TRASFORMAZIONI GEOMETRICHE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "TRASFORMAZIONI GEOMETRICHE"

Transcript

1 Affinità rte rim Pgin di 7 esy mtemtic di Adolfo Scimone TRASFORMAZIONI GEOMETRICHE Generlità sulle ffinità Chimsi ffinità o trsformzione linere un corrisondenz biunivoc tr due ini o tr unti dello stesso ino che trsform rette in rette conservndo il rllelismo. Dti due unti del ino : P(x, y) e P'(x',y'), dicimo che essi si corrisondono in un'ffinità ϕ se le loro coordinte sono esresse linermente d euzioni del tio : = x+ = x+ ( ) dove,,,,, sono numeri reli e det A = = 0 ( ) Se det A, l ( ) si dice ffinità degenere e non è iù un biiezione. Definizione - Un biiezione ϕ che d ogni unto P R ssoci un unto P' = ϕ ( P) ϕ : R R :( xy, ) ( x', y ') si dice ffinità e le ( ) con det A 0 si dicono euzioni dell'ffinità. Risolvendo il sistem linere ( ) nelle incognite x, y ottenimo x = A x + y + d det y = + + det A ( ' ' ) ( x' y' e) ( 3 ) dove d = d = Definizione - Si dice ffinità invers dell ( ) l funzione ϕ unto P'( x', y') il unto P= ϕ ( P). che ssoci un

2 Affinità rte rim Pgin di 7 esy mtemtic di Adolfo Scimone Le euzioni ( 3 ) si dicono le euzioni dell'ffinità invers dell ( ). Definizione 3 - Un unto P R si dice unito o fisso er un trsformzione ϕ, se ϕ ( P) = P, se il trsformto di P è P stesso. In rticolre se le euzioni del sistem si riducono delle identità, llor tutti i unti del ino R sono uniti. Il unto fisso delle ( ), mmesso che l'ffinità ne ossiede, si ottiene onendo x' = x y' = y L soluzione (x, y) si dice centro dell'ffinità e le ( ) si dicono le euzioni di un ffinità centrle. Teorem - Un ffinità viene univocmente determint d tre coie (A, A'), (B, B'), (C,C') di unti corrisondenti tli che né i unti A, B, C né i loro corrisondenti A', B', C' stino su un medesim rett. Inftti, imonendo lle ( ) di contenere i unti A, B, C ed i loro corrisondenti, si ottiene un sistem linere di 6 euzioni nelle 6 incognite,,,,, che er le iotesi ftte mmette un sol soluzione. Le ffinità godono di rticolri rorietà : trsformno rette in rette trsformno rette incidenti in rette incidenti trsformno rette rllele in rette rllele trsformno il unto medio M di un segmento nel unto M' del segmento corrisondente conservno costnte il rorto delle ree di figure corrisondenti ; tle rorto costnte è chimto rorto di ffinità ed è ugule k = det A trsformno cerchi o ellissi in cerchi o ellissi trsformno rbole in rbole, ierboli in ierboli. Euzione di un ffinità con un unto unito nell'origine Si dt l'ffinità di euzione = x+ = x+ con det A 0 ffinché l'origine O(0, 0) si un unto unito, deve essere d cui segue che

3 Affinità rte rim Pgin 3 di 7 esy mtemtic di Adolfo Scimone Per cui, le euzioni di un generic ffinità vente come unto unito l'origine sono = x+ y = x+ y con det A 0 Diltzioni Le rticolri ffinità che hnno gli ssi coordinti e l'origine uniti, sono le diltzioni. Definizione - Si dice diltzione un'ffinità di euzioni = x = y con, R -{0} ( ) Quest terminologi è dovut l ftto che tli trsformzioni non mntengono invrite le distnze, er cui se P e P', Q e Q' sono coie di unti corrisondenti, si h d( P, Q) < d( P', Q') o d( P, Q) > d( P', Q') Nel rimo cso l diltzione determin un llungmento o un diltzione di PQ, nel secondo cso rovoc un rimicciolimento o un contrzione di PQ. Se nell () è = e si h un diltzione orizzontle, iù recismente, se > si h un diltzione concorde o discorde secondo che risulti > o <. Se < si h un contrzione concorde o discorde secondo che > ] 0, [ o > ] 0, [ Se nell () > un contrzione se <. = e si h un diltzione verticle, si h un diltzione se Un trsformzione di euzioni x+ y' b = D k coneb non entrmbi nulli

