbitali si sovrappongono lateralmente. C è un piano di densità elettronica nulla per l asse internucleare. Legame di tipo

52 Esempio : Molecola N 2 ogni atomo N ha configurazione elettronica 1s 2 2s 2 2p 3 x si formano un legame di tipo e due legami di tipo Legame triplo

53

54 LEGAMI σ E π La sovrapposizione di orbitali atomici di tipo s (s + s) e di orbitali atomici di tipo s e p (s + p, o p + p disposti in modo colineare) porta alla formazione di legami σ. L orbitale s di un atomo può sovrapporsi con l orbitale p di un altro atomo per formare un legame σ solo se l orbitale p è orientato lungo l asse internucleare. I legami π originano dalla sovrapposizione di orbitali p paralleli tra di loro e perpendicolari all asse internucleare.

55 Legami sigma e pi-greco legame covalente parziale sovrapposizione di 2 orbitali legame direzionale lungo la congiungente dei 2 nuclei 2 orbitali paralleli legame legame sovrapposizione 2 orbitali p parziale sovrapposizione 2 orbitali p paralleli sovrapposizione di 2 orbitali ibridi sp 3 formazione legame sovrapposizione 4 ibridi sp 2 1 legame 1 legame

56 La geometria delle molecole

57

58

59

60

61

62

63

64

65 In pratica: 1. Si determinano gli elettroni di valenza presenti nella molecola sommando gli elettroni di valenza degli atomi che si legano 2. Si determina quindi il numero di coppie di elettroni totali da sistemare nella molecola 3. Si individua l atomo centrale che generalmente è l atomo meno elettronegativo (il primo a sinistra nella formula, eccetto per H 2 O) 4. Si legano gli altri atomi all atomo centrale ognuno con un singolo legame 5. Si dispongono tre doppietti intorno ad ogni atomo periferico (eccetto per l H) in modo che questi raggiungano la configurazione otteziale 6. Si dispongono le restanti coppie di elettroni (di non legame), se vi sono, intorno all atomo centrale La geometria della molecola viene determinata sulla base della disposizione che minimizza la repulsione tra le coppie di elettroni (di legame e di non legame) disposte intorno all atomo centrale

66

67

68

69 AX 2 BeCl 2, CO 2 AX 3 BF 3, SO 3 AX 2 E SnCl 2

70 AX 4 CH 4, CCl 4 AX 3 E NH 3 NF 3 SO 3 2- AX 2 E 2 H 2 O

71

72

73 AX 5 AX 4 E AX 3 E 2 AX 2 E 3

74 AX 6 AX 5 E AX 4 E 2

75 IBRIDAZIONE

76 Esempio: struttura della molecola del metano CH 4 1s 2s 2p Configurazione elettronica del C

77 Per esempio il carbonio può utilizzare la configurazione in cui un elettrone 2s viene eccitato e va ad occupare l'orbitale 2p vuoto E E 2p 2p 2s 2s 1s 1s Tale eccitazione richiede energia che però è più che compensata dall'energia che si guadagna in seguito alla formazione di 2 legami addizionali (4 legami anzichè 2) che il carbonio può ora formare

78 In realtà la semplice eccitazione non riesce a spiegare completamente le proprietà dei quattro legami. Infatti nella configurazione eccitata del carbonio i quattro orbitali spaiati non sono equivalenti (un 2s e tre 2p) e i quattro legami deriverebbero dalla sovrapposizione degli orbitali 1s di tre idrogeni con i tre orbitali 2p x, 2p y e 2p z del carbonio e dell orbitale 1s del restante idrogeno con l orbitale 2s del carbonio: H y z y C x H H C x H z Tre angoli HCH di 90 Il restante qualsiasi

79 Queste previsioni sono però in contrasto con i dati sperimentali secondo cui i quattro legami C-H del CH 4 sono equivalenti. Il metano ha infatti una geometria tetraedrica con i quattro legami C-H tutti della stessa lunghezza e gli angoli HCH tutti uguali e pari a Nella teoria VB si assume che i quattro orbitali di valenza del carbonio si combinino fra di loro per dare quattro nuovi orbitali equivalenti e isoenergetici detti orbitali ibridi. In generale un orbitale ibrido è una combinazione lineare di orbitali atomici di uno stesso atomo. Dal punto di vista della meccanica quantistica si ha: sp3 = c 1 2s + c 2 2px + c 3 2py + c 4 2pz Nel caso del carbonio in CH 4 si ottengono quattro orbitali ibridi, chiamati sp 3 perchè derivano dalla combinazione di un orbitale s e tre orbitali p.

80 I quattro orbitali ibridi sono isoenergetici e vanno riempiti in accordo con la regola di Hund: E sp 3 1s Calcoli teorici mostrano che i quattro orbitali ibridi sono bilobati ma con un lobo molto maggiore dell'altro e sono diretti dal centro verso i quattro vertici del tetraedro.

81 Combinazione lineare Sullo stesso sistema cartesiano

82 Secondo la teoria VB i quattro legami C-H si formano in seguito alla sovrapposizione di ciascuno dei quattro orbitali ibridi sp 3 dell'atomo di carbonio con l'orbitale 1s di un atomo di idrogeno.

83 L ibridazione degli orbitali del carbonio e la formazione dei legami C-H possono essere schematizzati come segue: Atomo C config. fondamentale Atomo C config. eccitata 1s 2s 2p 1s 2s 2p Atomo C ibridizzato 1s sp 3 La sovrapposizione con i 4 orbitali 1s dell idrogeno ognuno con un elettrone permette al carbonio di rispettare la regola dell ottetto dell idrogeno Atomo C in CH 4 1s sp 3 elettroni

84 Orbitali ibridi Il carbonio nei suoi composti -escluso CO (monossido di carbonio) ha 4 elettroni, ma solo 2 spaiati, nel livello più esterno Gli orbitali ibridi si ottengono per combinazione lineare di orbitali atomici Il n. di orbitali ibridi è uguale al n. di orbitali atomici che si combinano gli orbitali ibridi sono degeneri C: 2s 2 2p 2 2sp 3 C ha 4 elettroni di valenza spaiati 4 legami

85 Si possono ottenere tipi diversi di orbitali ibridi combinando linearmente tipi diversi (e/o in numero diverso) di orbitali atomici. Il numero di orbitali ibridi ottenuti è uguale al numero totale di orbitali atomici combinati e il simbolo per indicarli usa il numero dei vari orbitali combinati. Ad esempio gli orbitali ibridi sp 3 si chiamano così perchè derivano dalla combinazione di un orbitale s e tre orbitali p e sono quattro perchè in tutto si combinano 4 orbitali. L orbitale s può anche combinarsi con solo due o un orbitale p per dare orbitali ibridi di tipo: 1 orbitale s + 2 orbitali p 3 orbitali ibridi sp 2 1 orbitale s + 1 orbitale p 2 orbitali ibridi sp

