PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2005/06"

Transcript

1 PROVE SCRITTE DI MTEMTIC PPLICT, NNO 5/6 Esercizio 1 Prova scritta del 14/1/5 Sia X ua successioe I.I.D. di variabili aleatorie co distribuzioe uiforme cotiua, X U(, M), ove M = umero lettere del cogome. Si deoti poi per ogi > co Y la v.a. defiita da Y = 1 max{x 1,..., X }. Per ciascu itero si calcolio E(Y ), E(Y ), V (Y ), e si trovi la desita di Y ; si studi ifie se, a cosa, e i che modo la successioe (Y ) coverge. Esercizio 1 palle umerate vegoo iserite a caso i 3 scatole, seza alcua limitazioe. Per k = 1,, 3, si deoti co X k la variabile aleatoria che deota il umero di palle capitate ella scatola k-esima. Cosiderato che le v.a. X k hao tutte la stessa distribuzioe (di tipo biomiale), si valutio le quatita : E(X 1 ), E(X 1 X = j ), E(X 1 X X = j ). Si deduca ifie la covariaza cov(x 1, X ). Esercizio 3 La seguete tabella riporta i risultati di u idagie codotta su u campioe di 6 itervistati tra i 3 e i 35 ai di ua certa regioe rispetto ai caratteri titolo di studio e stato occupazioale : Occupati Disoccupati Laureati 6 15 No laureati a) Da u idagie precedete e oto che, tra tutti coloro che lavorao, la percetuale dei laureati e pari al 38%. Verificare tale ipotesi (H ) cotro l alterativa (H 1 ) che la percetuale sia iferiore al 38%, co u test di livello di sigificativita del 5%. b) Verificare l ipotesi di idipedeza tra il titolo di studio e lo stato occupazioale, co a =.1. (Detta Φ la fuzioe di ripartizioe della distribuzioe ormale N(, 1), utilizzare la seguete tabella: 1

2 Φ(1.645).95 Φ(1.96).975 Φ(.33).99 Φ(.58).995) Soluzioi compito 14/1/5 Esercizio 1 F : Iazitutto, troviamo la fuzioe di ripartizioe di Y, che deotiamo co F (x) = [P ( X 1 x )] = ( x M ), aturalmete per < x < M. Ne deriva che la desita di Y é la fuzioe φ defiita da per < x < M, e ulla altrove. Ne deriva E(Y ) = M M x dx = M V (Y ) = M Di cosegueza, si ha E(Y ) = φ (x) = M x 1, M + 1, E((Y ) ) = M x+1 dx = M + M ( + 1) = M ( + 1) ( + ). M + 1, V (Y ) = M ( + 1) ( + ). Per ote regole, deotado co f la desita di Y, avremo poi +, per x [, M/], e altrove. f (x) = φ (x) = +1 M x 1, Per quato riguarda la covergeza, si sa gia per motivi teorici che (Y ) coverge q.c. e i L a M, per cui (Y ) coverge q.c. e i L a. Esercizio Evidetemete, ciascua variabile X k ha distribuzioe B(1, 1 ). 3 Di cosegueza, E(X 1 ) = 1. 3 Supposto che si abbia X = j, per le altre due scatole restao 1 j palle dispoibili, quidi la distribuzioe codizioata per X 1 é di tipo B(1 j, 1 ). Duque E(X 1 X = j ) = 1 j, e E(X 1 X X = j ) = j 1 j.

3 Ora, si puo calcolare E(X 1 X ), come segue: E(X 1 X ) = 1 j= E(X 1 X X = j )P ( X = j ) = 1 j= j 1 j ( ) 1 ( 1 j 3 )j ( 1 3 )1 j = = 5E(X ) 1 E(X ) = (V (X ) + E (X )) = ( = 1. Ifie, cov(x 1, X ) = E(X 1 X ) E(X 1 )E(X ) = ) = 1 9. Esercizio 3 a) Viee richiesto u test uidirezioale dove l ipotesi ulla e H : p = p =.38, cotro l ipotesi alterativa H 1 : p < p. Essedo grade si puo sfruttare l approssimazioe ormale. Si rifiuta pertato l ipotesi ulla se p (1 p ) p < p z a dove = 195 e, dalla tabella, risulta z a 1.645, duque la zoa di rifiuto e R = {ˆp : ˆp <.3}. Poiche, dai dati del campioe, risulta ˆp.38, l ipotesi ulla va rifiutata e si propede per ua dimiuzioe della percetuale. b) Completado la tabella co le margiali si ottiee Occupati Disoccupati Totale Laureati No laureati Totale Viee richiesto u test per l idipedeza, duque la statistica test e X = r s ( i,j i,,j /) j=1 i,,j / che puo essere approssimata co ua χ co (r 1)(s 1) = 1 gradi di liberta. Pertato la zoa di rifiuto del test e R = {X : X > χ a} dove, essedo a =.1, e χ a = χ.1 = Sulla base dei dati risulta X = ( /6) /6 ( /6) /6 duque si accetta l ipotesi ulla di idipedeza. ( /6) ( /6) / /6 1.45, Prova scritta del 11/1 /6 3

4 Esercizio 1 Si deoti co B il umero di lettere del cogome. Siao X e Y due variabili aleatorie idipedeti, co distribuzioe cotiua, di tipo U(, 1). Posto U = log X, e Z = Y + U, si determii la desita di Z, e si calcoli la probabilita che risulti Z < B. Esercizio Sia il umero delle lettere del ome. U recipiete cotiee iizialmete palle biache e 4 ere. Si effettua ua prima estrazioe casuale, e si poe X 1 = 1, se esce palla biaca, altrimeti X 1 =. Successivamete, si aggiugoo el recipiete altre 4 palle ere, e si procede ad ua secoda estrazioe casuale: si porra X = 1 se ella secoda estrazioe esce palla biaca, e altrimeti. Si prosegue i questo modo, raddoppiado ogi volta il umero di palle ere ell ura, e lasciadovi sempre palle biache, e segado X = 1 se all estrazioe -esima esce palla biaca, altrimeti. Posto per ogi : si calcoli S = X i, a) se e a cosa coverge q.c. la successioe (X ) ; b) se e a cosa coverge q.c. la successioe delle medie (X ) = ( S ) ; c) se e a cosa coverge la successioe umerica E(S ). Esercizio 3 Si cosideri la fuzioe f(x; λ, θ) = { λe k(x θ), x θ, x < θ co k IR, λ >. Dopo aver determiato k tale che f(x; λ, θ) sia la fuzioe di desita di ua variabile aleatoria X, si chiede di (a) determiare h IR tale che Y = X + h, co Y exp(λ); (b) forire uo stimatore di λ co il metodo della massima verosimigliaza sulla base di u campioe casuale X 1,..., X ; (c) forire uo stimatore di θ co il metodo della massima verosimigliaza sulla base di u campioe casuale X 1,..., X. Soluzioi compito 11/1 /6 4

