Ripasso segnali e processi casuali. Trasmissione dell Informazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ripasso segnali e processi casuali. Trasmissione dell Informazione"

Transcript

1 Ripasso segnali e processi casuali 1

2 Breve ripasso di segnali e trasformate Dato un segnale s(t), la sua densità spettrale si calcola come dove S(f) è la trasformata di Fourier. L energia di un segnale dunque si calcola come G( f ) = S( f ) 2 E = " S( f ) 2 df = " s 2 ( t)dt Un segnale che passa attraverso un filtro viene trasformato in maniera che S 0 ( f ) = H( f )S f La sua densità spettrale cambia come G 0 ( f ) = S 0 f ( ) 2 = S f ( ) s 0 ( t) = s( t) "h( t) ( )H f ( ) 2 = S( f ) 2 H( f ) 2 = G( f ) H( f ) 2 2

3 Processo aleatorio Un processo aleatorio è una relazione che lega al risultato (casuale) di un esperimento una funzione nel tempo. A A 1 A 1 A 1 Noi considereremo solo i processi aleatori tempo-continui, che si rappresentano con la lettera maiuscola e la dipendenza dal tempo X(" i,t) # x i (t) Attenzione: per i fissato, il segnale x i (t) NON è casuale, ma deterministico, mentre a t fissato X(t) può assumere tutti i valori che le varie (infinite) x i (t) assumono in t e dunque X t = X(t) è una variabile casuale. 3

4 Caratterizzazione statistica Dato che X t = X(t) è una variabile casuale, si potrà definire una funzione cumulativa di probabilità F X (x,t) = P( X( t) " x) Tale funzione però non è sufficiente per caratterizzare il processo: a volte, ad esempio, serve sapere cosa succede al tempo t 1 e al tempo t 2 : F X (x,t) = P X t il che a sua volta richiede la conoscenza della funzione cumulativa congiunta (del secondo ordine): F X (x 1,x 2, t 1,t 2 ) = P X t 1 ( ( ) " x 1,X( t 2 ) " x 2 ) ( ( ) " x) In generale, servirà la conoscenza della funzione cumulativa di probabilità di ordine n, per ogni possibile n! F X (x 1,x 2,K,x n, t 1,t 2,K t n ) = P X t 1 ( ( ) " x 1,X( t 2 ) " x 2,K,X( t n ) " x n ) 4

5 Valor medio, potenza, varianza Per semplificarci la vita, è possibile ridursi a considerare solo alcuni indici statistici semplificati, come il valor medio: m X t la potenza: ( ) = E X( t) e la varianza: " X 2 t +# $ ( )dx f X (x,t) = d dx F X x,t ( ) = x f X x,t P X t ( ) = E& X t "# +# ( ) = $ x 2 f X x,t ( ) = E X 2 ( t) "# ( )dx Si noti che la media NON corrisponde necessariamente ad una delle possibili realizzazioni del processo, cioè ad una x i (t). ( ) $ ( ( )#m X ( t) ) 2 ' +* ) = x # m % ( + ( x ( t) ) 2 2 f X ( x,t)dx = P X ( t)# m X t #* ( ) 5

6 C X t 1,t 2 Autocorrelazione e covarianza E interessante considerare anche degli indici del secondo ordine, come la autocorrelazione (correlazione tra le variabili casuali corrispondenti a due istanti di tempo, t 1 e t 2 ): ( ) = E X t 1 R X t 1,t 2 +# +# $ "# "# ( ( )X( t 2 )) = $ x 1 x 2 f X ( x 1,x 2,t 1,t 2 )dx 1 dx 2 e la loro autocovarianza (misura indipendente dal valor medio): ( ) = E X t 1 (( ( )" m x ( t 1 ))( X( t 2 )" m x ( t 2 ))) = $ $ x 1 " m x t 1 = R X ( t 1,t 2 )" m x ( t 1 )m x ( t 2 ) +# +# "# "# ( ( )) x 2 " m x ( t 2 ) ( ) f X x 1,x 2,t 1,t 2 ( )dx 1 dx 2 Si noti che si parla di autocorrelazione e di autocovarianza perché, nonostante si considerino due istanti di tempo diversi, il processo è lo stesso. 6