4 Affinità rte rim Pgin 4 di 7 esy mtemtic di Adolfo Scimone rresent un diltzione in cui l'unico unto unito è C b, che è il centro k k dell diltzione. In rticolre, se k = si h = x+ D = y' = b che rresent un trslzione di vettore ( i + bj). Quest ort l'origine nel unto O' (, b), con i e j versori degli ssi. Se o b l trslzione è risettivmente verticle o orizzontle. y Y b O' X O x Similitudine Definizione - Si chim similitudine in un biiezione ϕ di R in se stesso che moltilic er k le distnze, dp ( ', Q') dpq (, ) PQ, R () con P' = ϕ ( P), Q' = ϕ ( Q) e dove k è un numero rele ositivo, er cui : In un similitudine il rorto fr le misure di segmenti corrisondenti è costnte. L costnte k > 0 rende il nome di rorto o costnte di similitudine. Per determinre le condizioni nlitiche cui devono soddisfre i coefficienti dell'ffinità = x+ = x+ () ffinché PQ, R si verifichi l (), considerimo due unti Px (, y); Qx (, y ) e i loro corrisondenti P'( x', y'); Q'( x', y'), che er l'ffinità () hnno coordinte

5 Affinità rte rim Pgin 5 di 7 esy mtemtic di Adolfo Scimone P'( x', y') = ( x + y +, x + y + ) Q'( x', y' ) = ( x + y +, x + y + ) Essendo d( P, Q) = ( x x ) + ( y y ) d( P', Q') = ( x' x' ) + ( y' y' ) vremo [ ] [ ] d( P', Q') = ( x x ) + ( y y ) + ( x x ) + ( y y ) = = ( x x ) + ( x x )( y y ) + ( y y ) + ( x x ) + + ( x x )( y y ) + ( y y ) = = ( + )( x x) + ( + )( x x)( y y) + ( + )( y y) Affinché si vlid l () deve essere k ( x x) + ( y y) = ( x' x') + ( y' y') e uindi k ( x x ) + ( y y ) = = ( + )( x x) + ( + )( x x)( y y) + ( + )( y y) si dovrà vere () 3 ( 4) () 5 Ricvndo dll second euzione del sistem e sostituendo nell terz si h = e uindi + + ( ) k + = Per l rim euzione, essendo + vremo k e uindi

6 Affinità rte rim Pgin 6 di 7 esy mtemtic di Adolfo Scimone = = oure = Tenendo conto delle relzioni trovte, l second euzione del sistem diviene + ( + ) oure ( ) Essendo 0 si h = oure = Avremo ertnto ( = ) ( = ) ( = ) ( = ) Se = e = le euzioni dell trsformzione () divengono = x+ = x (6) dove det A= ( + ) = k Se = e = le euzioni dell trsformzione () divengono = x = x+ (7) dove det A= + e il rorto di similitudine k = + è ugule ll rdice udrt del rorto di ffinità k = det A Il unto unito dell trsformzione si dice centro di similitudine. Definizione - Si dice che un similitudine è concorde se trsform un figur F in un'ltr F', i cui vertici si susseguono nello stesso senso con cui si succedono in F ; ltrimenti l similitudine si dice invers o discorde.

7 Affinità rte rim Pgin 7 di 7 esy mtemtic di Adolfo Scimone Per cui un similitudine concorde h euzioni dell form = = x x + y + y + invece un similitudine discorde h euzioni dell form = x+ = x Si dimostr inoltre che un similitudine trsform unti susseguentisi in unti susseguentisi rette in rette segmenti in segmenti semiini in semiini ngoli in ngoli di egule miezz ree in ree di rorto k (ossi S' S) cerchi in cerchi ellissi in ellissi Inoltre in un similitudine è costnte il rorto fr segmenti corrisondenti. In rticolre l similitudine mut rette erendicolri in rette erendicolri.