5 Esercizio 1 E oto che la variabile U ha distribuzioe Γ(1, 1), co desita { e u, u > f U (u) =, u <. Poiché X e Y soo idipedeti, lo soo ache U e Y, e quidi, per determiare la desita di Z, basta usare la formula di covoluzioe: f Z (z) = + f U (z y)f Y (y)dy = 1 f U (z y)dy, i quato la desita di Y o é altro che la fuzioe idicatrice dell itervallo [, 1]. Ioltre, poiché f U é o ulla solo quado l argometo é positivo, dobbiamo vicolare l itegrale alla codizioe y < z (e duque z >, com é aturale). L itegrale da risolvere é quidi 1 z e y z dy = e z (e 1 z 1), dove sta per miimo. Duque, z < f Z (z) = 1 e z, < z < 1 e z (e 1), z > 1. La probabilita che risulti Z < B o é altro che l itegrale Esercizio B f Z (z)dz = 1 (1 e z )dz + B 1 (e 1)e z dz = eb e + 1 e B. Chiaramete, ciascua variabile X ha distribuzioe B(1, p ), ove p 1 = 4 +, p = 8 + = 4 +, p 3 = Di cosegueza, risulta E(X ) = +1 +, V (X ) = per ogi. Da cio segue subito che : 4 +,..., p = +1 + ( ), E(S ) = +1 +,... j=1 + j+1 1) la serie delle variaze di X é covergete; di cosegueza, dato ache che lim E(X ) =, e segue che la successioe (X ) coverge quasi certamete a. Pertato, ache la successioe delle medie (X ) coverge q.c. a. ) + =1 E(X ) coverge; di cosegueza, la successioe (E(S )) coverge alla somma di tale serie. 5

6 Esercizio 3 Osserviamo iazitutto che si deve avere quidi k = λ. + θ λe k(x θ) dx = λ k = 1, (a) E immediato verificare che F Y (y) = F X (y + h), per cui la desita di Y é f Y (y) = { λe λ(y+h θ), y θ h, y < θ h e duque Y ha ua distribuzioe espoeziale co parametro λ se h = θ. (b) I virtu dell idipedeza la fuzioe di verosimigliaza é e duque L(x 1,..., x ; λ, θ) = λ e λ(x i θ), log L(x 1,..., x ; λ, θ) = log λ λ Dallo studio della derivata prima si ha mi x i θ 1 i, mi 1 i x i < θ (x i θ). λ log L(x 1,..., x ; λ, θ) = λ (x i θ) = se ˆλ = Essedo λ log L(x 1,..., x ; λ, θ) = λ <, lo stimatore di massima verosimigliaza di λ é ˆλ = x i θ. x i θ. (c) Voledo massimizzare rispetto a θ, si osserva immediatamete che la fuzioe di verosimigliaza é crescete al crescere di θ, fitato che θ mi x i, metre 1 i si aulla o appea θ > mi x i. Cio implica che lo stimatore di massima 1 i verosimigliaza é ˆθ = mi x i. 1 i Prova scritta del 4/3 /6 6

7 Esercizio 1 Ua gallia depoe ogi gioro N uova, dove N ha distribuzioe di Poisso co parametro λ. Ciascu uovo ha, idipedetemete da ogi altro, probabilita p di schiudersi dado vita ad u pulcio. Detto X il umero di pulcii ati, si determii E(X). Si dica ioltre se X ha distribuzioe di Poisso, e co quale parametro. Esercizio Siao X e Y due v.a. idipedeti, etrambe di tipo N(, 1). Si determii la distribuzioe della v.a. Z = X + Y, e se e valutio valor medio e variaza. Si trovi ifie la mediaa di Z, ossia quel valore reale x m tale che P (Z < x m ) = P (Z > x m ). Esercizio 3 Su ati i u ospedale i u ao, 9 bambii hao i capelli chiari, di cui co gli occhi scuri; tra i bimbi co i capelli scuri, hao gli occhi chiari. a) Nell ambito dei bambii co gli occhi scuri, costruire u itervallo di cofideza al 95% per la proporzioe di quelli che hao i capelli scuri. b) Sia p la probabilità di ascere co i capelli chiari e ˆp la sua stima campioaria. ssumedo che la variaza campioaria sia.4/, quato deve essere grade il campioe affiché l errore ˆp p sia iferiore a.1 co probabilità.98? (Detta Φ la fuzioe di ripartizioe della distribuzioe ormale N(, 1), utilizzare la seguete tabella: Φ(1.645).95 Φ(1.96).975 Φ(.33).99 Φ(.58).995) Soluzioi compito 4/3/6 Esercizio 1 Utilizzado il teorema del valor medio iterato, si ha E(X) = + j= E(X N = j)p (N = j) = + j= pj λj e λ j! = pe(n) = pλ. Per determiare la distribuzioe di X, si puo procedere i maiera aaloga: si ha, per ogi itero k : P (X = k) = + j=k P (X = k N = j)p (N = j) = 7 + j=k ( j )p k j k λj (1 p) k j! e λ =