86 Orbitali ibridi sp 2 Consideriamo la molecola BF 3 Il boro ha configurazione elettronica fondamentale 1s 2 2s 2 2p 1 con un solo elettrone spaiato e la formazione di tre legami covalenti con il fluoro in BF 3 e la sua geometria trigonale planare vengono spiegate nella teoria VB con uno schema di ibridizzazione simile a quello visto per il carbonio. Atomo B config. fondamentale 1s 2s 2p Atomo B config. eccitata 1s 2s 2p Atomo B ibridizzato 1s sp 2 2p z Un orbitale 2s e due orbitali 2p = tre orbitali ibridi sp 2

87 sp2 = c 1 2s + c 2 2px + c 3 2py

88 I tre legami B-F si formano per sovrapposizione dei tre orbitali ibridi sp 2 del boro con ciascuno degli orbitali spaiati del fluoro F 1s 2s 2p

89 Si noti che il boro conserva un orbitale 2p non ibrido, vuoto, perpendicolare al piano della molecola che ne determina importanti proprietà chimiche. Esso può formare ad esempio un legame con una molecola che possiede una coppia solitaria.

90 Orbitali ibridi sp Consideriamo la molecola BeF 2. Il berillio ha configurazione elettronica fondamentale 1s 2 2s 2 senza alcun elettrone spaiato e la formazione di due legami covalenti con il fluoro in BeF 2 e la geometria lineare vengono spiegate nella teoria VB con il seguente schema di ibridizzazione: Atomo Be config. fondamentale 1s 2s 2p Atomo Be config. eccitata 1s 2s 2p Atomo Be ibridizzato 1s sp 2p Un orbitale 2s e un orbitale 2p = due orbitali ibridi sp

91 sp = c 1 2s + c 2 2px

92 I due legami Be-F si formano per sovrapposizione dei due orbitali ibridi sp del boro con ciascuno degli orbitali contenenti un elettrone del fluoro F 1s 2s 2p F Be F 2p Due ibridi sp su Be 2p

93 Si noti che il berillio conserva due orbitali 2p vuoti non ibridizzati

94 L'ibridazione è un modello, cioè non è un fenomeno fisico reale, ma una procedura matematica per ottenere funzioni d'onda, gli orbitali ibridi appunto, che spiegano la nuova conformazione e le proprietà della molecola (legami equivalenti in determinate direzioni dello spazio). Questi orbitali semplificano la descrizione della molecola L ibridazione viene introdotta per spiegare una geometria molecolare diversa da quella che ci si aspetterebbe con l uso degli orbitali atomici puri

95 Molecola di H 2 O Anche se l'ossigeno ha due elettroni spaiati è necessario ricorrere allo schema di ibridizzazione sp 3 per giustificare la sua geometria, piegata con angolo HOH=105 Atomo O config. fondamentale Atomo O ibridizzato Formazione dei 2 legami O-H secondo la teoria VB per sovrapposizione dei due sp 3 semiriempiti con gli 1s dei due idrogeni. Le due coppie solitarie occupano i due restanti orbitali sp 3 1s 2s 2p 1s sp 3 H h h h

96 Si noti che dei quattro orbitali sp 3 due sono doppiamente occupati e costituiscono le coppie solitarie mentre due sono semiriempiti e formano i due legami O-H per sovrapposizione con gli orbitali 1s dei due atomi di idrogeno. Se non si facesse uso degli ibridi sp 3 i legami i legami O-H sarebbero formati dalla sovrapposizione di due orbitali 2p con gli 1s degli H e l'angolo HOH dovrebbe essere di 90 (cioè quello tra due orbitali p) in disaccordo col valore sperimentale

97 Molecola di NH 3 Anche in questo caso l'azoto ha già tre elettroni spaiati ma è necessario ricorrere allo schema di ibridizzazione sp 3 per giustificare la sua geometria, piegata con angolo HNH=107 Atomo N config. fondamentale Atomo N ibridizzato 1s 2s 2p 1s sp 3 Formazione dei 3 legami N-H secondo la teoria VB per sovrapposizione dei tre sp 3 semiriempiti con gli 1s dei tre idrogeni La coppia solitaria occupa il restante orbitale sp 3

98 Uno dei quattro orbitali sp 3 è occupato dalla coppia solitaria mentre tre sono occupati da un elettrone spaiato e formano i legami N-H per sovrapposizione con gli orbitali 1s degli atomi di idrogeno. Anche qui se non si facesse uso degli ibridi sp 3 i legami i legami N- H sarebbero formati dalla sovrapposizione di due orbitali 2p con gli 1s degli H e l'angolo HNH dovrebbe essere di 90 in disaccordo con il valore sperimentale.

99 Teoria VB per 5 e 6 coppie di elettroni In questo caso è necessario ricorrere agli ibridi sp 3 d e sp 3 d 2 Molecola PF 5 Per formare 5 legami l atomo di fosforo deve utilizzare gli orbitali ibridi sp 3 d in accordo con la geometria bipiramidale E E E 3d 3d 3d 3p 3p sp 3 d 3s 3s Atomo P configuraz. fondamentale Atomo P configuraz. eccitata Atomo P ibridizzato

100 Come visto per gli orbitali sp x questo processo è schematizzato su un unica linea come segue: Atomo P config. fondamentale 3s 3p 3d Atomo P config. eccitata 3s 3p 3d Atomo P ibridizzato sp 3 d 3d Essendo ottenuti dalla combinazione lineare di cinque orbitali, un s, tre p, e un d, gli orbitali ibridi sp 3 d sono cinque

101 Gli orbitali ibridi sp 3 d hanno la solita forma bilobata con uno dei due lobi molto piccolo. Essi sono disposti attorno all atomo di fosforo nelle direzioni dei vertici di una bipiramide trigonale che è poi la geometria molecolare

102 I cinque legami P-F sono formati dalla sovrapposizione di ciascuno dei cinque orbitali sp 3 d semiriempiti con un orbitale 2p del fluoro

103 Molecola SF 6 Per formare i 6 legami l atomo di zolfo deve utilizzare orbitali ibridi sp 3 d 2 in accordo con una geometra ottaedrica E E E 3d 3d 3d 3p 3p sp 3 d 2 3s 3s Atomo S configuraz. fondamentale Atomo S configuraz. eccitata Atomo S ibridizzato

104 Questo processo è schematizzato su un unica linea come: Atomo S config. fondamentale 3s 3p 3d Atomo S config. eccitata 3s 3p 3d Atomo S ibridizzato sp 3 d 2 3d Essendo ottenuti dalla combinazione lineare di sei orbitali, un s, tre p, e due d, gli orbitali ibridi sp 3 d 2 sono sei

105 Gli orbitali ibridi sp 3 d 2 hanno la solita forma bilobata con uno dei due lobi molto piccolo e spesso non disegnato. Essi sono disposti attorno all atomo di zolfo nelle direzioni dei vertici di un ottaedro che è la geometria molecolare