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e

TRASFORMAZIONI GEOMETRICHE ( 1 ) Risolvendo il sistema lineare ( 1 ) rispetto alle incognite x, y si ottiene: = e Generalità sulle affinità TRASFORMAZIONI GEOMETRICHE Chiamasi affinità o trasformazione lineare una corrisondenza biunivoca tra due iani o tra unti dello stesso iano che trasforma rette in rette conservando

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Affinità parte terza Pagina 13 di 8 easy matematica di Adolfo Scimone

Affinità parte terza Pagina 13 di 8 easy matematica di Adolfo Scimone Affinità prte terz gin 3 di 8 es tetic di Adolfo Scione Sietrie ssili Definizione - Si chi sietri ssile ogni isoetri che trsfor un punto nel punto sietrico di rispetto d un rett prefisst, dett sse di sietri.

Dettagli

TRASFORMAZIONI LINEARI SUL PIANO

TRASFORMAZIONI LINEARI SUL PIANO TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d in forma matriciale: X A X B, cioè a c b d Dove a A c b d è la matrice della trasformazione. Se il

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Operazioni sulle Matrici

Operazioni sulle Matrici Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design Lezione 9 Ottore Operzioni sulle Mtrici F. Cliò Addizione e Sottrzione Lezione 9 Ottore Operzioni sulle Mtrici Pgin Addizione

Dettagli

Equazioni parametriche di primo grado

Equazioni parametriche di primo grado Polo Sivigli Equzioni prmetriche di primo grdo Premess Come si s dll lgebr elementre, si chim equzione un uguglinz fr due espressioni letterli che si verific soltnto ttribuendo prticolri vlori lle lettere,

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE

TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE uthor: Ing, Giulio De Meo GEOMETRIA TEOREMI FONDAMENTALI DI GEOMETRIA ELEMENTARE L somm degli ngoli interni di un poligono di n lti è (n - ) 180. L somm degli ngoli esterni di un qulsisi poligono vle 360.

Dettagli

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale

Vettori Geometrici. Corso di Metodi Numerici per il Design. 30 Settembre 2002 Vettori Geometrici. Corso di Laurea in Disegno Industriale Corso di Lure in Disegno Industrile Corso di Metodi Numerici per il Design 0 Settemre 00 Vettori Geometrici 1 Vettori Geometrici Metodi Mtemtici per il Design Leione pg. 1 1 Segmento orientto P P 1 Direione:

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x)

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x) Funzioni Un funzione f d X in Y è costituit d un tern di elementi ) un insieme X, detto dominio di f 2) un insiemey, detto codominio di f f di Y. Nel cso, in cui X,Y sino sottinsiemi di R, generlmente

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

L offerta della singola impresa: l impresa e la massimizzazione del profitto

L offerta della singola impresa: l impresa e la massimizzazione del profitto L offert dell singol imres: l imres e l mssimizzzione del rofitto Qundo un imres ot er un ino di roduzione sceglie un certo livello di inut che le grntisc un dto outut L scelt del ino di roduzione h l

Dettagli

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE

STUDIO SISTEMATICO DELLE GIUNZIONI BULLONATE LEZIONI N 26, 27 E 28 STUDIO SISTEATICO DELLE GIUNZIONI BULLONATE Adottimo un criterio di clssificzione bsto sulle crtteristiche di sollecitzioni trsmesse dlle ste collegte. Per qunto rigurd le unioni

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano

Geometria analitica. punti, rette, circonferenza, ellisse, iperbole, parabola. ITIS Feltrinelli anno scolastico Il piano cartesiano Geometri nlitic punti, rette, circonferenz, ellisse, iperbole, prbol ITIS Feltrinelli nno scolstico 007-008 Il pino crtesino Si dice pino crtesino un sistem formto d due rette perpendicolri che si intersecno