8 + = h= (pλ) k k! λ h (1 p) h h! e λ = (pλ)k k! Cio dimostra che i effetti si ha X P (λp). e λ e λ(1 p) = (pλ)k k! e (λp). Esercizio Com é oto, la v.a. U = X + Y ha distribuzioe χ, quidi ha desita f U (u) = 1 e u, aturalmete per u >. Per determiare la distribuzioe di Z = U, cerchiamo la sua fuzioe di ripartizioe: F Z (z) = P (U z ) = F U (z ) (sempre co z > ). Duque, la desita di Z é f Z (z) = zf U (z ) = z e z, z >. Per valutare E(Z), basta itegrare: E(Z) = + z e z dz = + v 1 e v dv = Γ( 3 ) = π. Chiaramete poi si ha E(Z ) = E(U) =, da cui V (Z) = E(Z ) E (Z) = π. Ifie, la mediaa x m di Z si trova mediate la relazioe: 1 xm = u e u / du = 1 e x m /. Risolvedo, si ha facilmete il risultato: x m = log. Esercizio 3 a) Se X è la variabile aleatoria dei bimbi co i capelli scuri, all itero della popolazioe co gli occhi scuri, X ha ua distribuzioe biomiale co probabilità di successo p. Sfruttado l approssimazioe ormale, l itervallo di cofideza ha ˆp(1 ˆp) estremi ˆp±z a, dove ˆp = 8/11 =.8, = 11 e, dalla tabella, z a Pertato l itervallo di cofideza cercato è [ ] , [.75,.875]

9 Occhi Chiari Occhi Scuri Totale Capelli Chiari 7 9 Capelli Scuri Totale 9 11 b) Voledo per semplicità rappresetare i dati co ua tabella dove sulle righe abbiamo il carattere colore dei capelli, metre sulle coloe troviamo il carattere colore degli occhi, risulta Vogliamo determiare tale che P ( ˆp p <.1) =.98, ovvero P ˆp p.4 ˆp p.98. Essedo.4 N(, 1), dalla tabella si ottiee.1.4 = , e duque il campioe deve essere almeo di 18 bambii. <.1.4 = =.33, da cui Esercizio 1 Prova scritta del 8/9/6 Soo date tre variabili aleatorie IID, X, Y, Z, tutte co distribuzioe cotiua uiforme i [, 1]. Si calcoli la probabilita dell eveto X Y Z. Esercizio U recipiete cotiee iizialmete due pallie umerate, la.1 e la.. Si estrae ua palla a caso, e si deota co X 1 il umero della palla estratta. Idi, la palla estratta si rimette ell ura, isieme co ua terza palla, segata co il.3. lla secoda estrazioe, si deota co X il umero della palla estratta, e poi si procede allo stesso modo, cosi al mometo della terza estrazioe ell ura soo preseti 4 palle, co i umeri da 1 a 4. Si va avati cosi idefiitamete, idicado ogi volta co X il umero della palla estratta alla -esima estrazioe, umero che varia tra 1 e + 1. Posto poi Y = X +1 per ogi, si studi la covergeza delle variabili Y, per. Esercizio 3 I segueti dati campioari si riferiscoo alla durata (i migliaia di ore) di due tipi di lampadie, e B, prodotti da ua ditta B

10 ssumedo che le due popolazioi abbiao distribuzioe ormale co variaze σ = 1, σb = 9.5, rispettivamete, si chiede di: a) costruire u itervallo di cofideza al 99% per la durata media delle lampadie ella popolazioe ; b) sottoporre a verifica l ipotesi (H ) che i due prodotti abbiao la stessa durata media, cotro l alterativa (H 1 ) che sia u prodotto migliore di B, al livello di sigificatività a =.5. (Detta Φ la fuzioe di ripartizioe della distribuzioe ormale N(, 1), utilizzare la seguete tabella: Φ(1.645).95 Φ(1.96).975 Φ(.33).99 Φ(.58).995) Soluzioi compito 8/9/6 Esercizio 1 Per ogi valore possibile z [, 1] si ha P ( X Y z) = 1 (1 z), come varie volte osservato. Cosiderata l idipedeza, e la distribuzioe supposta per Z, la probabilita cercata é data da: Esercizio P ( X Y Z) = 1 (1 (1 z) )dz = = 3. Chiaramete, si ha X U( + 1) per ogi (distribuzioe discreta uiforme). Di cosegueza, si ha Y [, 1], sempre co distribuzioe discreta. Per ogi reale positivo t 1, avremo P ([Y t]) = P ([X ( + 1)t]) = [( + 1)t] + 1, ove la scrittura [x] sta ad idicare, per x reale, la parte itera di x, ossia il piu grade umero itero che sia miore o uguale a x. Duque, la quatita [( + 1)t] differisce da ( + 1)t al piu per 1. Ne segue che lim P ([Y t]) = t e quidi le fuzioi di ripartizioe delle Y covergoo a quella della distribuzioe cotiua U(, 1). Duque, le Y covergoo i distribuzioe alla uiforme cotiua U(, 1). 1

11 Esercizio 3 a) Se X è la variabile aleatoria che rappreseta la durata di, si trova che la media campioaria è pari a: X = 6 x,i Sotto l ipotesi ormale si ha X X σ N(, 1), da cui l itervallo di cofideza ha estremi X ± z a cofideza cercato è [ σ, dove, dalla tabella, z a , Pertato l itervallo di ] [31.837, ]. b) Si tratta di u test uidirezioale dove l ipotesi ulla è H : µ µ B =, cotro l ipotesi alterativa H 1 : µ µ B >, idicado co µ e µ B le medie delle due popolazioi. Poiché le due popolazioi hao distribuzioe ormale, si rifiuta l ipotesi ulla se z > z a dove z = X X 6 B. Essedo X e X B = x B,i σ 6 + σ B 3.333, risulta z.68, metre i base alla tabella z a 1.645; l ipotesi ulla pertato va rifiutata e si è portati a cocludere che è effettivamete u prodotto migliore di B. 11

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2013 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 3 Prova scritta del 6//3 Esercizio Suppoiamo che ua variabile aleatoria Y abbia la seguete desita : { hx e 3/x, x > f Y (y) =, x, co h opportua costate positiva.