106 I sei legami S-F sono formati dalla sovrapposizione di ciascuno dei sei orbitali sp 3 d 2 semiriempiti con un orbitale 2p del fluoro

107 Orbitali ibridi e teoria VSEPR Esiste una corrispondenza diretta tra lo schema di ibridizzazione dell'atomo centrale e la teoria VSEPR. In particolare per ognuna delle geometrie previste dalla teoria VSEPR esiste uno schema di ibridizzazione tale che gli orbitali ibridi corrispondenti sono disposti nello spazio con la stessa geometria e, in seguito alla sovrapposizione con un orbitale degli atomi esterni, conducono esattamente alla stessa geometria molecolare. Orbitale ibrido n orbitali geometria VSEPR n coppie sp 2 lineare 2 sp 2 3 trigonale planare 3 sp 3 4 tetraedrica 4 sp 3 d 5 trigonale bipiramidale 5 sp 3 d 2 6 ottaedrica 6

108 Nel caso in cui ci siano coppie non leganti queste occupano alcuni degli orbitali ibridi e solo gli orbitali ibridi con l elettrone spaiato formano un legame per sovrapposizione con l orbitale semiriempito dell atomo esterno. Ad esempio le seguenti molecole hanno tutte la stessa disposizione tetraedrica dei quattro ibridi sp 3, ma geometrie molecolari diverse D d CH 4 NH 3 H2 O sp 3 sp 3 sp 3 tetraedrica trigonale piramidale piegata

109 Architettura delle molecole e forza dei legami Nella formazione di legami gli orbitali ibridi permettono la massima distanza tra le coppie di elettroni (geometrie molecolari) e la maggior sovrapposizione (legami più forti) orbitali ibridi 1 s + 3 p 1 s + 2 p 1 s +1 p 4 ibridi sp 3 3 ibridi sp 2 2 ibridi sp Distanze angolari tra gli orbitali ibridi tetraedro planari

110 Carica formale La coppia di elettroni che costituisce un legame è in compartecipazione tra i due atomi legati. Immaginiamo di spezzare tutti i legami nella molecola attribuendo per ogni legame un elettrone ad ogni atomo legato: O Cl Cl carica formale: Cl = 0, O = 0 La carica che l atomo viene ad assumere è detta carica formale, essa è la differenza tra il numero di elettroni dell atomo neutro ed il numero di elettroni della particella così formata Quando per una molecola è possibile scrivere più di una formula di struttura elettronica, la formula più probabile è quella in cui gli atomi hanno carica formale più bassa o uguale a 0. Esempio: POCl 3, BeCl 2

111 Risonanza Esempio: struttura della molecola SO 3 (ordine di legame=1.33), C 6 H 6 (ordine di legame=1.5) Quando la struttura elettronica di un molecola reale viene descritta come una combinazione di n formule limite, si dice che si ha risonanza tra le n formule limite e che la struttura elettronica della molecola reale è un ibrido di risonanza delle forme limite L energia di risonanza è la differenza tra il valore più basso delle energie delle formule limite e l energia effettiva della molecola se E I < E II l energia della molecola reale E < E I e l energia di risonanza = E I E Esercizio. scrivere le formule risonanti per le seguenti molecole o ioni molecolari: NO 2, NO 3-, SO 3 2-

IBRIDAZIONE e GEOMETRIA MOLECOLARE

IBRIDAZIONE e GEOMETRIA MOLECOLARE IBRIDAZIONE e GEOMETRIA MOLECOLARE Esempio: struttura della molecola del metano CH 4 1s 2s 2p Configurazione elettronica del C Per esempio il carbonio può utilizzare la configurazione in cui un elettrone

Dettagli

Metodi basati sulla meccanica quantistica

Metodi basati sulla meccanica quantistica Metodi basati sulla meccanica quantistica La descrizione più corretta della struttura elettronica delle molecole, come quella degli atomi, è basata sulla meccanica quantistica. Esistono due principali

Dettagli

TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR)

TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR) TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR) Metodi basati sulla meccanica quantistica: VB e MO La descrizione più corretta della struttura elettronica delle molecole, come quella

Dettagli

TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR)

TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR) TEORIA DEL LEGAME DI VALENZA (VB) e GEOMETRIA MOLECOLARE (teoria VSEPR) Metodi basati sulla meccanica quantistica: VB e MO La descrizione più corretta e quantitativa della struttura elettronica delle molecole,

Dettagli

Il legame chimico II: la geometria molecolare e l ibridizzazione degli orbitali atomici. Capitolo 10

Il legame chimico II: la geometria molecolare e l ibridizzazione degli orbitali atomici. Capitolo 10 Il legame chimico II: la geometria molecolare e l ibridizzazione degli orbitali atomici Capitolo 10 Legame tra un derivato del Buckyball e il sito dell HIV-Protease Repulsione delle coppie di elettroni

Dettagli

IL LEGAME COVALENTE SECONDO LA MECCANICA ONDULATORIA L

IL LEGAME COVALENTE SECONDO LA MECCANICA ONDULATORIA L IL LEGAME COVALENTE SECONDO LA MECCANICA ONDULATORIA L elettrone è dissolto in una nube di carica, ovvero il concetto di orbitale sostituisce il di Lewis LEGAME DI VALENZA (VB) Sviluppo quantomeccanico

Dettagli

Il legame chimico ATOMI MOLECOLE

Il legame chimico ATOMI MOLECOLE Il legame chimico Gli atomi tendono a combinarsi con altri atomi per dare un sistema finale più stabile di quello iniziale (a minor contenuto di energia). ATOMI MOLECOLE 1 Stati repulsivi di non legame

Dettagli

I due atomi di idrogeno condividono un elettrone ciascuno, raggiungendo ambedue la configurazione stabile 1s 2 guadagno globale di energia.

I due atomi di idrogeno condividono un elettrone ciascuno, raggiungendo ambedue la configurazione stabile 1s 2 guadagno globale di energia. LEGAME COVALENTE H. +.H d H:H Lewis (oppure H-H Kekulè) 1s 1s 1s 2 1s 2 I due atomi di idrogeno condividono un elettrone ciascuno, raggiungendo ambedue la configurazione stabile 1s 2 guadagno globale di

Dettagli

Il Legame Chimico e la Struttura Molecolare

Il Legame Chimico e la Struttura Molecolare A.A.2016 2017 CCS-Biologia CCS-Scienze Geologiche 1 Il Legame Chimico e la Struttura Molecolare Energia di interazione di due atomi di idrogeno Cap 8. 1-7, 9, 10(a/b), 17-20, 27-28, 31-33, 37-40, 52, 93-96

Dettagli

Formule di Lewis e regola dell ottetto

Formule di Lewis e regola dell ottetto Formule di Lewis e regola dell ottetto 1916-1919 Lewis si accorse che: Qualcosa di unico nelle configurazioni elettroniche dei gas nobili è responsabile della loro inerzia; gli atomi degli altri elementi

Dettagli

Legame covalente. H 1s un protone e un elettrone

Legame covalente. H 1s un protone e un elettrone Legame covalente H 1s un protone e un elettrone Il legame covalente è formato da una coppia di elettroni condivisa fra due atomi. L energia richiesta per separare gli atomi legati è detta energia di legame.