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

La parabola con asse parallelo all ady

La parabola con asse parallelo all ady L prbol con sse prllelo ll dy I Prbol con vertice nell origine degli ssi crtesini I disegni degli esercizi dll 1 l 3 dell sched di lbortorio, sono i seguenti: Quindi il segno del coefficiente di x determin

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Rapporti e proporzioni numeriche

Rapporti e proporzioni numeriche Rpporti e proporzioni numeriche Rpporti. Per rpporto tr due numeri e b, di cui il secondo diverso d zero, s intende il quoziente estto dell divisione dei due numeri dti, cioè :b oppure /b. Ad esempio dire

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Modulo o "valore assoluto" Proprietà del Valore Assoluto. Intervalli

Modulo o valore assoluto Proprietà del Valore Assoluto. Intervalli Modulo o "vlore ssoluto" Dto x definimo modulo o vlore ssoluto di x il numero rele positivo x se x 0 x = x se x < 0 Es. 5 è 5. 2.34 è 2.34 Dl punto di vist geometrico x rppresent l distnz di x d 0. x x

Dettagli

S.S.I.S. a.a. 2006/07 LABORATORIO. di DIDATTICA DELLA MATEMATICA. Percorso didattico sulle TRASFORMAZIONI GEOMETRICHE.

S.S.I.S. a.a. 2006/07 LABORATORIO. di DIDATTICA DELLA MATEMATICA. Percorso didattico sulle TRASFORMAZIONI GEOMETRICHE. S.S.I.S... 6/7 LABORATORIO di DIDATTIA DELLA MATEMATIA Percorso didttico sulle TRASFORMAZIONI GEOMETRIHE Lur Recine Lur Recine SSIS 6/7 Le trsformzioni geometriche. Trsformzioni lineri. Premettimo lcune

Dettagli

parabola curva coniche cono piano parallelo generatrice

parabola curva coniche cono piano parallelo generatrice LA ARABOLA L rol è un urv molto imortnte e lle moltelii rorietà. Ess er onosiut i Grei (Aollonio e Arhimee II e III seolo.c.). Aollonio er rimo, in un fmoso trttto, sorì he l rol f rte i un lsse iù generle

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi

Equazioni di 2 grado. Definizioni Equazioni incomplete Equazione completa Relazioni tra i coefficienti della equazione e le sue soluzioni Esercizi Equzioni di grdo Definizioni Equzioni incomplete Equzione complet Relzioni tr i coefficienti dell equzione e le sue soluzioni Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Un equzione è: Un uguglinz

Dettagli

5 Geometria analitica

5 Geometria analitica 58 Formulrio di mtemtic 5 eometri nlitic 5.1 Punti e rett distnz di due punti d ( ) + ( y y ) 1 1 distnz tr due punti con ugule sciss d y y1 distnz tr due punti con ugule ordint d 1 punto medio di un segmento

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Marco Savarese. Trasformazioni geometriche con

Marco Savarese. Trasformazioni geometriche con 10 trsformzioni geometriche Dll definizione segue che il centro dell inversione non h lcun immgine mentre per tutti gli ltri punti diversi d l corrispondenz è biunivoc e involutori cioè se è l inverso

Dettagli

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA

DOMANDE E RISPOSTE DI MATEMATICA APPLICATA ALL ECONOMIA DMANDE E RISPSTE DI MATEMATICA APPLICATA ALL ECNMIA Ques.36 - Cit il nome di qulche vribile incontrt in economi. Cos si uò dire circ il loro segno? Ris. 36 Sono vribili economiche: l quntità rodott e oert,

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) ( CFU Lezioni CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio Agro-Forestle

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Le rette r e s sono dette generatrici del fascio. Lezione 16 - Algebra e Geometria - Anno accademico 2009/10 1

Le rette r e s sono dette generatrici del fascio. Lezione 16 - Algebra e Geometria - Anno accademico 2009/10 1 Fsi di rette Si die fsio imrorio di rette generto d rett r:, di rmetri direttori [(,-)], insieme di tutte e rette ree d r. Te insieme srà quindi ostituito d rette rtterite d equioni de tio:,. Si die fsio