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2009/10

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2009/10 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 9/1 Prova scritta del 13/1/1 Esercizio 1 Ua Ditta commerciale guadaga ogi ao ua somma X, ove si puo assumere che X N(µ, σ ). Ogi ao la Ditta paga ua tassa fissa

Dettagli

Soluzione CPS 22/6/04. I parte. (1). Chiamiamo C l evento l individuo scelto ha il colesterolo alto, V, O e NL rispettivamente

Soluzione CPS 22/6/04. I parte. (1). Chiamiamo C l evento l individuo scelto ha il colesterolo alto, V, O e NL rispettivamente Soluzioe CPS 22/6/04 I parte 1. Chiamiamo C l eveto l idividuo scelto ha il colesterolo alto, V, O e NL rispettivamete è vegetariao, è oivoro e o magia latticii. I dati soo: P C = 0.4, P O C = 0.75, P

Dettagli

Probabilità e Statistica Laurea Triennale in Matematica 17/06/2014 Soluzioni traccia B

Probabilità e Statistica Laurea Triennale in Matematica 17/06/2014 Soluzioni traccia B Probabilità e Statistica Laurea Trieale i Matematica 7/06/204 Soluzioi traccia B Esercizio 2. (Appello completo) Cosideriamo due ure A e B. L ura A cotiee 4 biglie rosse e 2 ere, metre l ura B cotiee biglia

Dettagli

Prova d esame di Calcolo delle Probabilità 02/07/2011

Prova d esame di Calcolo delle Probabilità 02/07/2011 Prova d esame di Calcolo delle Probabilità 0/07/0 N. MATRICOLA... COGNOME e NOME... Esercizio Cosideriamo due ure ed ua moeta truccata. La prima ura (ura A) cotiee pallie rosse e 4 biache, la secoda ura

Dettagli

II Esonero - Testo A

II Esonero - Testo A Dip. di Igegeria, Uiv. Roma Tre Prof. E. Scoppola, Dott.M. Quattropai Probabilità e Statistica, 2017-18, I semestre 29 Geaio 2018 II Esoero - Testo A Cogome Nome Matricola Esercizio 1. (20%) Si cosideri

Dettagli

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti:

Quesito 1. I seguenti dati si riferiscono ai tempi di reazione motori a uno stimolo luminoso, espressi in decimi di secondo, di un gruppo di piloti: Quesito. I segueti dati si riferiscoo ai tempi di reazioe motori a uo stimolo lumioso, espressi i decimi di secodo, di u gruppo di piloti: 2, 6 3, 8 4, 8 5, 8 2, 6 4, 0 5, 0 7, 2 2, 6 4, 0 5, 0 7, 2 2,

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità D

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità D Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità D Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete modo: +1

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzione

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzione Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità B - Soluzioe Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioni

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioni Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità A - Soluzioi Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità C

Statistica inferenziale, Varese, 5 febbraio 2009 Prima parte - Modalità C Statistica ifereziale, Varese, 5 febbraio 2009 Prima parte - Modalità C Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete modo: +1

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 7

Esercizi di Calcolo delle Probabilità Foglio 7 Esercizi di Calcolo delle Probabilità Foglio 7 David Barbato Esercizio. Siao Y e X } N variabili aleatorie idipedeti e co distribuzioe espoeziale di parametro λ =. Siao ioltre: W := maxy, X } N T := miw

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2016/2017 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea i Igegeria Iformatica Ao Accademico 26/27 Calcolo delle Probabilità e Statistica Matematica Nome... N. Matricola... Acoa, geaio 27. (8 puti) Si vuole stimare il parametro p di ua legge

Dettagli

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n

Esercizi 2 Pietro Caputo 14 dicembre se ξ n > log n Esercizi 2 Pietro Caputo 4 dicembre 2006 Esercizio. Siao Y, per =, 2,..., variabili aleatorie co distribuzioe biomiale di parametri e p := λ, per qualche λ > 0. Dimostrare che Y coverge i distribuzioe

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

1 Esercizi tutorato 27/5

1 Esercizi tutorato 27/5 Esercizi tutorato 7/5 Esercizi tutorato 7/5 Esercizio.. Si cosideri u compoete elettroico costituito da compoeti collegate i serie. Ogi compoete ha u tempo di vita T i Expλ), i =,..., idipedete. Sia X

Dettagli

Correzione Esercitazione 6

Correzione Esercitazione 6 Correzioe Esercitazioe 6 Esercizio. Poiché vogliamo usare il test del rapporto di verosimigliaza per u ipotesi ulla semplice, dobbiamo calcolare Λ(x) L(θ 0 x) supl(θ x) quidi al umeratore ci basta sostituire

Dettagli

Seconda Prova Intermedia 28 Maggio 2019 Elementi di Probabilità e Statistica, Laurea Triennale in Matematica, M. Romito, M.

Seconda Prova Intermedia 28 Maggio 2019 Elementi di Probabilità e Statistica, Laurea Triennale in Matematica, M. Romito, M. Secoda rova Itermedia 8 Maggio 09 Elemeti di robabilità e Statistica, Laurea Trieale i Matematica, 08-9 M. omito, M. ossi roblema 0. Sia X, Y ) ua v.a. a valori i co desità dove N è u parametro fissato.

Dettagli

CALCOLO DELLE PROBABILITÀ PROVA SCRITTA DEL 1/2/2011

CALCOLO DELLE PROBABILITÀ PROVA SCRITTA DEL 1/2/2011 CALCOLO DELLE PROBABILITÀ PROVA SCRITTA DEL //0 PRIMA PARTE Esercizio U sitomo S è ricoducibile a tre malattie M, M e M 3 a due a due icompatibili. Sapedo che la probabilità che u idividuo abbia la patologia

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Trieale i Matematica Calcolo delle Probabilità I doceti G. Nappo, F. Spizzichio Prova di martedì luglio tempo a disposizioe: 3 ore. Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo

Dettagli

Esercizi settimana 10

Esercizi settimana 10 y = = 0 0,5 0,5,5 x Esercizi settimaa 0 Esercizi applicati Esercizio. Siao X ) i.i.d. tali per cui X U0, ), si dimostri che X 0. Soluzioe. Per calcolare la covergeza i legge dobbiamo usare la fuzioe di

Dettagli

Esercitazione sette: soluzioni. H 1 : θ > 0.48 ( =

Esercitazione sette: soluzioni. H 1 : θ > 0.48 ( = Esercitazioe sette: soluzioi. { H0 : θ 0.48 H : θ > 0.48 a) La variabile Y ha ua distribuzioe beroulliaa di parametro θ. La desità appartiee alla famiglia espoeziale e possiamo vedere se è a rapporto di

Dettagli

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6

Statistica, a.a. 2010/2011 Docente: D. Dabergami Lezione 6 X c () 0 0 0 0 t dx e x t altrove x e x x f x t x X = =4 =8 E[X] = Var[X] = Teorema Z, Z,, Z N(0 ; ) e idipedeti X= Z + Z + +Z c () Nota Esistoo tavole dei puti percetuali delle distribuzioi chi-quadro

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 24 maggio 26 Desità e distribuzioi cogiute e codizioate. Covergeza e approssimazioe Esercizio Uo studio dice che l ivestimeto i titoli di stato, rappresetato

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ (o modulo) - PROVA d esame del 6/06/200 - Laurea Quadrieale i Matematica - (Prof. Nappo) Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo essere giustificate

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 07/02/2017

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 07/02/2017 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 07/02/207 COGNOME e NOME... N. MATRICOLA... Esercizio. Sia {X } N ua martigala rispetto ad ua filtrazioe {F } N co P (X N) = per ogi

Dettagli

Esercitazione ricapitolativa

Esercitazione ricapitolativa Esercitazioe ricapitolativa. (a) Dobbiamo calcolare il valor atteso dei due stimatori T e T 2 per verificare la o distorsioe. Partiamo col calcolare il valor atteso per la variabile X. E(X) = 3 x 3 dx

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Itervalli di cofideza Prof. Livia De Giovai statistica@dis.uiroma1.it Esercizio 1 La fabbrica A produce matite colorate. Ua prova su 100 matite scelte a caso ha idicato u peso

Dettagli

Esercizi con R. Corso Statistica corso avanzato A. A. 2013/2014

Esercizi con R. Corso Statistica corso avanzato A. A. 2013/2014 Esercizi co R Corso Statistica corso avazato A. A. 203/204 Esercizio Due compagie di assicurazioe soo i cocorreza per stipulare polizze co = 000 clieti. Si suppoga che ogi cliete scelga tra le due società

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli Esercitazioi del Corso di Probabilitá e Statistica Lezioe 6: Stime di parametri putuali e per itervalli Stefao Patti 1 19 geaio 005 Defiizioe 1 Ua famiglia di desitá f(, θ) ad u parametro (uidimesioale)

Dettagli

Esercizi di Analisi II

Esercizi di Analisi II Esercizi di Aalisi II Ao Accademico 008-009 Successioi e serie di fuzioi. Serie di poteze. Studiare la covergeza della successioe di fuzioi (f ) N, dove f : [, ] R è defiita poedo f (x) := x +.. Studiare

Dettagli

Esercizi di econometria: serie 2

Esercizi di econometria: serie 2 Esercizi di ecoometria: serie Esercizio Per quali delle segueti uzioi di desità cogiuta le variabili casuali ed soo idipedeti?......3.4.5..5 (a) (b) 3 4....3.6.9..4...5..5 3.. 3.8..4.6 (c) (d) Nel caso

Dettagli

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI

Esperimentazioni di Fisica 1. Prova scritta del 1 febbraio 2016 SOLUZIONI Esperimetazioi di Fisica 1 Prova scritta del 1 febbraio 2016 SOLUZIONI Esp-1 Prova di Esame Primo appello - Page 2 of 7 10/09/2015 1. (12 Puti) Quesito. La variabile casuale cotiua x ha ua distribuzioe

Dettagli

Il risultato di una prova è un n. aleatorio Funzioni degli esiti: Ω IR X, Y, Z,... funzioni, X(ω), Y (ω), Z(ω)

Il risultato di una prova è un n. aleatorio Funzioni degli esiti: Ω IR X, Y, Z,... funzioni, X(ω), Y (ω), Z(ω) Variabili aleatorie (v.a.) Il risultato di ua prova è u. aleatorio Fuzioi degli esiti: Ω IR X, Y, Z,... fuzioi, X(ω), Y (ω), Z(ω) se B IR, P(X B) = = P({ω Ω : X(ω) B}) = P(X 1 (B)) I geerale iteressa B

Dettagli

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a

Corso di Statistica. Test per differenza tra medie e proporzioni. Prof.ssa T. Laureti a.a Corso di Statistica Test per differeza tra medie e proporzioi Prof.ssa T. Laureti a.a. -3 Corso di Statistica a.a. -3 DEIM, Uiv.TUSCIA - Prof.ssa Laureti Test basati su campioi idipedeti proveieti da due

Dettagli

Appunti di STATISTICA

Appunti di STATISTICA Apputi di STATISTICA! Distribuzioe espoeziale X v.a. cotiua, R X = (0,+ ) Si dice che X ha distribuzioe espoeziale a parametro f X = >0 E (X) = 1/ Var (X) = 1/ e - x x>0 0 altrove (umero reale) se la p.d.f.

Dettagli

Università degli Studi di Salerno Pietro Coretto. Corso di Statistica FORMULARIO

Università degli Studi di Salerno Pietro Coretto. Corso di Statistica FORMULARIO Versioe: 16 ottobre 2017 (h17:25) Uiversità degli Studi di Salero Pietro Coretto Corso di Statistica FORMULARIO Valori osservati per statistiche di posizioe, variabilità e correlazioe Nota: per ua distribuzioe

Dettagli

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono

P(X = k) = (k 1). 2 Infatti, le uniche sequenze di lunghezza k (di T e C) possibili sono Prima Prova Itermedia testo co soluzioi 5 Aprile 09 Elemeti di Probabilità e Statistica, Laurea Trieale i Matematica, 08-9 M Romito, M Rossi Problema 0 Ua moeta equa viee laciata fio alla prima volta i

Dettagli

SUCCESSIONI DI FUNZIONI

SUCCESSIONI DI FUNZIONI SUCCESSIONI DI FUNZIONI LUCIA GASTALDI 1. Defiizioi ed esempi Sia I u itervallo coteuto i R, per ogi N si cosideri ua fuzioe f : I R. Il simbolo f } =1 idica ua successioe di fuzioi, cioè l applicazioe

Dettagli

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Esercitazione X Complementi di Probabilità a.a. 2011/2012