Dettagli

I legami covalenti eteronucleari spostano la carica del legame sull atomo più elettronegativo

I legami covalenti eteronucleari spostano la carica del legame sull atomo più elettronegativo La polarità I legami covalenti eteronucleari spostano la carica del legame sull atomo più elettronegativo L elettronegatività è il parametro di riferimento utilizzato per valutare il trasferimento di carica

Dettagli

Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi

Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi LE MOLECOLE Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi ChimicaGenerale_lezione8 1 Risonanza * La teoria della risonanza

Dettagli

Fra le poche eccezioni notiamo i gas nobili che sono particolarmente stabili e non reattivi.

Fra le poche eccezioni notiamo i gas nobili che sono particolarmente stabili e non reattivi. LEGAME CHIMICO Solo raramente si trovano in natura sostanze costituite da atomi isolati. In genere gli atomi si trovano combinati fra loro in composti molecolari, ionici o metallici. Fra le poche eccezioni

Dettagli

LEGAME CHIMICO In genere gli atomi si trovano combinati fra loro in composti molecolari, ionici o metallici.

LEGAME CHIMICO In genere gli atomi si trovano combinati fra loro in composti molecolari, ionici o metallici. LEGAME CIMICO In genere gli atomi si trovano combinati fra loro in composti molecolari, ionici o metallici. Fra le poche eccezioni notiamo i gas nobili che sono particolarmente stabili e non reattivi.

Dettagli

un legame covalente due legami covalenti? tre legami covalenti due legami covalenti un legame covalente

un legame covalente due legami covalenti? tre legami covalenti due legami covalenti un legame covalente e C N un legame covalente due legami covalenti? tre legami covalenti O F Ne 1s 2s 2p due legami covalenti un legame covalente C 1s 2s 2p ibridazione quattro legami covalenti Cariche Formali Usando le strutture

Dettagli

La struttura di ioni e molecole

La struttura di ioni e molecole La struttura di ioni e molecole Inizialmente: consideriamo atomi che non danno espansione dell ottetto e non ci interessiamo della geometria delle molecole Alcune regole per individuare la posizione degli

Dettagli

Formule di Lewis e geometria molecolare

Formule di Lewis e geometria molecolare Formule di Lewis e geometria molecolare Formalismo simbolico di Lewis Rappresentazione degli elettroni di valenza; permette di seguire gli elettroni di valenza durante la formazione di un legame Consiste

Dettagli

Corso di Studi di Fisica Corso di Chimica

Corso di Studi di Fisica Corso di Chimica Corso di Studi di Fisica Corso di Chimica Luigi Cerruti www.minerva.unito.it Lezioni 13-14 2010 Configurazioni elettroniche Descrizioni diverse Sistema periodico Configurazioni elettroniche Il modello

Dettagli

METALLI: bassa energia di ionizzazione bassa affinità elettronica. NON METALLI: elevata energia di ionizzazione elevata affinità elettronica

METALLI: bassa energia di ionizzazione bassa affinità elettronica. NON METALLI: elevata energia di ionizzazione elevata affinità elettronica METALLI: bassa energia di ionizzazione bassa affinità elettronica NON METALLI: elevata energia di ionizzazione elevata affinità elettronica LEGAME CHIMICO La formazione di legami tra atomi per formare

Dettagli

IL LEGAME CHIMICO. Per descrivere come gli elettroni si distribuiscono nell atomo attorno al nucleo si può far riferimento al MODELLO A GUSCI

IL LEGAME CHIMICO. Per descrivere come gli elettroni si distribuiscono nell atomo attorno al nucleo si può far riferimento al MODELLO A GUSCI IL LEGAME CIMICO Come dagli atomi si costruiscono le molecole 02/19/08 0959 PM 1 Per descrivere come gli elettroni si distribuiscono nell atomo attorno al nucleo si può far riferimento al MODELLO A GUSCI

Dettagli

Teorie del legame chimico. Teorie del legame chimico

Teorie del legame chimico. Teorie del legame chimico Teorie del legame chimico Le teorie proposte per la trattazione del legame chimico si prefiggono i seguenti scopi: 1. Prevedere la formazione di un legame tra due elementi 2. Predire la lunghezza del legame

Dettagli

IL LEGAME SIGMA σ E IL LEGAME PI- GRECO π

IL LEGAME SIGMA σ E IL LEGAME PI- GRECO π IL LEGAME SIGMA σ E IL LEGAME PI- GRECO π La teoria di Lewis considera gli elettroni di valenza degli atomi che formano legami,ma prescinde totalmente dal fatto che tali elettroni sono descritti da orbitali

Dettagli

1. L energia di legame. 2. I gas nobili e a regola dell ottetto. 3. Il legame covalente. 4. Il legame covalente dativo. 5. Il legame covalente polare

1. L energia di legame. 2. I gas nobili e a regola dell ottetto. 3. Il legame covalente. 4. Il legame covalente dativo. 5. Il legame covalente polare Capitolo 10 I legami chimici 1. L energia di legame 2. I gas nobili e a regola dell ottetto 3. Il legame covalente 4. Il legame covalente dativo 5. Il legame covalente polare 6. Il legame ionico 7. I composti

Dettagli

Legame chimico unità 1, modulo D del libro

Legame chimico unità 1, modulo D del libro Legame chimico unità 1, modulo D del libro PERCHÉ IL LEGAME CHIMICO? Gli atomi si trovano raramente isolati, spesso due o più atomi si uniscono tramite un legame chimico. Perché ciò avviene? Perché l insieme

Dettagli

LEGAME COVALENTE: TEORIA DEGLI ORBITALI MOLECOLARI

LEGAME COVALENTE: TEORIA DEGLI ORBITALI MOLECOLARI LEGAME COVALENTE: TEORIA DEGLI ORBITALI MOLECOLARI Il legame covalente e la geometria delle molecole possono essere descritti dalla teoria del legame di valenza: i legami risultano dalla condivisione di

Dettagli

Legame e struttura molecolare

Legame e struttura molecolare 2016 2017 CCS Biologia CCS-Scienze Geologiche 1 Legame e struttura molecolare Orbitali atomici Molecole Cap 9. 1-3, 15-16, 18, 21-23, 40 CONSIDERAZIONI PRELIMINARI 2 Le strutture di Lewis e la teoria VSEPR

Dettagli

CAPITOLO 4 STRUTTURE MOLECOLARI

CAPITOLO 4 STRUTTURE MOLECOLARI APITL 4 STRUTTURE MLELARI 4.1 (a) Di seguito è mostrata la struttura di Lewis di P 3. Nella teoria VSEPR il numero di coppie di elettroni attorno all atomo centrale è fondamentale per determinare la struttura.

Dettagli

Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico

Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico I LEGAMI CHIMICI Legami atomici o forti Legami molecolari o deboli Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico Legame dipolo-dipolo Legame idrogeno Legame

Dettagli

CHIMICA ORGANICA = STUDIO DEI COMPOSTI DEL CARBONIO. energia superiore. energia inferiore. orbitale s

CHIMICA ORGANICA = STUDIO DEI COMPOSTI DEL CARBONIO. energia superiore. energia inferiore. orbitale s CIMICA ORGANICA = STUDIO DEI COMPOSTI DEL CARBONIO C elemento del secondo periodo della tavola periodica; numero atomico = 6 configurazione elettronica del C 2p 2s 1s energia superiore energia inferiore

Dettagli

Teoria degli orbitali ibridi

Teoria degli orbitali ibridi Legami σ e π Teoria degli orbitali ibridi FORMAZIONE DEI LEGAMI CHIMICI COVALENTI L orbitale della molecola H 2 ha simmetria cilindrica intorno all asse internucleare H-H LEGAME SIGMA Gli orbitali molecolari

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 13 I legami chimici 3 Sommario (I) 1. L energia di legame 2. I gas nobili e la regola dell ottetto 3. Il legame covalente 4.

Dettagli

GEOMETRIA MOLECOLARE

GEOMETRIA MOLECOLARE GEOMETRIA MOLECOLARE Ibridazione La teoria VSEPR 1 Ibridazione e geometria molecolare Teoria di Lewis e VB vista finora non sono in grado di descrivere correttamente la geometria di molte molecole anche

Dettagli

Il legame covalente , P 4 , O 3 , N 2

Il legame covalente , P 4 , O 3 , N 2 Il legame covalente Nel legame covalente gli elettroni responsabili del legame sono condivisi tra i due atomi legati: essi percorrono nel tempo lo spazio intorno a entrambi gli atomi, nonché la regione

Dettagli

La forma delle molecole

La forma delle molecole La forma delle molecole Geometria molecolare: disposizione relativa nello spazio degli atomi costituenti una molecola o un composto covalente a struttura infinita La geometria delle molecole si esprime

Dettagli

TEORIA DEGLI ORBITALI MOLECOLARI

TEORIA DEGLI ORBITALI MOLECOLARI TEORIA DEGLI ORBITALI MOLECOLARI La teoria VB è la teoria più semplice basata sulla meccanica quantistica. Essa riesce a descrivere correttamente la geometria di moltissime molecole ma non permette di

Dettagli

1. L energia di legame

1. L energia di legame legami chimici 1. L energia di legame Nonostante l enorme numero di combinazioni possibili fra gli atomi, non tutte sono realizzabili: un composto si forma solo se la sua energia potenziale è minore dei

Dettagli

Zolfo (Z = 16) Conf. Elettronica 1s 2 2s 2 2p 6 3s 2 3p 4 Conf. Elettronica esterna 3s 2 3p 4

Zolfo (Z = 16) Conf. Elettronica 1s 2 2s 2 2p 6 3s 2 3p 4 Conf. Elettronica esterna 3s 2 3p 4 TAVOLA PERIODICA DEGLI ELEMENTI Gli elementi sono ordinati nella tavola periodica secondo numero atomico crescente ed in base alle loro proprietà chimico-fisiche che seguono un andamento periodico. Gli

Dettagli

Atomi e molecole. Gli atomi degli elementi si trovano in natura generalmente combinati tra loro in molecole o composti ionici

Atomi e molecole. Gli atomi degli elementi si trovano in natura generalmente combinati tra loro in molecole o composti ionici IL LEGAME CHIMICO Atomi e molecole È estremamente difficile trovare in natura una sostanza formata da singoli atomi isolati Solo i gas nobili sono presenti in natura come gas monoatomici Gli atomi degli

Dettagli

Tavola periodica e previsione sul comportamento chimico degli elementi (numero di ossidazione)- orbitali ibridi

Tavola periodica e previsione sul comportamento chimico degli elementi (numero di ossidazione)- orbitali ibridi Tavola periodica e previsione sul comportamento chimico degli elementi (numero di ossidazione)- orbitali ibridi Gli elementi sono ordinati secondo numero atomico Z ( numero dei protoni ) crescente Il numero

Dettagli

Regola dell'ottetto e suo superamento Legame ionico Covalenza e ordine di legame Carica formale Risonanza ElettronegativitÄ e polaritä del legame

Regola dell'ottetto e suo superamento Legame ionico Covalenza e ordine di legame Carica formale Risonanza ElettronegativitÄ e polaritä del legame IL LEGAME CHIMICO Regola dell'ottetto e suo superamento Legame ionico Covalenza e ordine di legame Carica formale Risonanza ElettronegativitÄ e polaritä del legame 1 IL LEGAME CHIMICO Il legame chimico

Dettagli

ESERCIZI PREPARATORI PER IL COMPITO DI CHIMICA MODULO 2

ESERCIZI PREPARATORI PER IL COMPITO DI CHIMICA MODULO 2 ESERCIZI PREPARATORI PER IL COMPITO DI CHIMICA MODULO 2 69 Il blocco s delle Tavola periodica è costituito dai seguenti elementi a) metalli di transizione b) metalli alcalini c) alogeni d) metalli alcalini

Dettagli

Teoria dell Orbitale Molecolare

Teoria dell Orbitale Molecolare Teoria dell Orbitale Molecolare Un orbitale molecolare è il risultato della combinazione lineare degli orbitali atomici appartenenti agli atomi che costituiscono la molecola; questi orbitali molecolari

Dettagli

Legame covalente: la teoria del legame di valenza

Legame covalente: la teoria del legame di valenza Legame covalente: la teoria del legame di valenza La teoria di Lewis, un legame è costituito da una coppia di elettroni (postulata prima della meccanica quantistica), considera gli elettroni di valenza

Dettagli

GEOMETRIE MOLECOLARI: TEORIE VSEPR

GEOMETRIE MOLECOLARI: TEORIE VSEPR GEOMETRIE MOLECOLARI: TEORIE VSEPR (Valence shell Electron Pair Repulsion: repulsione delle coppie di elettroni di valenza) e VB (Valence Bond: legame di valenza) Rappresentazione delle molecole con le

Dettagli

LEGAMI CHIMICI e GEOMETRIA MOLECOLARE

LEGAMI CHIMICI e GEOMETRIA MOLECOLARE DAI LEGAMI CH HIMICI ALLA GEOMETRIA DELLE MOLECOLE. LEGAMI CHIMICI e GEOMETRIA MOLECOLARE Cos è un legame chimico? Il legame chimico non esiste Quanti tipi di legame? Legame ionico Legame covalente LEGAME

Dettagli

I LEGAMI CHIMICI. Configurazione elettronica stabile: è quella in cui tutti i livelli energetici dell atomo sono pieni di elettroni

I LEGAMI CHIMICI. Configurazione elettronica stabile: è quella in cui tutti i livelli energetici dell atomo sono pieni di elettroni I LEGAMI CIMICI In natura sono pochi gli elementi che presentano atomi allo stato libero. Gli unici elementi che sono costituiti da atomi isolati si chiamano gas nobili o inerti, formano il gruppo VIII

Dettagli

Tutti gli atomi (tranne i gas nobili) interagiscono tra di loro per formare molecole

Tutti gli atomi (tranne i gas nobili) interagiscono tra di loro per formare molecole Il legame chimico 1 Tutti gli atomi (tranne i gas nobili) interagiscono tra di loro per formare molecole Teorie del legame chimico 2 1. Teoria di Lewis (o dell ottetto) + metodo VSEPR per determinazione

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 10 Il sistema periodico 1. L energia di legame 2. I gas nobili e le regole dell ottetto 3. Il

Dettagli

Fondamenti di chimica organica Janice Gorzynski Smith Copyright 2009 The McGraw Hill Companies srl

Fondamenti di chimica organica Janice Gorzynski Smith Copyright 2009 The McGraw Hill Companies srl Soluzioni ai problemi proposti nel libro Capitolo 1 1.1 Il numero di massa è il numero dei protoni e dei neutroni. Il numero atomico è il numero dei protoni ed è identico per tutti gli isotopi. a. Numero

Dettagli

Elementi di Chimica Organica

Elementi di Chimica Organica CORSO DI LAUREA IN BIOINFORMATICA Elementi di Chimica Organica Mariapina D Onofrio (mariapina.donofrio@univr.it) Orario ricevimento: mar e giov 11:30-13:30 Corso: 6 CFU = 48 ORE Lezioni: Mar 8:30-10:30,

Dettagli

GEOMETRIA MOLECOLARE. La struttura di Lewis non fornisce alcuna indicazione sulla forma delle molecole in

GEOMETRIA MOLECOLARE. La struttura di Lewis non fornisce alcuna indicazione sulla forma delle molecole in GEOMETRIA MOLECOLARE La struttura di Lewis non fornisce alcuna indicazione sulla forma delle molecole in quanto dipende dagli ANGOLI DI LEGAME cioè gli angoli tra le linee che congiungono i nuclei degli

Dettagli

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu

Valitutti, Falasca, Tifi, Gentile. Chimica. concetti e modelli.blu Valitutti, Falasca, Tifi, Gentile Chimica concetti e modelli.blu 2 Capitolo 14 Le nuove teorie di legame 3 Sommario 1. I limiti della teoria di Lewis 2. Il legame chimico secondo la meccanica quantistica

Dettagli

LA STRUTTURA DELLE MOLECOLE. Orbitali molecolari e legame chimico

LA STRUTTURA DELLE MOLECOLE. Orbitali molecolari e legame chimico LA STRUTTURA DELLE MOLECOLE Orbitali molecolari e legame chimico GLI ORBITALI MOLECOLARI Quando degli atomi collidono tra di loro i loro nuclei ed elettroni vengono a trovarsi in prossimità influenzandosi

Dettagli

STRUTTURA E FORMA DELLE MOLECOLE

STRUTTURA E FORMA DELLE MOLECOLE Ricapitolando Z numero atomico = n. di protoni A numero di massa = n. di protoni n. di neutroni 1 UMA = 1/12 x1.99 10 23 g = 1.66 10 24g = 1/12 massa 12C PA peso atomico massa media degli atomi contenuti

Dettagli

Lezione n. 22. Molecole poliatomiche Metodo VSEPR Orbitali ibridi Coniugazione π. 02/03/2008 Antonino Polimeno 1

Lezione n. 22. Molecole poliatomiche Metodo VSEPR Orbitali ibridi Coniugazione π. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 22 Molecole poliatomiche Metodo VSEPR Orbitali ibridi Coniugazione π 02/03/2008 Antonino Polimeno 1 Molecole poliatomiche (1) - Siamo ora

Dettagli

I LEGAMI CHIMICI E LA REGOLA DELL OTTETTO

I LEGAMI CHIMICI E LA REGOLA DELL OTTETTO I LEGAMI CHIMICI E LA REGOLA DELL OTTETTO REGOLA DELL OTTETTO: Tutti gli atomi si legano, cedono, acquistano o condividono elettroni per raggiungere un livello esterno pieno di otto (o due) elettroni.

Dettagli

Il legame chimico. Gli atomi sia nelle sostanze elementari che nei composti sono tenuti insieme dai legami chimici

Il legame chimico. Gli atomi sia nelle sostanze elementari che nei composti sono tenuti insieme dai legami chimici Il legame chimico Gli atomi sia nelle sostanze elementari che nei composti sono tenuti insieme dai legami chimici Fra due atomi o fra due gruppi di atomi è presente un legame chimico quando l entità che

Dettagli

Chimica. Lezione 2 Parte II Composti ionici e molecolari

Chimica. Lezione 2 Parte II Composti ionici e molecolari Chimica Lezione 2 Parte II Composti ionici e molecolari Composti molecolari Gli ELEMENTI chimici (ad eccezione dei gas nobili) vivono in aggregati più o meno complessi Sono aggregati discreti (hanno un

Dettagli

IBRIDAZIONE. MODELLO DELL ORBITALE di LEGAME

IBRIDAZIONE. MODELLO DELL ORBITALE di LEGAME IBRIDAZIONE MODELLO DELL ORBITALE di LEGAME Approccio più semplice per descrivere la struttura elettronica di una specie sfruttando il concetto di orbitale. METANO Gli atomi nel formare legami usano elettroni

Dettagli

I legami chimici e le molecole inorganiche

I legami chimici e le molecole inorganiche Le molecole biatomiche con legami covalenti omopolari La molecola biatomica dell idrogeno, H 2 L atomo di idrogeno (H) ha numero atomico Z = 1. La sua configurazione elettronica è 1s 2. Appartenendo al

Dettagli

TEORIA DEL LEGAME DI VALENZA

TEORIA DEL LEGAME DI VALENZA TERIA DEL LEGAME DI VALENZA ( Strutture di LEWIS ) Tutti gli atomi tendono ad acquisire la struttura elettronica dei gas nobili Il tipo di legame è correlato alla elettronegatività degli atomi che si legano

Dettagli

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA)

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA) La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA) IL CARBONIO E un non metallo, appartiene al IV gruppo ed al II periodo. Possiede 4 elettroni esterni per

Dettagli

CORSO DI LAUREA IN BIOTECNOLOGIE CHIMICA ORGANICA. - Brown, Poon, INTRODUZIONE ALLA CHIMICA ORGANICA, EdiSES

CORSO DI LAUREA IN BIOTECNOLOGIE CHIMICA ORGANICA. - Brown, Poon, INTRODUZIONE ALLA CHIMICA ORGANICA, EdiSES CORSO DI LAUREA IN BIOTECNOLOGIE CHIMICA ORGANICA TESTI: - John McMurry, CHIMICA ORGANICA, PICCIN - Brown, Poon, INTRODUZIONE ALLA CHIMICA ORGANICA, EdiSES - Janice Gorzynski Smith, FONDAMENTI DI CHIMICA

Dettagli

I legami chimici. (parte seconda) Lezioni d'autore

I legami chimici. (parte seconda) Lezioni d'autore I legami chimici (parte seconda) Lezioni d'autore Introduzione (I) La teoria del legame di Lewis considera gli elettroni di valenza degli atomi che formano legami, ma prescinde totalmente dal fatto che

Dettagli

Lezione 3 - Legame chimico

Lezione 3 - Legame chimico Lezione 3 - Legame chimico Generalità sul legame chimico Strutture di Lewis Elettronegatività e legame chimico Il legame covalente Gli orbitali molecolari e Il legame ionico Il legame metallico Orbitali

Dettagli

CHIMICA II (CHIMICA ORGANICA)

CHIMICA II (CHIMICA ORGANICA) CHIMICA II (CHIMICA ORGANICA) Prof. Gennaro Piccialli Prof. Aldo Galeone Prof. Giorgia Oliviero Testo Consigliato: gruppo 1 (matricole A-E) gruppo 2 (matricole F-O) gruppo 3 (matricole P-Z) Introduzione

Dettagli

CHIMICA ORGANICA PER BIOTECNOLOGIE con esercitazioni di LABORATORIO D. Savoia

CHIMICA ORGANICA PER BIOTECNOLOGIE con esercitazioni di LABORATORIO D. Savoia CHIMICA RGANICA PER BITECNLGIE con esercitazioni di LABRATRI D. Savoia Brown, Poon - Introduzione alla Chimica rganica Brown, Foote - Chimica rganica Bruyce - Chimica rganica Solomons McMurray Etc Cos

Dettagli

H 2 O 2 (aq) 2e - + O 2 (g) H + (aq) MnO 2 (s) +2e H + (aq Mn 2+ (aq) +2 H 2 O (l).

H 2 O 2 (aq) 2e - + O 2 (g) H + (aq) MnO 2 (s) +2e H + (aq Mn 2+ (aq) +2 H 2 O (l). Problema n.1 Bilanciare la seguente reazione redox utilizzando il metodo ionico-elettronico: H 2 2 (aq) + Mn 2 (s) + H + (aq) Mn 2+ (aq) + 2 (g) + H 2 (l). Calcolare la massa di Mn 2 (s) necessaria per

Dettagli

Esercizi sulle Geometrie Molecolari

Esercizi sulle Geometrie Molecolari Insegnamento di Chimica Generale 083424 - CCS CHI e MAT A.A. 2015/2016 (I Semestre) Esercizi sulle Geometrie Molecolari Prof. Dipartimento CMIC Giulio Natta http://iscamap.chem.polimi.it/citterio Esercizio

Dettagli

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto

1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto 1.La forma delle molecole 2.La teoria VSEPR 3.Molecole polari e apolari 4.Le forze intermolecolari 5.Legami a confronto 1 1. La forma delle molecole Molte proprietà delle sostanze dipendono dalla forma

Dettagli

06/03/2012. Elementi in chimica organica

06/03/2012. Elementi in chimica organica CORSO DI LAUREA IN BIOINFORMATICA CHIMICA ORGANICA E DELLE MACROMOLECOLE BIOLOGICHE MICHAEL ASSFALG Lezione: 6 CFU = 48 ORE Lun 14:30-16:30, 16:30, Mer 8:30-10:30 PROVA FINALE: SCRITTO (+ ORALE) TESTI:

Dettagli

Composti di coordinazione

Composti di coordinazione Composti di coordinazione Nelle molecole di un COMPOSTO DI COORDINAZIONE l atomo centrale e legato ad un numero di atomi superiore al suo numero di ossidazione. Lo studio dei composti di coordinazione

Dettagli

Corso di Laurea in CHIMICA (L.T.) Esercitazione n. 1 - Struttura delle molecole e modo di scrivere le formule

Corso di Laurea in CHIMICA (L.T.) Esercitazione n. 1 - Struttura delle molecole e modo di scrivere le formule orso di Laurea in IMIA (L.T.) IMIA RGANIA I con Elementi di Laboratorio Esercitazione n. 1 - Struttura delle molecole e modo di scrivere le formule TERMINI ED ARGMENTI DA NSERE PER L SVLGIMENT DEGLI ESERIZI

Dettagli

VIRT&L-COMM IL LEGAME CHIMICO. TFA II Ciclo a.a.2014/2016. Dott. Angela Casu ISSN:

VIRT&L-COMM IL LEGAME CHIMICO. TFA II Ciclo a.a.2014/2016. Dott. Angela Casu ISSN: IL LEGAME CHIMICO TFA II Ciclo a.a.2014/2016 Dott. Angela Casu UN VIDEO INTRODUTTIVO Per vedere il video CLICCA QUI Sommario 1. Il legame chimico 2. L elettronegatività 3. Il legame ionico 4. Composti

Dettagli

Il legame chimico. Lezioni 17-20

Il legame chimico. Lezioni 17-20 Il legame chimico Lezioni 17-20 1 Il legame chimico Le forze attrattive di natura elettrica che tengono uniti gli atomi in molecole o in composti ionici sono dette legami chimici. Legami atomici: covalente

Dettagli

LEGAMI INTRAMOLECOLARI

LEGAMI INTRAMOLECOLARI LEGAMI INTRAMOLECOLARI Introduzione La maggior parte degli elementi in natura non esistono allo stato atomico. Per legarsi tra loro a formare delle molecole, gli atomi modificano la distribuzione degli

Dettagli

Il legame chimico I: il legame covalente. Capitolo 9

Il legame chimico I: il legame covalente. Capitolo 9 Il legame chimico I: il legame covalente Capitolo 9 Gli elettroni di valenza sono gli elettroni del livello più esterno di un atomo. Gli elettroni di valenza sono quelli che partecipano alla formazione

Dettagli

Introduzione alla chimica organica. 1. Regola ottetto 2. Teoria del legame 3. Geometria delle molecole

Introduzione alla chimica organica. 1. Regola ottetto 2. Teoria del legame 3. Geometria delle molecole Introduzione alla chimica organica 1. Regola ottetto 2. Teoria del legame 3. Geometria delle molecole La chimica organica tratta di pochissimi atomi che si possono combinare in moltissimi modi Grande importanza

Dettagli

VSEPR Polarità Ibridizzazione

VSEPR Polarità Ibridizzazione VSEPR Polarità Ibridizzazione VSEPR VSEPR = Valance-Shell electron-pair repulsion Principio fondamentale: ciascun gruppo di elettroni di valenza attorno ad un atomo centrale è situato il più lontano possibile

Dettagli

Trasformazioni chimiche:

Trasformazioni chimiche: Il legame chimico 1 Trasformazioni chimiche Trasformazioni chimiche: Le sostanze si trasformano in altre sostanze aventi proprietà differenti (livello macroscopico). Le trasformazioni chimiche avvengono

Dettagli

Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi

Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi LE MOLECOLE Per conoscere le proprietà di una sostanza ne dobbiamo conoscere: * la struttura * il tipo di legame presente tra gli atomi ChimicaGenerale_lezione7 1 Il legame e la struttura La struttura

Dettagli

Legame covalente polare

Legame covalente polare Legame chimico: covalente polare Legame covalente polare Il passaggio dal legame covalente al legame ionico è il risultato di una distribuzione elettronica non simmetrica. Il simbolo δ (lettera greca delta

Dettagli

Chimica (A.A. 2010/2011)

Chimica (A.A. 2010/2011) Chimica (A.A. 2010/2011) Il legame chimico. Tipi di legame e proprietà generali. Il legame ionico (cenni). Il legame covalente. Teoria del legame di valenza (Ibridazione. Formule di struttura e rappresentazioni

Dettagli

ORBITA ORBIT LI ALI MOLECOLARI

ORBITA ORBIT LI ALI MOLECOLARI ORBITALI MOLECOLARI Una molecola è dotata di una serie di orbitali detti orbitali molecolari Gli elettroni risiedono negli orbitali molecolari che, in molti casi, sono distribuiti (delocalizzati) su tutta

Dettagli

LA STRUTTURA DELLE MOLECOLE. Le Molecole Poliatomiche

LA STRUTTURA DELLE MOLECOLE. Le Molecole Poliatomiche LA STRUTTURA DELLE MOLECOLE Le Molecole Poliatomiche LE MOLECOLE POLIATOMICE Le molecole poliatomiche sono quelle molecole che sono composte da più di due atomi e contengono nella maggior parte dei casi

Dettagli

Lezione 3. Legame Chimico. Teoria degli Orbitali Molecolari

Lezione 3. Legame Chimico. Teoria degli Orbitali Molecolari Lezione 3 Legame Chimico Teoria degli Orbitali Molecolari 1 Perchè si formano i legami? Un diagramma di energia mostra che un legame fra due atomi si forma se l energia del sistema diminuisce quando i

Dettagli

Descrivere come dedurre la polarità delle molecole dalla geometria molecolare STRUTTURA ELETTRONICA DEGLI ATOMI

Descrivere come dedurre la polarità delle molecole dalla geometria molecolare STRUTTURA ELETTRONICA DEGLI ATOMI Descrivere come dedurre la polarità delle molecole dalla geometria molecolare STRUTTURA ELETTRONICA DEGLI ATOMI Ogni atomo contiene un piccolo denso nucleo,formato da neutroni e protoni carichi positivamente.

Dettagli

Gli elettroni della molecola sono quindi descritti da

Gli elettroni della molecola sono quindi descritti da IL LEGAME COVALENTE: TEORIA DELL ORBITALE MOLECOLARE La molecola è considerata come un insieme di nuclei ed elettroni e, attraverso la valutazione delle reciproche interazioni, la teoria dell orbitale

Dettagli

Si possono distinguere tre tipi di legame con caratteristiche notevolmente diverse:

Si possono distinguere tre tipi di legame con caratteristiche notevolmente diverse: LEGAME CHIMICO Solo raramente si trovano in natura sostanze costituite da atomi isolati. In genere gli atomi si trovano combinati fra loro in composti molecolari, ionici o metallici. Fra le poche eccezioni

Dettagli

Forze intermolecolari

Forze intermolecolari Forze intermolecolari Le forze intermolecolari sono forze attrattive tra molecole, tra ioni o tra ioni e molecole. In assenza di tali forze tutte le molecole sarebbero gas le molecole possono stabilire

Dettagli

2 HCl. H 2 + Cl 2 ATOMI E MOLECOLE. Ipotesi di Dalton

2 HCl. H 2 + Cl 2 ATOMI E MOLECOLE. Ipotesi di Dalton Ipotesi di Dalton ATOMI E MOLECOLE 1.! Un elemento è formato da particelle indivisibili chiamate atomi. 2.! Gli atomi di uno specifico elemento hanno proprietà identiche. 3.! Gli atomi si combinano secondo

Dettagli

Struttura molecolare

Struttura molecolare Struttura molecolare Nella discussione sulle teorie del legame covalente dobbiamo ternere in considerazione che le teorie che abbiamo discusso rappresentano un tentativo di spiegare e organizzare quello

Dettagli

Legame Chimico. Legame Chimico

Legame Chimico. Legame Chimico Legame Chimico Fra due atomi o gruppi di atomi esiste un legame chimico se le forze agenti tra essi danno luogo alla formazione di un aggregato di atomi sufficientemente stabile da consentire di svelarne

Dettagli

ESEMPI DI QUIZ sulle precedenti lezioni

ESEMPI DI QUIZ sulle precedenti lezioni ESEMPI DI QUIZ sulle precedenti lezioni I numeri quantici sono: A.2 B.5 C.6 D.4 Il numero di neutroni è pari a: A.Il numero di protoni B.Il numero di elettroni C.Il numero di nuclei D.La differenza fra

Dettagli

Molecole e legami. Chimica generale

Molecole e legami. Chimica generale Molecole e legami Chimica generale Atomi e molecole È estremamente difficile trovare in natura una sostanza formata solamente da atomi semplici Solo i gas inerti dell ottavo gruppo sono presenti in natura

Dettagli

Elettronegatività Elettronegatività

Elettronegatività Elettronegatività Elettronegatività Nel legame covalente tra atomi uguali, la nuvola elettronica è simmetrica rispetto ai due nuclei (es. H 2, Cl 2, F 2 ) legame covalente apolare. Nel legame covalente tra atomi con Z eff

Dettagli

Roberta Pierattelli. Metalli in Biologia. Qualche richiamo di chimica generale e inorganica

Roberta Pierattelli. Metalli in Biologia. Qualche richiamo di chimica generale e inorganica Roberta Pierattelli Metalli in Biologia Qualche richiamo di chimica generale e inorganica Le proprietà periodiche n =1 n =2 n =3 n =4 n =5 n =6 n =7 Il numero del gruppo corrisponde alla somma degli elettroni

Dettagli

Legame chimico: covalente polare Legame covalente polare

Legame chimico: covalente polare Legame covalente polare Legame chimico: covalente polare Legame covalente polare Il passaggio dal legame covalente al legame ionico è il risultato di una distribuzione elettronica non simmetrica. Il simbolo δ (lettera greca delta

Dettagli

I NUMERI QUANTICI. per l = orbitale: s p d f

I NUMERI QUANTICI. per l = orbitale: s p d f I NUMERI QUANTICI I numeri quantici sono quattro. I primi tre servono a indicare e a distinguere i diversi orbitali. Il quarto numero descrive una proprietà tipica dell elettrone. Esaminiamo in dettaglio

Dettagli