7 Processi stazionari In un generico processo aleatorio, tutte le quantità introdotte precedentemente sono funzione del tempo, possono cambiare al variare degli istanti. Se tutte le funzioni statistiche che caratterizzano un processo sono invarianti rispetto al tempo, allora il processo si dice stazionario in senso stretto. f X (x 1,x 2,K,x n, t 1,t 2,K t n ) = f X (x 1,x 2,K,x n, t 1 +"t,t 2 + "t,k t n + "t) Si noti che l uguaglianza deve valere per ogni Δt, il che è praticamente impossibile da verificare. Inoltre, la stazionarietà in senso stretto (o forte) significa che non posso distinguere due processi che sono diversi, ma differiscono tra loro solo per una traslazione nel tempo utilizzando misure statistiche. 7

8 Statistiche del 1 ordine per processi stazionari Se un processo è stazionario in senso stretto, la sua funzione densità di probabilità del primo ordine deve soddisfare f x ( x,t) = f x ( x,t +"t), il che significa che deve essere indipendente dal tempo. Di conseguenza, la media di un processo stazionario in senso stretto soddisfa la stessa condizione, cioè è costante nel tempo. m x t +# ( ) = x f x x,t $ ( )dx = $ x f x ( x)dx = m X "# e similmente per le altre statistiche del primo ordine, come la potenza e la varianza: +# "# 2 P x ( t) = P X " X ( t 2 ) = " X 8

9 Statistiche di ordine superiore La stazionarietà di ordine due implica che f x ( x 1,x 2,t 1,t 2 ) = f x ( x 1,x 2,t 1 + "t,t 2 + "t) e che, di conseguenza, la funzione densità di probabilità congiunta, così come le statistiche come la autocorrelazione e la autocovarianza, risulta dipendente solo dalla differenza t 1 -t 2 e non dai particolari valori di t 1 e t 2. ( ) = $ x 1 x 2 f X x 1,x 2,t 1 "t 2 R X t 1,t 2 +# +# $ ( )dx 1 dx 2 = R X t 1 "t 2 "# "# ( ) Generalizzando, si può affermare che, in un processo stazionario in senso stretto, la funzione densità di probabilità di ordine n dipenderà solo dalle n-1 differenze di tempo t 1 -t 2, t 2 -t 3,, t n-1 -t n che ci sono tra gli n istanti di tempo t 1, t 2,, t n. Tali differenze, infatti, sono indipendenti dalla traslazione nel tempo. 9

10 Stazionarietà in senso lato Dato che la stazionarietà in senso stretto risulta praticamente impossibile da verificare, ci riduciamo a considerare una stazionarietà in senso lato, nel caso in cui siano valide: m X t ( ) = m X ( ) = R x ( t 1 " t 2 ) R X t 1,t 2 Facciamo un esempio: è stazionario in senso lato, mentre non lo è. X( t) = acos( 2"f 0 t +# ) f # ( $ ) = 1 2" X( t) = acos( 2"f 0 t +# ) f # ( $ ) = 1 " & $ %" ) rect ( + ' 2" * & $ % " /2) rect ( + ' " * 10

11 Autocorrelazione di un processo stazionario La autocorrelazione di un processo stazionario può essere scritta nella stessa forma di quella di un segnale deterministico: R X ( t 1,t 2 ) = R X ( t 1,t 1 +" ) # R x ( t 1 $t 2 ) = R X (") e per di più soddisfa le stesse condizioni: R X 0 ( ) = P X ( ) = E X 2 ( t) R X ("#) = E( X( t)x( t " #)) = E( X( t +# )X( t) ) = R X (#) R X ( 0) $ R X (#) %# In particolare, l ultima condizione viene dall espansione della condizione E # %( X( t) ± X( t +" )) 2 & () 0 $ ' ( ( ) + X 2 ( t +" ) ±2X( t)x( t +" )) ) 0 E X 2 t R X ( 0)+ R X ( 0)± 2R X " ( ) ) 0 11

12 Filtraggio di un processo stazionario Se un processo aleatorio X(t) passa in un filtro, quanto ne esce può essere scritto come Y( t) = X( t)"h( t), dove h(t) è la risposta impulsiva del filtro e la convoluzione va intesa nel senso che, ad ogni funzione x i (t) si associa una funzione y i ( t) = x i ( t)"h( t) In generale, però, non si riesce a sapere cosa succede delle funzioni densità di probabilità congiunte in uscita a partire da quelle in ingresso. Limitandoci alla media, si può osservare che m Y t +$ ( ) = E( Y( t) ) = E( % h (") X t # " +$ & ' #$ = h (")m X ( t # ")d" #$ ) +$ +$ ( )d" + = % E( h (") X( t # "))d" = % h ( " )E( X( t # "))d" = * ( ) % = h(t)& m X t #$ cioè il filtro agisce normalmente sulla parte deterministica del processo aleatorio. #$ 12

13 Per la autocorrelazione succede che ( ) = E Y t 1 R Y t 1,t 2 Filtraggio di (II) ( ( )) ( ( ),Y( t 2 )) = E X( t 1 )"h( t 1 )# X( t 2 )"h t ) +& +&, +& +& = E+ ' X ( $ )h( t 1 %$)d$ # ' X (()h( t 2 % ()d(. = ' ' E ( X ( $ )h( t 1 % $ )# X (()h( t 2 % ())d$ d( = * - %& +& +& %& %& %& +& +& = ' ' h( t 1 % $ )h( t 2 % ()E( X ( $ ) X (())d$ d( = ' ' R X ( $,( )h( t 1 % $ )h( t 2 % () d$ d( = %& %& = R X ( t 1,t 2 )"h( t 1 )"h t 2 ( ) %& %& Perciò, se il processo in ingresso è stazionario (in senso lato) si ottiene dunque che la media in uscita è costante e l autocorrelazione dipende solo dalla differenza dei tempi, cioè il processo in uscita è pure stazionario. 13

14 Filtraggio di (III) Più precisamente, se il segnale in ingresso è stazionario si ricava che m Y ( t) = h(t)" m X ( t) = h(t)" m X = m X h(t)dt mentre per la autocorrelazione vale +$ % = m X H 0 R Y ( t,t " #) = R X (t,t "#)$ h( t)$ h( t " #) = h (%) R t "%,t " # +& +& #$ ( ) +& ' [ ( )$h( t "#)]d% = "& +& ' "& = ' h (() ' h (%)R( t "%,t " # " ()d% d( = h ( "& +& "& +& ( ) h % ' ( )R("% +# +( )d% d( = = ' h (()[ R (( +# )$ h (#)]d( = ' h ( ") )[ R (# " ))$h(#)]d) = R ( # )$h("#)$ h # "& +& "& "& ( ) e dunque anche il segnale in uscita è stazionario in senso lato. 14

15 Densità spettrale di potenza dei segnali stazionari I segnali aleatori stazionari non possono avere energia finita. Altrimenti, andrebbero a zero all infinito, con loro la media, e questa non potrebbe essere costante come richiesto. Essendo segnali di potenza, si definisce la loro densità di potenza come ciò che si ottiene invertendo la loro autocorrelazione. S X (f) soddisfa le condizioni: S X S X ( ( )) ( f ) = F R X " ( f ) è reale e pari +# ( ) = S X f P X = E X 2 ( t) S X ( f ) % 0 $ ( )df = 2 S X ( f )df "# +# $ 0 15

16 Processi ergodici Per caratterizzare un processo, fosse anche stazionario, dovremmo conoscerne tutte le funzioni campione (impossibile!). Ci farebbe comodo invece ricavare le informazioni statistiche sul processo da UNA SOLA funzione campione. La cosa è possibile se il processo è ergodico. Un processo ergodico nella media soddisfa: 1 m X ( t) = m X = X m = lim T"# T cioè la variabile casuale X m, ottenuta mediando nel tempo ogni possibile funzione campione, ha una funzione densità di probabilità con media pari a m X e varianza nulla. $T /2 In pratica, si può calcolare la media su una finestra mobile T /2 % X( t)dt X T = 1 T T /2 # X( t)dt X m = lim "T /2 t"# X T 16

17 Rumore Il rumore nei sistemi digitali è spesso rappresentato mediante l acronimo AWGN: Rumore Bianco Additivo e Gaussiano. Si considera il rumore a media nulla e la densità spettrale del rumore (costante perché bianco) si indica come η/2. Di conseguenza, la variabile causale n(t) è una variabile Gaussiana, cioè con densità di probabilità esprimibile mediante la funzione f ( n( t) ) = f ( n) 1 2"# 2 e$ La varianza del rumore, indicata nella formula, è pari alla potenza del rumore. Infatti, per un processo casuale la potenza è definita come ( t) 2# 2 n 2 e dunque P = " n 2 f ( n)dn P = n 2 = " 2 # m 2 = " 2 17

18 Rumore II La probabilità di avere rumore peggiore di un valore fissato K è ( ) = f n P n " K & & 1 ' ( )dn = ' 2#$ 2 e% 2$ 2 dn = 1 K K 2 Erfc ( K + * - ) 2$, dove la la funzione Erfc è una funzione con argomento positivo, decrescente da 1 a 0 all aumentare dell argomento stesso: Erfc x Ultima nota: il rumore Gaussiano in ingresso ad un filtro con funzione di trasferimento H(f) produce un rumore pure Gaussiano in uscita, con varianza (= potenza) $ % x n 2 ( ) = 2 " e#u2 du ( t) P 0 = " 2 0 = # G n ( f ) H( f ) 2 df = $ 2 # ( ) 2 df = H f $ # 2 h t ( ) 2 dt 18

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne

PROCESSI CASUALI 1 Fondamenti di segnf a o lin d e a t m ra e s n mtii s T si L o C ne PROCESSI CASUALI Fondamenti di segnali Fondamenti e trasmissione TLC Segnali deterministici Un segnale (t) si dice deterministico se è una funzione nota di t, cioè se ad un qualsiasi istante di tempo t

Dettagli

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA

RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA RICHIAMI SU PROCESSI ALEATORI E DENSITÀ SPETTRALE DI POTENZA Paolo Bestagini Ph.D. Student bestagini@elet.polimi.it http://home.deib.polimi.it/bestagini Sommario 2 Segnali deterministici Continui Discreti

Dettagli

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici

Teoria dei Segnali Trasmissione binaria casuale; somma di processi stocastici eoria dei Segnali rasmissione binaria casuale; somma di processi stocastici Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it eoria dei Segnali rasmissione

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni Prof. Mario Barbera [parte ] Variabili aleatorie Esempio: sia dato l esperimento: Scegliere un qualunque giorno non festivo della settimana, per verificare casualmente

Dettagli

CANALE STAZIONARIO CANALE TEMPO INVARIANTE

CANALE STAZIONARIO CANALE TEMPO INVARIANTE CANALE STAZIONARIO Si parla di un Canale Stazionario quando i fenomeni che avvengono possono essere modellati da processi casuali e le proprietà statistiche di tali processi sono indipendenti dal tempo.

Dettagli

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon

Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Teoria dei Segnali Densità spettrale di energia e di potenza; campionamento e teorema di Shannon Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria

Dettagli

Comunicazioni Elettriche anno accademico Esercitazione 1

Comunicazioni Elettriche anno accademico Esercitazione 1 Comunicazioni Elettriche anno accademico 003-004 Esercitazione Esercizio Un processo aleatorio a tempo discreto X(n) è definito nel seguente modo: Viene lanciata una moneta. Se il risultato è testa X(n)=

Dettagli

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente.

Prova di AUTOVALUTAZIONE (novembre 2009). nota: l esame ha validità solo se incluso nel piano degli studi per l anno accademico corrente. UNIVERSITA DEGLI STUDI ROMA TRE CdS in Ingegneria Informatica corso di FONDAMENTI DI TELECOMUNICAZIONI Prova di AUTOVALUTAZIONE (novembre 2009). COMPITO A nota: l esame ha validità solo se incluso nel

Dettagli

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano

1) Entropia di variabili aleatorie continue. 2) Esempi di variabili aleatorie continue. 3) Canali di comunicazione continui. 4) Canale Gaussiano Argomenti della Lezione 1) Entropia di variabili aleatorie continue ) Esempi di variabili aleatorie continue 3) Canali di comunicazione continui 4) Canale Gaussiano 5) Limite di Shannon 1 Entropia di una

Dettagli

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio)

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Analisi della disponibilità d acqua Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Approccio diverso a seconda del criterio di valutazione Nel caso di criterio statistico

Dettagli

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico

Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Teoria dei Segnali Un esempio di processo stocastico: il rumore termico Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Il rumore

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche. Modulazione A.A Alberto Perotti Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Modulazione A.A. 8-9 Alberto Perotti DELEN-DAUIN Modello di sistema di comunicazione Il modello di sistema di comunicazione

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá

Variabili aleatorie: parte 1. 1 Definizione di variabile aleatoria e misurabilitá Statistica e analisi dei dati Data: 11 Aprile 2016 Variabili aleatorie: parte 1 Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori 1 Definizione di variabile aleatoria e misurabilitá Informalmente,

Dettagli

Reti di Telecomunicazioni 1

Reti di Telecomunicazioni 1 Reti di Telecomunicazioni 1 AA2011/12 Sistemi a coda Blocco E2 Ing. Francesco Zampognaro e-mail: zampognaro@ing.uniroma2.it Lucidi Prof. Stefano Salsano 1 Definizione di traffico e utilizzazione di un

Dettagli

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano

Maria Prandini Dipartimento di Elettronica e Informazione Politecnico di Milano Note relative a test di bianchezza rimozione delle componenti deterministiche da una serie temporale a supporto del Progetto di Identificazione dei Modelli e Analisi dei Dati Maria Prandini Dipartimento

Dettagli

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione

Teoria dei Segnali. 1 Proprietà della trasformata di Fourier. correlazione tra segnali; autocorrelazione Teoria dei Segnali Proprietà della trasformata di Fourier; correlazione tra segnali; autocorrelazione Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI

TEORIA DELL INFORMAZIONE ED ENTROPIA FEDERICO MARINI TEORIA DELL INFORMAZIONE ED ENTROPIA DI FEDERICO MARINI 1 OBIETTIVO DELLA TEORIA DELL INFORMAZIONE Dato un messaggio prodotto da una sorgente, l OBIETTIVO è capire come si deve rappresentare tale messaggio

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

Tipi di Processi Stocastici

Tipi di Processi Stocastici Processi Stocastici Definizione intuitiva: un processo stocastico è un insieme ordinato di variabili casuali, indicizzate dal parametro t, spesso detto tempo. Definizione rigorosa: dati uno spazio di probabilità

Dettagli

Campionamento e quantizzazione

Campionamento e quantizzazione Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Campionamento e quantizzazione A.A. 2008-09 Alberto Perotti DELEN-DAUIN Conversione analogico-digitale L elaborazione

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura Facoltà di Ingegneria ed Architettura Anno Accademico 2016 2017 A.A. Settore Scientifico Disciplinare CFU Insegnamento Ore di aula Mutuazione 2016/17 ING-INF/03 9 Teoria dei Segnali 72 No Classe Corso

Dettagli

()Probablità, Statistica e Processi Stocastici

()Probablità, Statistica e Processi Stocastici Probablità, Statistica e Processi Stocastici Serie storiche (verso fpca) La tecnica chiamata fpca (functional PCA) esamina serie storiche utilizzando paradigmi propri di PCA. E utile premettere un po di

Dettagli

Modulazioni di ampiezza

Modulazioni di ampiezza Modulazioni di ampiezza 1) Si consideri un segnale z(t) modulato in ampiezza con soppressione di portante dal segnale di informazione x(t): z(t) = Ax(t)cos(2πf 0 t) Il canale di comunicazione aggiunge

Dettagli

Scheda n.3: densità gaussiana e Beta

Scheda n.3: densità gaussiana e Beta Scheda n.3: densità gaussiana e Beta October 10, 2008 1 Definizioni generali Chiamiamo densità di probabilità (pdf ) ogni funzione integrabile f (x) definita per x R tale che i) f (x) 0 per ogni x R ii)

Dettagli

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta

Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Teoria dei Segnali Quantizzazione dei segnali; trasformata zeta Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Teoria dei Segnali Quantizzazione;

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Questa viene trasmessa sul canale (wireless o wired). In questo corso, modellizzeremo il canale di trasmissione come un canale Gaussiano bianco

Questa viene trasmessa sul canale (wireless o wired). In questo corso, modellizzeremo il canale di trasmissione come un canale Gaussiano bianco Canale di trasmissione Dati una costellazione M un labeling binario e è possibile associare alle sequenze binarie di informazione u da trasmettere una forma d onda s(t). Questa viene trasmessa sul canale

Dettagli

ANALISI DELLE SERIE STORICHE

ANALISI DELLE SERIE STORICHE ANALISI DELLE SERIE STORICHE De Iaco S. s.deiaco@economia.unile.it UNIVERSITÀ del SALENTO DIP.TO DI SCIENZE ECONOMICHE E MATEMATICO-STATISTICHE FACOLTÀ DI ECONOMIA 24 settembre 2012 Indice 1 Funzione di

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 1 Obiettivi del corso: Individuazione delle caratteristiche principali del segnale EEG quantificate mediante tecniche

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere 07-0-03 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

3.1 La probabilità: eventi e variabili casuali

3.1 La probabilità: eventi e variabili casuali Capitolo 3 Elementi di teoria della probabilità Abbiamo già notato come, per la ineliminabile presenza degli errori di misura, quello che otteniamo come risultato della stima del valore di una grandezza

Dettagli

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 2014 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 2014 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI 1 (Prof. S. Bittanti) Ingegneria Informatica 5 CFU. Appello 23 Luglio 201 Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da

Dettagli

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10

5. Distribuzioni. Corso di Simulazione. Anno accademico 2009/10 Anno accademico 2009/10 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07

3. Distribuzioni. Corso di Simulazione. Anno accademico 2006/07 Anno accademico 2006/07 Spazio di probabilità Ω spazio campione F 2 Ω spazio degli eventi: (i) Ω F (ii) A F = Ω \ A F (iii) A, B F = A B F P: F [0, 1] funzione di probabilità: (i) P(A) 0 (ii) P(Ω) = 1

Dettagli

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento

Capitolo 12. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 12.1: Suggerimento Capitolo Suggerimenti agli esercizi a cura di Elena Siletti Esercizio.: Suggerimento Per verificare se due fenomeni sono dipendenti in media sarebbe necessario confrontare le medie condizionate, in questo

Dettagli

Cap.1. GENERALITÀ SUI PROCESSI STOCASTICI

Cap.1. GENERALITÀ SUI PROCESSI STOCASTICI Cap.1. GENERALITÀ SUI PROCESSI STOCASTICI 1.1. SEGNALI ALEATORI E LORO SORGENTI Si è a volte fatto riferimento ai segnali quali veicoli di informazione: in proposito occorre tuttavia precisare che si tratta

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

Problemi di base di Elaborazione Numerica dei Segnali

Problemi di base di Elaborazione Numerica dei Segnali Universita' di Roma TRE Corso di laurea in Ingegneria Elettronica Corso di laurea in Ingegneria Informatica Universita' di Roma "La Sapienza" Corso di laurea in Ingegneria delle Telecomunicazioni Problemi

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

Variabili aleatorie. Variabili aleatorie e variabili statistiche

Variabili aleatorie. Variabili aleatorie e variabili statistiche Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio

FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio FONDAMENTI DI SEGNALI E TRASMISSIONE 4 Laboratorio Paolo Mazzucchelli mazzucch@elet.polimi.it MATLAB: generazione di numeri casuali Il comando che permette di generare una matrice (n r,n c ) composta da

Dettagli

Elementi di base su modello binomiale e modello normale

Elementi di base su modello binomiale e modello normale Elementi di base su modello binomiale e modello normale (alcune note) Parte 1: il modello binomiale Di fondamentale importanza nell analisi della qualità sono i modelli. I due principali modelli statistico-probablistici

Dettagli

Dispense del corso di Elettronica L Prof. Guido Masetti

Dispense del corso di Elettronica L Prof. Guido Masetti Dispense del corso di Elettronica L Prof. Guido Masetti Teoria dei Segnali e Sistemi Sommario Architettura dei sistemi per l'elaborazione dell'informazione Informazione e segnali Teoria dei segnali Analisi

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

01CXGBN Trasmissione numerica. parte 11: modulazione 2-PAM

01CXGBN Trasmissione numerica. parte 11: modulazione 2-PAM 0CXGBN Trasmissione numerica parte : modulazione 2-PAM PARTE 2: Modulazioni Numeriche 2 Modulazioni: introduzione Per ogni modulazione considereremo: Caratteristiche generali Costellazione (insieme di

Dettagli

Esercizi svolti di Teoria dei Segnali

Esercizi svolti di Teoria dei Segnali Esercizi svolti di eoria dei Segnali Enrico Magli, Letizia Lo Presti, Gabriella Olmo, Gabriella Povero Versione. Prefazione A partire dall anno accademico 5/6 viene fornita agli studenti dei corsi di eoria

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Teoria della probabilità Variabili casuali

Teoria della probabilità Variabili casuali Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Unità di misura nell analisi del segnale G. D Elia. Sezione1

Unità di misura nell analisi del segnale G. D Elia. Sezione1 Unità di misura nell analisi del segnale G. D Elia Sezione1 La Serie di Fourier Si consideri una funzione x(t) periodica di periodo T = π/ω. Se sono soddisfatte opportune condizioni (condizioni di Direchlet):

Dettagli

Segnali ad energia ed a potenza finita

Segnali ad energia ed a potenza finita Bozza Data 07/03/008 Segnali ad energia ed a potenza finita Energia e potenza di un segnale Definizioni di energia e potenza Dato un segnale (t), in generale complesso, si definisce potenza istantanea

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

Teoria dei Segnali Covarianza, correlazione e densità spettrale di potenza; processi stocastici stazionari

Teoria dei Segnali Covarianza, correlazione e densità spettrale di potenza; processi stocastici stazionari Teoria dei Segnali Covarianza, correlazione e densità spettrale di potenza; processi stocastici stazionari Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici

Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici Corso di Tecniche di Trasmissione Esercizi sulla teoria dei processi stocastici 21 aprile 24 Esercizio 1 Si consideri la variabile aleatoria: s = a x(t)dt, (1) in cui x(t) un processo stocastico stazionario

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell

LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano. Strumenti statistici in Excell LEZIONI IN LABORATORIO Corso di MARKETING L. Baldi Università degli Studi di Milano Strumenti statistici in Excell Pacchetto Analisi di dati Strumenti di analisi: Analisi varianza: ad un fattore Analisi

Dettagli

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a

Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Corso di Controllo Digitale Equazioni alle Differenze e Z-trasformate a Università degli Studi della Calabria Corso di Laurea in Ingegneria Elettronica. Ing. Domenico Famularo a Proprietà Letteraria Riservata

Dettagli

RICHIAMI DI STATISTISTICA E CALCOLO DELLE PROBABILITA

RICHIAMI DI STATISTISTICA E CALCOLO DELLE PROBABILITA RICHIAMI DI STATISTISTICA E CALCOLO DELLE PROBABILITA La Statistica è la disciplina che studia gli eventi non deterministici (o incerti) riguardo ai quali non si ha una completa conoscenza. Tali eventi

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

MISURA DELLA FUNZIONE DI DENSITÀ SPETTRALE (POWER SPECTRAL DENSITY)

MISURA DELLA FUNZIONE DI DENSITÀ SPETTRALE (POWER SPECTRAL DENSITY) NOA INERNA MISURA DELLA FUNZIONE DI DENSIÀ SPERALE (POWER SPECRAL DENSIY) DI UN SEGNALE ALEAORIO DAVIDE BASSI (revisione.a - Dicembre 999) Questa nota, dopo un sintetico richiamo ad alcuni concetti elementari

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE Modelli delle Sorgenti di Traffico Generalità Per la realizzazione di un modello analitico di un sistema di telecomunicazione dobbiamo tenere in considerazione 3 distinte sezioni

Dettagli

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione

QUANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA. 1 Fondamenti Segnali e Trasmissione UANTIZZAZIONE E CONVERSIONE IN FORMA NUMERICA Fondamenti Segnali e Trasmissione Campionamento e quantizzazione di un segnale analogico Si consideri il segnale x(t) campionato con passo T c. Campioni del

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 20/10/201 NOME: COGNOME: MATRICOLA: Esercizio 1 Se supponiamo

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Fatica (HCF): conteggio dei cicli Lecture 5 Conteggio dei cicli

Fatica (HCF): conteggio dei cicli Lecture 5 Conteggio dei cicli Fatica Conteggio dei cicli Fatica (HCF): conteggio dei cicli Lecture 5 Conteggio dei cicli Fatica Conteggio dei cicli Introduzione Le strutture reali sono soggette a stati di sollecitazione che variano

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Teoria dei Sistemi. Appunti. Paolo Di Giamberardino. 2- Sistema astratto: rappresentazione con lo spazio di stato

Teoria dei Sistemi. Appunti. Paolo Di Giamberardino. 2- Sistema astratto: rappresentazione con lo spazio di stato Ver. 16.10.2003 Teoria dei Sistemi Appunti Paolo Di Giamberardino 2- Sistema astratto: rappresentazione con lo spazio di stato A partire dai modelli matematici ricavati, nella precedente sezione, in diversi

Dettagli

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i

..., x M. : codice o sequenza di bit che rappresentano il messaggio x i ; n i : lunghezza in bit del codice C X i Definizioni X : sorgente di informazione discreta; X k : messaggi prodotti da X ; ogni messaggio è una v.c.d., k è l'indice temporale; alfabeto di X : insieme {x,..., x } degli messaggi che la sorgente

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo

In realtà i segnali con i quali dobbiamo confrontarci più frequentemente sono limitati nel tempo Segnali trattati sino ad ora: continui, durata infinita,.. Su essi sono stati sviluppati strumenti per analizzare output di circuiti e caratteristiche del segnale: Risposta all impulso, prodotto di convoluzione,

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

Esercizi su formula di Itô

Esercizi su formula di Itô Esercizi su formula di Itô 1. Scrivere il differenziale stocastico dei seguenti processi: (i) X t = B t (ii) X t = t + e B t (iii) X t = B 3 t 3tB t (iv) X t = 1 + t + e B t (v) X t = [B 1 (t)] + [B (t)]

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

SCOPO DELL ANALISI DI CORRELAZIONE

SCOPO DELL ANALISI DI CORRELAZIONE CORRELAZIONE 1 SCOPO DELL ANALISI DI CORRELAZIONE STUDIARE LA RELAZIONE TRA DUE VARIABILI X E Y 2 diagrammi di dispersione un diagramma di dispersione (o grafico di dispersione) èuna rappresentazione grafica

Dettagli

LE SEQUENZE CASUALI. 1. Le sequenze a caso e le medie di insieme

LE SEQUENZE CASUALI. 1. Le sequenze a caso e le medie di insieme II LE SEQUENZE CASUALI. Le sequenze a caso e le medie di insieme Per evitare di introdurre definizioni e concetti in maniera completamente astratta, partiamo da un caso fisico ben preciso e che in seguito

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

Elementi di Teoria dei Segnali

Elementi di Teoria dei Segnali Elementi di Teoria dei Segnali Ing. Michele Scarpiniti michele.scarpiniti@uniroma1.it http://ispac.ing.uniroma1.it/scarpiniti/index.htm Master "Tecniche per la Multimedialità" 1 Il concetto di segnale

Dettagli