Esercitazione X Complementi di Probabilità a.a. 2011/2012 Esercitazioe X Complemeti di Probabilità a.a. 20/202 Argometi: covergeza e TLC. Esercizio. Sia {X k } k ua successioe di v.a. i.i.d. di legge Exp(. Sia G = S,. a Scrivere la fuzioe caratteristica φ di

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 3

Traccia delle soluzioni degli esercizi del fascicolo 3 Traccia delle soluzioi degli esercizi del fascicolo 3 Esercizio I ua procedura di cotrollo di produzioe, processori prodotti da u processo idustriale vegoo sottoposti a cotrollo Si assuma che ogi pezzo,

Dettagli

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti. AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X 1100. 2. La quatità di eve, che cade al gioro,i

Dettagli

Legge Gamma e Legge Chi quadro

Legge Gamma e Legge Chi quadro Legge Gamma e Legge Chi quadro Sia G ua variabile aleatoria di legge Gamma di parametri a e λ reali positivi, G Γ(a, λ, la cui fuzioe di desità è: f G (x = λa Γ(a e λx x a per x 0 dove Γ( è la fuzioe Gamma

Dettagli

Corso di Statistica Canale E Bini, Cutillo A.A. 2017/2018. Esercitazione di riepilogo n.8 Test di ipotesi Soluzioni

Corso di Statistica Canale E Bini, Cutillo A.A. 2017/2018. Esercitazione di riepilogo n.8 Test di ipotesi Soluzioni Corso di Statistica Caale E Bii, Cutillo A.A. 17/18 Esercitazioe di riepilogo.8 Test di ipotesi Soluzioi Esercizio 1 A seguito della sostituzioe di u macchiario per il cofezioameto di caffè, il resposabile

Dettagli

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1

ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE 1 ALCUNI ESERCIZI SUI TEST DI IPOTESI PARAMETRICHE PARTE ESERCIZIO. Si vuole verificare l ipotesi, a livello di sigificatività α, che la media μ di ua variabile aleatoria X abbia u valore fissato μ. Si effettuao

Dettagli

Statistica I - A.A

Statistica I - A.A Statistica I - A.A. 206-207 Prova scritta - 9 aprile 207 Problema. (pt. 20 U azieda che produce ricambi per stampati esamia la durata di u certo modello di cartuccia d ichiostro, misurata i umero di copie

Dettagli

Correzione Esercitazione 5. Esercizio 1. Per determinare l intervallo di confidenza scegliamo come quantità. x 2) I 2 (0,θ) (x), da cui 1 F X (x θ) =

Correzione Esercitazione 5. Esercizio 1. Per determinare l intervallo di confidenza scegliamo come quantità. x 2) I 2 (0,θ) (x), da cui 1 F X (x θ) = Correzioe Esercitazioe 5 Esercizio 1. Per determiare l itervallo di cofideza scegliamo come quatità pivotale 1 F X θ) che ha distribuzioe U0, 1). Nel ostro caso, F X θ) = θ 1 θ ) I 0,θ) ), da cui 1 F X

Dettagli

Soluzioni quarta esercitazione

Soluzioni quarta esercitazione Soluzioi quarta esercitazioe. (a) Dobbiamo calcolare il valor atteso dei due stimatori T e T 2 per verificare la o distorsioe. Partiamo col calcolare il valor atteso per la variabile X. E(X) = 3 x 3 dx

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo

Politecnico di Milano - Anno Accademico Statistica Docente: Alessandra Guglielmi Esercitatore: Stefano Baraldo Politecico di Milao - Ao Accademico 010-011 Statistica 086449 Docete: Alessadra Guglielmi Esercitatore: Stefao Baraldo Esercitazioe 8 14 Giugo 011 Esercizio 1. Sia X ua popolazioe distribuita secodo ua

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica La distribuzioe delle statistiche campioarie Matematica co elemeti di Iformatica Tiziao Vargiolu Dipartimeto di Matematica vargiolu@math.uipd.it Corso di Laurea Magistrale i Chimica e Tecologie Farmaceutiche

Dettagli

Esercitazione n Supponendo che i giorni lavorativi in un anno siano 340, quanti chilometri percorre mediamente un tir in un anno?

Esercitazione n Supponendo che i giorni lavorativi in un anno siano 340, quanti chilometri percorre mediamente un tir in un anno? Esercitazioe.4 1 Applicazioi del TCL 1.1 Ua ditta di trasporti iterazioali possiede 100 tir dello stesso tipo. Ogi tir percorre ua media di 600 km al gioro co ua deviazioe stadard di 50 km. 1. Suppoedo

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018

Primo appello di Calcolo delle probabilità Laurea Triennale in Matematica 22/01/2018 Primo appello di Calcolo delle probabilità Laurea Trieale i Matematica 22/0/20 COGNOME e NOME... N. MATRICOLA... Esercizio. Siao X e Y due variabili aleatorie idipedeti, co le segueti distribuzioi: X Uif(0,

Dettagli

Statistica inferenziale, Varese, 25 novembre 2008 Prima parte - Modalità B - soluzione

Statistica inferenziale, Varese, 25 novembre 2008 Prima parte - Modalità B - soluzione Statistica ifereziale, Varese, 25 ovembre 2008 Prima parte - Modalità B - soluzioe Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo

Senza reimmissione. Le n v.a. non sono più indipendenti e identicamante distribuite. Campionamento da universo STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it Ifereza statistica Dal campioe alla popolazioe Co quale precisioe si possoo descrivere le caratteristiche di ua popolazioe sulla base

Dettagli

PROVA SCRITTA DI STATISTICA CLEA-CLEFIN-CLELI (COD e 4038) 15 gennaio 2003

PROVA SCRITTA DI STATISTICA CLEA-CLEFIN-CLELI (COD e 4038) 15 gennaio 2003 PROVA SCRITTA DI STATISTICA CLEA-CLEFIN-CLELI (COD. 5047 e 408) 5 geaio 00 SOLUZIONI Il uovo direttore di ua Baca di Credito Cooperativo si trova ad affrotare ua verteza di tipo sidacale che riguarda la

Dettagli

Distribuzione normale o gaussiana

Distribuzione normale o gaussiana Distribuzioe ormale o gaussiaa Ua variabile radom si dice distribuita ormalmete (o secodo ua curva gaussiaa) se la sua fuzioe di desità di probabilità è del tipo: f () ( ) ep co - rappreseta il valore

Dettagli

Traccia delle soluzioni degli esercizi del fascicolo 6

Traccia delle soluzioni degli esercizi del fascicolo 6 Traccia delle soluzioi degli esercizi del fascicolo 6 Esercizio Vegoo geerati umeri casuali tra 0 e, co distribuzioe uiforme. Quati umeri è ecessario geerare affiché la probabilità che la somma di essi

Dettagli

Lezione 15. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 15. A. Iodice

Lezione 15. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 15. A. Iodice Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 29 Outlie 1 2 3 4 () Statistica 2 / 29 itervallo margie di errore Per stimare u parametro della popolazioe,

Dettagli

ESERCITAZIONE N. 6 corso di statistica

ESERCITAZIONE N. 6 corso di statistica ESERCITAZIONE N. 6corso di statistica p. 1/18 ESERCITAZIONE N. 6 corso di statistica Marco Picoe Uiversità Roma Tre ESERCITAZIONE N. 6corso di statistica p. 2/18 Itroduzioe Variabili aleatorie cotiue Itervalli

Dettagli

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) =

Esercitazione n 3. 1 Successioni di funzioni. Esercizio 1: Studiare la convergenza in (0, 1) della successione {f n } dove f n (x) = Esercitazioe 3 Successioi di fuzioi Esercizio : Studiare la covergeza i (0, ) della successioe {f } dove f (x) = metre Sol.: Si verifica facilmete che lim f (x) = 0 x (0, ) lim sup f (x) = lim = + (0,)

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

ESERCIZI - FASCICOLO 1

ESERCIZI - FASCICOLO 1 ESERCIZI - FASCICOLO 1 Esercizio 1 Sia (Ω, A) uo spazio misurabile. Se (A ) 1 è ua successioe di eveti (= elemeti di A), defiiamo lim sup A := A k lim if A = A k. Mostrare che =1 k= (lim sup A ) c = lim

Dettagli

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao

Stimatori corretti, stimatori efficaci e disuguaglianza di Cramer Rao Stimatori corretti stimatori efficaci e disuguagliaza di Cramer Rao Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche Defiizioe. Sia {X X 2... X } u

Dettagli

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova,

Corsi di laurea in fisica ed astronomia Prova scritta di Analisi Matematica 2. Padova, Corsi di laurea i fisica ed astroomia Prova scritta di Aalisi Matematica Padova, 8.8.08 Si svolgao i segueti esercizi facedo attezioe a giustificare le risposte. Delle affermazioi o motivate e giustificate

Dettagli

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico Corso di Statistica 2, Prof. M. Furno Uiversità degli Studi di Cassio, Ao accademico 004-005 Corso di Statistica, Prof.. uro Esercitazioe del 01/03/005 dott. Claudio Coversao Esercizio 1 Si cosideri il seguete campioe casuale semplice estratto

Dettagli

IV Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2011/12 Nome: 17 luglio

IV Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2011/12 Nome: 17 luglio IV Appello di Calcolo delle Probabilità Cogome: Laurea Trieale i Matematica / Nome: 7 luglio Email: Quado o è espressamete idicato il cotrario, per la soluzioe degli esercizi è possibile usare tutti i

Dettagli

Esercitazione due: soluzioni

Esercitazione due: soluzioni Esercitazioe due: soluzioi. Sia il ricavo r i pk i ti, p, k, t i > applicado la defiizioe di media di Chisii il tempo medio t che lascia ivariato il ricavo totale é quel valore tale che pk i ti pk i t

Dettagli

Capitolo Parte V

Capitolo Parte V Capitolo 1 1.1 Parte V Exercise 1.1. Sia X ua variabile aleatoria, defiita su (Ω,P a valori i E, quasi certamete costate, ossia esiste c E tale che P(X = c = 1. Si mostri che esiste u uico elemeto c E

Dettagli

1 Famiglia delle densità gamma

1 Famiglia delle densità gamma olitecico di Milao, Statistica INF, TEL [A-LZ], Epifai I., AA 7/8 Famiglia delle desità gamma Le espressioi delle desità espoeziale di parametro θ e χ date da (E(β)) (χ ) /θe x/β (, ) (x), β > (/) / x

Dettagli

Argomenti. Stima Puntuale e per Intervallo. Inferenza. Stima. Leonardo Grilli. Università di Firenze Corso di Laurea in Statistica Statistica

Argomenti. Stima Puntuale e per Intervallo. Inferenza. Stima. Leonardo Grilli. Università di Firenze Corso di Laurea in Statistica Statistica Uiversità di Fireze Corso di Laurea i Statistica Statistica Leoardo Grilli Stima Cicchitelli cap. 6 Argometi Defiizioe di stimatore Proprietà degli stimatori (campioi fiiti): No distorsioe Efficieza relativa

Dettagli

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni.

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni. Ifereza Statistica L ifereza statistica cerca di risalire al modello del feomeo sulla base delle osservazioi No coosciamo il modello del feomeo cioè la vc X A volte la coosceza può essere parziale (coosciamo

Dettagli

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice

Statistica. Esercitazione 12. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice Esercitazioe 12 Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () 1 / 15 Outlie 1 () 2 / 15 Outlie 1 2 () 2 / 15 Outlie 1 2 3 () 2 / 15 Outlie 1 2 3 4 () 2 / 15 Outlie 1 2 3 4 5

Dettagli

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c)

SERIE NUMERICHE Esercizi risolti. (log α) n, α > 0 c) SERIE NUMERICHE Esercizi risolti. Calcolare la somma delle segueti serie telescopiche: a) b). Verificare utilizzado la codizioe ecessaria per la covergeza) che le segueti serie o covergoo: a) c) ) log

Dettagli

Statistica inferenziale, Varese, 25 novembre 2008 Prima parte - Modalità A - soluzione

Statistica inferenziale, Varese, 25 novembre 2008 Prima parte - Modalità A - soluzione Statistica ifereziale, Varese, 25 ovembre 2008 Prima parte - Modalità A - soluzioe Cogome Nome: Numero di matricola: ISTRUZIONI: Il puteggio relativo alla prima parte dell esame viee calcolato el seguete

Dettagli

0.1 Il teorema limite centrale

0.1 Il teorema limite centrale 0. Il teorema limite cetrale 0. Il teorema limite cetrale Teorema 0.. Teorema limite cetrale). Sia X i ) i N ua successioe di variabili aleatorie i.i.d. che ammettoo mometo secodo fiito, co media µ e co

Dettagli

UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 2007/2008

UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 2007/2008 UNIVERSITÀ DEGLI STUDI DI LECCE APPUNTI PER IL SEMINARIO DI ELEMENTI DI TEORIA DELLA PROBABILITÀ A.A. 007/008 Questi apputi soo stati cocepiti come u aiuto didattico per gli studeti della Facoltá di Ecoomia.

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 1 Aalisi Matematica I modulo Soluzioi prova scritta prelimiare 1 Corso di laurea i Matematica, aa 004-005 9 ovembre 004 1 (a) Calcolare il seguete limite: **A***** Soluzioe Si ha ( + log ) ( + log ) lim

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Distribuzione normale

Distribuzione normale Distribuzioe ormale Tra le distribuzioi di frequeze, la distribuzioe ormale riveste u importaza cetrale. Essa ha ua forma a campaa ed è simmetrica rispetto all asse verticale che passa per il vertice (moda).

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a Esame del STATISTICA FACOLTÀ DI SOCIOLOGIA a. a. 011 01 Esame del 11-01-01 STATISTICA ESERCIZIO 1 U idagie sulle abitudii alimetari dei requetatori di u cetro itess ha moitorato il umero di caè cosumati i u gioro ormale e

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Lezioni del Corso di Fondamenti di Metrologia Meccanica

Lezioni del Corso di Fondamenti di Metrologia Meccanica Facoltà di Igegeria Lezioi del Corso di Fodameti di Metrologia Meccaica A.A. 005-006 Prof. Paolo Vigo Idice. Frequeza e Probabilità. 3. Curva di Gauss 4. Altre Distribuzioi Frequeza e Probabilità Me spiego:

Dettagli

Costo manutenzione (euro)

Costo manutenzione (euro) Esercitazioe 05 maggio 016 ESERCIZIO 1 Ua società di servizi possiede u parco auto di diverse età. I dirigeti ritegoo che il costo degli iterveti di mautezioe per le auto più vecchie sia geeralmete più

Dettagli

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo

Stime puntuali. Statistica e biometria. D. Bertacchi. Stime puntuali. Intervalli di confidenza. Approfondiamo Abbiamo visto che, data ua v.a. X di cui o si cooscao valore atteso e variaza, tali umeri si possoo stimare putualmete el seguete modo: si prede u casuale X 1,...,X di v.a. aveti la stessa legge di X;

Dettagli

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96

n=400 X= Km; s cor =9000 Km Livello di confidenza (1-α)=0,95 z(0,05)=1,96 STATISTICA A K (60 ore Marco Riai mriai@uipr.it http://www.riai.it : stima della percorreza media delle vetture diesel di u certo modello al primo guasto 400 X34.000 Km; s cor 9000 Km Livello di cofideza

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!)

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) Per fortua le cose o cambiao poi di molto visto che la uova variabile x µ s x co s x

Dettagli

Formulario (versione del 3/10/2015)

Formulario (versione del 3/10/2015) Uiversità degli Studi della Basilicata C.d.L. Ecoomia Aziedale Statistica a.a. 04/05 Docete: E. Di Nardo Frequeze Formulario versioe del 3/0/05 taglia campioe casuale x,..., x campioe casuale ordiato x...

Dettagli

Test Statistici. In termini statistici, agli eventi appena indicati viene attribuita una probabilità ed una specifica definizione:

Test Statistici. In termini statistici, agli eventi appena indicati viene attribuita una probabilità ed una specifica definizione: Test Statistici U test statistico è ua regola che permette di stabilire se u ipotesi (H " ) può essere accettata (o rifiutata) o meo (rifiutata). I particolare, H " può essere vera o falsa e la sua accettazioe/rifiuto

Dettagli

Parametri e statistiche. Parametri e statistiche. Distribuzioni campionarie. Popolazione Parametri Valori fissi, Statistiche o Stimatori.

Parametri e statistiche. Parametri e statistiche. Distribuzioni campionarie. Popolazione Parametri Valori fissi, Statistiche o Stimatori. Parametri e statistiche Popolazioe Parametri Valori fissi, spesso o oti Campioe Statistiche o Stimatori Variabili casuali, le cui determiazioi dipedoo dalle particolari osservazioi scelte Parametri e statistiche

Dettagli

ESERCITAZIONE VII. H 0 : μ = 500. H 1 : μ > /3.16 = = 3.403

ESERCITAZIONE VII. H 0 : μ = 500. H 1 : μ > /3.16 = = 3.403 ESERCITAZIONE VII ESERCIZIO I Test sulla media: H 0 : μ 500 H : μ > 500 μ 570; 0; σ 430 α 0.05; z 0.05.645 Z 570 500 65.04/3.6 70 0.57 3.403 Dato che 3.403>.645 rifiutiamo H 0 e possiamo cocludere che

Dettagli

Intervalli di Fiducia

Intervalli di Fiducia di Fiducia Itroduzioe per la media Caso variaza ota per la media Caso variaza o ota per i coefficieti di regressioe per la risposta media i per i coefficieti i di regressioe multilieare - Media aritmetica

Dettagli

Esercizi - Fascicolo III

Esercizi - Fascicolo III Esercizi - Fascicolo III Esercizio I ua procedura di cotrollo di produzioe, processori prodotti da u processo idustriale vegoo sottoposti a cotrollo Si assuma che ogi pezzo, idipedetemete dagli altri,

Dettagli

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) =

Tutoraggio AM1 17/12/2015. sin(x) arctan(x) 2) lim sup / inf x 0 + cos(x) sin( 1 x ) e x2 cos 2 (x 3 ) x 2 + ln(3x + 2) δ(x) δ(x) = Tutoraggio AM1 17/12/2015 Per la parte teorica sui if e sup vedi le ote su iti iferiori e superiori di fuzioi. A) Date due successioi a },b }, mostrare le segueti proprietà (escludere i casi i cui si abbia

Dettagli