Dettagli

SISTEMA MISTO. Confronto tra le radici di un'equazione parametrica di secondo grado e un numero reale α. Se > 0 si possono verificare i seguenti casi:

SISTEMA MISTO. Confronto tra le radici di un'equazione parametrica di secondo grado e un numero reale α. Se > 0 si possono verificare i seguenti casi: SISTEMA MISTO Chimimo sistem misto un sistem ormto d un'equzione generlmente prmetric e d un o più disequzioni. Le soluzioni del sistem sono dte dlle rdici dell'equzione che veriicno le disequzioni. Tli

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenzili e ritmi ESPONENZIALI Potenze con esponente rele L potenz è definit: se > 0, per ogni R se 0, per tutti e soli gli R se < 0, per tutti e soli gli Z Sono definite: ( ) ( ) ( ) 7 7 Non sono definite:

Dettagli

4.7 RETICOLO RECIPROCO

4.7 RETICOLO RECIPROCO 4.7 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific il fenomeno

Dettagli

Cap. 5. Rappresentazioni grafiche di modelli

Cap. 5. Rappresentazioni grafiche di modelli 5.1 Schemi strutturli e schemi funzionli Cp. 5 Rppresentzioni grfiche di modelli Nello studio dei sistemi vengono usulmente impiegte rppresentzioni grfiche convenzionli, denominte schemi. Questi ultimi

Dettagli

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

LABORATORIO DI MATEMATICA LE FUNZIONI

LABORATORIO DI MATEMATICA LE FUNZIONI LABORATORIO DI MATEMATICA LE FUNZIONI Le funzioni ESERCITAZIONE GUIDATA Dt l funzione fx ( ) = x+ b, con! 0, con Excel costruimo un foglio elettronico che: legg i vlori dei coefficienti e b; stbilisc il

Dettagli

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi

INTEGRALE INDEFINITO. Saper calcolare l integrale indefinito di una funzione utilizzando i diversi metodi INTEGRLE INDEFINITO OIETTIVI MINIMI: Sper definire l integrle indefinito di un funzione. onoscere le proprietà dell integrle indefinito. Sper clcolre l integrle indefinito di un funzione utilizzndo i diversi

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Il teorema di classificazione delle curve del secondo ordine

Il teorema di classificazione delle curve del secondo ordine Geometri nlitic e lger linere, nno ccdemico 009/10 Lezione del 14 gennio 10 Il teorem di clssificzione delle curve del secondo ordine Ponimo X T = (,). Un equzione di secondo grdo T T T XAX + BX+ c = 0,

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento

5 2d x x >12. con a, b, c e d parametri reali. Il grafico di f (x) passa per l origine del sistema di riferimento Questionrio Risolvi quttro degli otto quesiti: L Città dello sport è un struttur sportiv progettt dll rchitetto Sntigo Cltrv e mi complett, situt sud di Rom Rispetto l sistem di riferimento indicto in

Dettagli

ellisse parabola iperbole

ellisse parabola iperbole Geometri linere e ffine Geometri nlitic,.. 007/008 Note su qudriche e loro seioni pine Superfici del secondo ordine e loro seioni pine. Tglindo con un pino un cono circolre (infinito) si ottengono qusi

Dettagli

m kg M. 2.5 kg

m kg M. 2.5 kg 4.1 Due blocchi di mss m = 720 g e M = 2.5 kg sono posti uno sull'ltro e sono in moto sopr un pino orizzontle, scbro. L mssim forz che può essere pplict sul blocco superiore ffinchè i blocchi si muovno

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2

RAPPRESENTAZIONE GRAFICA DELLA PARABOLA a ( ) { } f con, è la parabola di equazione y = ax + bx + c. Vogliamo disegnarla. 2 APPENDICE 1 AL CAPITOLO 3: RAPPRESENTAZIONE GRAFICA DELLA PARABOLA Per 0 l insieme,y / y = + + c, grfico dell funzione f = + + c { } f con, è l prol di equzione y = + + c Voglimo disegnrl non è difficile

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli