4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:"

Transcript

1 INTEGRLI OPPI e TRIPLI Esercii risolti. Calcolare i seguenti integrali doppi: a b c d e f g h i j k y d dy,, y :, y }; d dy,, y :, y }; + y + y d dy,, y :, y }; y d dy,, y :, y }; y d dy,, y :, y + }; + y d dy,, y : y }; sin y y d dy,, y : π, y π}; + y d dy,, y :, min, } y ma, }}; sin y d dy,, y :, y }; sin y d dy,, y : π, y }; d dy,, y : y + / +, y, y + }.. Sia il triangolo di vertici,,, e, dotato di densità unitaria cioè densità costante. Calcolare il momento di ineria di rispetto al vertice.. Sia B il triangolo di vertici B,, B, e B, dotato di densità unitaria. Calcolare il momento di ineria di B rispetto al vertice B.. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: a, y : y }; b B, y : + y, y }. 5. Calcolare i seguenti integrali doppi: a y d dy,, y : + y, y }; b + y d dy,, y : + y, y }; c d dy,, y : + y, y };

2 d y d dy,, y : + 9y 6, y }. 6. Sia un disco circolare dotato di densità unitaria, avente centro in C r, e raggio r. Verificare la relaione I I C + r, dove I e I C sono i momenti di ineria di rispetto a O e a C e è l area di. 7. Calcolare i seguenti integrali doppi impropri: a b c d e + y α d dy,, y : + y }; y + y d dy,, y : + y,, y }; + y d dy,, y : + y,, y }; + y d dy,, y : + y, y }; + y d dy,, y : + y, y }. 8. Calcolare l integrale triplo ye d dy d, dove è il parallelepipedo, ], ], ], y, :, y, }. 9. Calcolare. Calcolare d dy d, dove, y, :, y,, + y + }. + y + d dy d, dove, y, :, y +, + y}.. Calcolare il volume della calotta sferica, y, : + y + 9, }.. Calcolare il volume del solido di rotaione S ottenuto ruotando attorno all asse la figura piana contenuta nel piano y y, : y, y }.. Utiliando le coordinate polari sferiche, calcolare, y, : + y + }. + y + e +y + d dy d, dove. Calcolare + + y + d dy d, dove, y, : + y +, }.

3 INTEGRLI OPPI e TRIPLI Esercii risolti - SOLUZIONI. Calcolare i seguenti integrali doppi: a y d dy,, y :, y }. b c d e È possibile risolvere l integrale indifferentemente per oriontali o per verticali. Integrando per verticali si ottiene y d dy y dy d y d dy,, y :, y }. + y ] d d È possibile risolvere l integrale indifferentemente per oriontali o per verticali. Integrando per oriontali si ottiene d dy + y + y + + y + y d dy + y d dy,, y :, y }. ] + y dy log + y + log + y] ln ] dy. 5. La regione è sia oriontalmente che verticalmente convessa. È quindi possibile risolvere l integrale indifferentemente per oriontali o per verticali. Integrando per verticali si ottiene + y d dy y dy d d y d dy,, y :, y }. ] y + y ] d 5. La regione è sia oriontalmente che verticalmente convessa. È quindi possibile risolvere l integrale indifferentemente per oriontali o per verticali. Integrando per oriontali si ottiene y d dy 5 y 6y + y dy y d dy,, y :, y + }. y d dy ] 5 6 y y + y. y La regione è sia oriontalmente che verticalmente convessa, ma per la forma esplicita di è più conveniente integrare per verticali. Si ha quindi y d dy + y dy d d y ] + d ] y ] 5 8. dy

4 f + y d dy,, y : y }. La regione è sia oriontalmente che verticalmente convessa. È quindi possibile risolvere l integrale indifferentemente per oriontali o per verticali. Integrando per oriontali risulta + y d dy y + y/ y/ / y/ y/ + 5/ / + y d dy dy y5 5 y + y 6 + y5/ 5 ] y/ / y/ dy 7 / 5/ + y7/ ] 9 5. sin y g d dy,, y : π, y π}. y Sebbene la regione sia verticalmente e oriontalmente convessa, non è possibile calcolare esplicitamente l integrale per verticali, infatti la funione sin y/y non è integrabile elementarmente rispetto a y. Integrando per oriontali si ottiene invece sin y π y sin y π d dy d dy sin y dy cos y] π. y y h + y d dy,, y :, min, } y ma, }}. L insieme può essere visto come l unione dei due insiemi, y :, y },, y :, y } la cui interseione si riduce ad un punto delle relative frontiere. Possiamo quindi decomporre l integrale secondo: + y d dy + y d dy + + y d dy dove entrambi gli integrali a secondo membro possono essere risolti integrando per verticali. Si ha + y d dy + y dy d y + y ] d ] d e Quindi + y d dy + + d + y dy d ] y d dy y + y ] d i sin y d dy,, y :, y }. Poichè sin sin y y se y sin y se y >, si ha sin y d dy sin y d dy + sin y d dy dove, y :, y },, y :, y }

5 Integrando per verticali otteniamo sin y d dy sin y dy d cos d ] sin sin e Quindi cos y] d sin y d dy sin y dy d cos y ] d cos d + ] sin sin + y d dy sin + sin sin. j sin y d dy,, y : π, y }. Poichè si ha dove sin y sin y se y sin y sin se y > sin, sin y d dy sin y d dy + y sin d dy, y : π, y sin },, y : π, sin y } Integrando per verticali otteniamo e Quindi sin y d dy π sin d π π sin sin y dy d cos d π y sin d dy π sin sin + d ] π sin + cos 8 π. y sin dy sin π π ] π sin π d π y cos sin + sin y d dy π + π π. ] sin y sin y d y sin ] sin d d k d dy,, y : y + / +, y, y + }. L insieme può essere visto come l unione dei due insiemi, y :, y + / + },, y :, + y + / + } aventi in comune solo punti delle relative frontiere. Possiamo quindi decomporre l integrale secondo: d dy d dy + d dy dove entrambi gli integrali a secondo membro possono essere risolti integrando per verticali.

6 Si ha e Quindi d dy d dy +/+ dy d +/+ dy d + d dy +. ] + d d 8 + ]. Sia il triangolo di vertici,,, e, dotato di densità unitaria. Calcolare il momento di ineria di rispetto al vertice. Essendo si ha I + y d dy y 8 y + y y + 8 dy, y : y y, y } y + y d dy + y y + y y + 8 ] y. ] y y dy. Sia B il triangolo di vertici B,, B, e B, dotato di densità unitaria. Calcolare il momento di ineria di B rispetto al vertice B. Risulta B, y :, y }. Poichè la distana del generico punto, y B dal vertice B è + y, si ha I B B + y d dy d ]. + y dy d ] y + y d. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: a, y : y }. Siano e y le coordinate del baricentro di. Per simmetria risulta. Invece y y d dy M dove M è la massa di. Poichè M d dy e risulta y /5. y d dy dy d d ydy d d ] ] 5 5 5,

7 b B, y : + y, y }. Siano B e y B le coordinate del baricentro di B. Per simmetria risulta B. Invece y B y d dy MB B dove MB è la massa di B. Poichè e B y d dy risulta y B /π. MB ydy B d d dy π d ], 5. Calcolare i seguenti integrali doppi: a y d dy,, y : + y, y }. L integrale può essere calcolato utiliando le coordinate polari: ρ cos θ θ, π. y ρ sin θ Poichè + y ρ, la condiione + y diventa ρ, mentre y diventa sin θ, ossia θ π. L insieme di integraione nel piano ρ, θ è quindi il rettangolo: ρ, θ : ρ, θ π}. Essendo ρ lo Jacobiano della trasformaione, si ha: π y d dy ρ sin θ dθ dρ ρ θ sin θ ] π dρ π ρ dρ π ρ π ρ ] cos θ π 8. dθ dρ b + y d dy,, y : + y, y }; L integrale può essere calcolato utiliando le coordinate polari: ρ cos θ θ, π. y ρ sin θ c Poichè + y ρ, la condiione + y diventa ρ, mentre y diventa sin θ cos θ, ossia θ π/. L insieme di integraione nel piano ρ, θ è quindi il rettangolo: ρ, θ : ρ, θ π/}. Essendo ρ lo Jacobiano della trasformaione, si ha: π/ + y d dy ρ dθ dρ π d dy,, y : + y, y }. L integrale può essere calcolato utiliando le coordinate polari: ρ dρ π ρ ] π 6.

8 ρ cos θ y ρ sin θ θ, π. Poichè + y ρ, la condiione + y diventa ρ, mentre y diventa θ π. L insieme di integraione nel piano ρ, θ è quindi il rettangolo: ρ, θ : ρ, θ π}. Essendo ρ lo Jacobiano della trasformaione, si ha π d dy ρ cos θ dθ dρ ρ θ + sin θ ] π dρ π ρ dρ π ρ π ρ ] + cos θ 5 8 π. dθ dρ d y d dy,, y : + 9y 6, y }. La disequaione che definisce si può riscrivere come + y. Quindi è una mea ellisse di semiassi a e b. Utiliiamo la trasformaione di coordinate ρ cos θ θ, π y ρ sin θ l insieme di integraione nel piano ρ, θ diventa il rettangolo: ρ, θ : ρ, θ π}. Essendo 6ρ lo Jacobiano della trasformaione, si ha π y d dy ρ sin θ dθ dρ ρ cos θ] π dρ ρ dρ 8ρ ] Sia un disco circolare dotato di densità unitaria, avente centro in C r, e raggio r. Verificare la relaione I I C + r, dove I e I C sono i momenti di ineria di rispetto a O e a C e è l area di. Risulta I poichè per simmetria risulta + y d dy r + r + y d dy r + r r + r + y d dy r + y d dy + r I c + r + r I c + r r d dy r d dy. d dy + r r d dy 7. Calcolare i seguenti integrali doppi impropri:

9 a Sia allora + y α d dy,, y : + y }. Utiliando le coordinate polari si ha R, y : + y R }, R > + y α d dy lim + y α d dy. R + R + y α d dy R R π π α R α+ se α π log R se α. ρ α+ dθ dρ π R ρ α+ dρ b c Pertanto + y α d dy lim R + π α R α+ se α π log R se α. e quindi l integrale diverge positivamente se α, vale π/α se α >. y + y d dy,, y : + y,, y }. Sia R, y : + y R,, y }, R > allora Utiliando le coordinate polari si ha dove I π/ in quanto Sia allora R y y + y d dy lim R + R + y d dy. y + y d dy π/ R sin θ cos θ cos θ + sin θ dθ π/ sin θ cos θ ρ cos θ + sin θ dθ dρ R ρ dρ Ilog R log, sin θ cos θ cos θ+sin θ dθ >. Si può calcolare che I π. Tuttavia l integrale diverge positivamente y + y d dy I lim log R log. +. R + + y d dy,, y : + y,, y }. Utiliando le coordinate polari si ha Pertanto R R R, y : + y R,, y }, R > + y d dy lim R + R + y d dy. + y d dy R π/ ρ dρ ] R ρ R. R cos θ dθ dρ sin θ]π/ ρ ρ dρ + y d dy lim. R + R

10 d Sia + y d dy,, y : + y, y }. ɛ, y : ɛ + y, y } ɛ >, allora + y d dy lim ɛ + ɛ + y d dy. Utiliando le coordinate polari si ha ɛ + y d dy ɛ π/ cos θ dθ dρ ɛ sin θ] π/ dρ ɛ dρ ɛ. e Pertanto Sia + y d dy lim ɛ + ɛ + y d dy,, y : + y, y }.. ɛ, y : ɛ + y, y } ɛ >, allora + y d dy lim ɛ + ɛ + y d dy. Utiliando le coordinate polari si ha Pertanto ɛ + y d dy cos θ dθ dρ ɛ π/ ρ ρ dρ ] ρ ɛ. Quindi l integrale diverge positivamente. 8. Calcolare l integrale triplo ɛ + y d dy lim ɛ + ɛ +. ye d dy d, dove è il parallelepipedo, ], ], ], y, :, y, }. ɛ ρ sin θ] π/ dρ Il calcolo dell integrale triplo può essere ridotto al calcolo di tre integrali semplici successivi. ye ye d d dy y e ] d dy 9. Calcolare e y e d dy y y dy e ] ye ] dy e. d dy d, dove, y, :, y,, + y + }. è la regione del primo ottante che sta al di sotto del piano di equaione + y +. Questo piano passa per i punti P,,, P,, e P,,. unque è la piramide tetraedro di vertici P, P, P e,,. Integrando per strati paralleli al piano y si ha d dy d d dy d, dove è la seione di livello dell insieme, cioè l insieme degli, y tali che, y,, per ogni fissato tra e. unque è la regione del piano y definita dalle disequaioni y.

11 È facile vedere che è il triangolo di vertici,,,,,. Integrando per verticali su otteniamo ] d dy dy d y d ] + d + 6 e successivamente d dy d 6 d 6 ]. Possiamo anche integrare per fili paralleli all asse. Osserviamo che la seione di livello dell insieme, }, y :, y, è il triangolo di vertici,,,,, nel piano y. Fissato, y, la variabile varia lungo il filo y. Possiamo dunque riscrivere l insieme nella forma, y, :, y, y }. Integrando per fili, ed integrando successivamente per verticali nell insieme, otteniamo d dy d y y d + ] d d dy y d dy dy d y ] y d + d. + d. Calcolare + y + d dy d, dove, y, :, y +, + y}. è la regione dello spaio compresa tra il grafico della funione + y che è il piano passante per i punti,,,,, e,, e il piano y con e y che variano nell insieme, y :, y + }:, y, :, y, + y}. Integrando per fili paralleli all asse si ha + y + d dy d +y + y + d d dy. è il triangolo di vertici,,, e,. pplicando su la formula di integraione per verticali, si ottiene: +y + +y + y + d d dy + y + d dy d + ] +y + y + ] + + y d ] dy d d 8. + y dy d

12 . Calcolare il volume della calotta sferica, y, : + y + 9, }. è la calotta della sfera di raggio e centro l origine che si trova al di sopra del piano. Integrando per strati paralleli al piano y si ha Vol d dy d d dy d, dove per ogni fissato tra e, è l insieme, y : + y 9 }, cioè il cerchio centrato nell origine di raggio 9. Essendo si ottiene Vol d dy area π9, π9 d π 9 ] 8π. Possiamo anche integrare per fili paralleli all asse. Notiamo che la proieione del punto P, y, nel piano y varia nell insieme, y : + y 8} il cerchio chiuso centrato nell origine di raggio 8, come si vede intersecando la sfera + y + 9 con il piano. Ne segue che l insieme si può descrivere come, y, :, y, 9 y }, cioè al variare di, y in, varia lungo il filo, 9 y ]. Integrando per fili e integrando successivamente in coordinate polari nel piano y, otteniamo Vol 9 y d ddy 9 y ddy π 8 9 r r dr 8π π 9 r /] 8 8π 8 π.. Calcolare il volume del solido di rotaione S ottenuto ruotando attorno all asse la figura piana contenuta nel piano y y, : y, y }. Procediamo con la formula generale VolS π y dy d che fornisce il volume del solido S ottenuto ruotando attorno all asse la regione del piano y. Nel nostro caso è la regione compresa tra l asse y e la parabola y nel tratto y. Integrando per verticali otteniamo: y VolS π π y d y y + y dy π dy π yy dy y y + ] y 7 6 π.. Utiliando le coordinate polari sferiche, calcolare, y, : + y + }. Ricordiamo che le coordinate polari sferiche r, θ, ϕ sono definite da r sin θ cos ϕ y r sin θ sin ϕ r cos θ, + y + e +y + d dy d, dove

13 dove r, θ π, ϕ π. Lo jacobiano della trasformaione r, θ, ϕ, y, è, y, r, θ, ϕ r sin θ. Essendo + y + r, r, θ, ϕ : r }, otteniamo + y + e +y + d dy d π π r e r dr sin θ dθ dϕ π π π r e r r sin θ dr dθ dϕ r e r dr. Ponendo r t e integrando per parti si ha r e r dr t e t dt t e t + t e t e t] e + e e. ] e t dt In definitiva, l integrale proposto ha il valore π e e. Calcolare πe. e + + y + d dy d, dove, y, : + y +, }. In coordinate polari sferiche r, θ, ϕ il dominio diventa r, θ, ϕ : r, θ π/}, cioè il parallelepipedo, ], π/], π]. Pertanto π/ π r cos θ + + y d dy d + + r r sin θ dr dθ dϕ π/ r π sin θ cos θ dθ + r dr π ] π/ r sin θ π r log + r ] r + r dr π log 5. Possiamo anche integrare per strati paralleli al piano y. Per ogni fissato con, l insieme, y :, y, } è il cerchio centrato nell origine di raggio,, y : + y }. Utiliando le coordinate polari ρ, ϕ nel piano y, otteniamo + + y d dy d d dy + y π + ρ dρ dϕ d π + ρ π π π ] log + + ρ log 5 ] 5 } log t dt log 5 5 log d π π log 5 π log 5. d log 5 log + d t log t t ] 5 } + + ρ ρ dρ d bbiamo fatto il cambio di variabile + t nell integrale log + d. Infine possiamo integrare per fili paralleli all asse. Fissato, y tale che + y, la variabile varia nell insieme },y :, y, : } y.

14 Otteniamo y + + y d dy d + +y } + + y + d d dy +y } +y } π ] y log + + y + d dy log 5 log + + y d dy log 5 log + ρ ρ dρ dϕ π ρ log 5 ρ log + ρ dρ. Questo è lo stesso integrale ottenuto sopra e riotteniamo lo stesso risultato.

Integrali tripli - Esercizi svolti

Integrali tripli - Esercizi svolti Integrali tripli - Esercii svolti Integrali tripli Si calcolino gli integrali tripli seguenti riducendo per strati e per fili in coordinate cartesiane. Eventualmente fare cambiamenti di coordinate per

Dettagli

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy,

1. Calcolare, giustificandone l esistenza, il seguente integrale: y (1 + x) 2 dxdy, ydxdy. x 2 dxdy, . Calcolare, giustificandone l esistenza, il seguente integrale: ( + x dxd, = {(x, R :, x }.. isegnare il dominio = {(x, R : x, + x } e calcolare dxd. 3. Calcolare x dxd, è il triangolo di vertici ( 3,,

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove Calcolare R = R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x =, C :

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Integrali doppi / Esercizi svolti

Integrali doppi / Esercizi svolti M.Guida, S.Rolando, 4 Integrali doppi / Esercizi svolti L asterisco contrassegna gli esercizi più dicili. ESERCIZIO. Sia (x, y) R : x + y, x y

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

2.9 Esercizi e prove d esame

2.9 Esercizi e prove d esame 65 R. Tauraso - Analisi Matematica II.9 Esercizi e prove d esame Esercizio.. Calcolare la lunghezza dell arco di catenaria data dal grafico della funzione f e + e, con, ]. L arco si parametrizza ponendo

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

R. Capone Analisi Matematica Integrali multipli

R. Capone Analisi Matematica Integrali multipli Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE

Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. 1 CALCOLO INTEGRALE PER LE FUNZIONI DI UNA VARIABILE Facoltà di Architettura Valle Giulia Corso di Laurea Specialistica Quinquennale U.E. Istituzioni di Matematica 2 a.a. 2007-2008 http://www.dmmm.uniroma.it/persone/capitanelli CALCOLO INTEGRALE PER LE FUNZIONI

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sul calcolo integrale in IR N. ott. Franco Obersnel Esercizio 1 Sia R = [a 1, b 1 ] [a, b ] [a 3, b 3 ] IR 3 un parallelepipedo di IR 3. Si diano le

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8// Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0.

3 ) (5) Determinare la proiezione ortogonale del punto (2, 1, 2) sul piano x + 2y + 3z + 4 = 0. 1 Calcolo vettoriale 1 Scrivere il vettore w =, 6 sotto forma di combinazione lineare dei vettori u = 1, e v = 3, 1 R w = v 4u Determinare la lunghezza o il modulo del vettore, 6, 3 R 7 3 Determinare la

Dettagli

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M.

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M. POLITECNICO I MILANO. FACOLTÀ I INGEGNERIA INUTRIALE. Analisi e Geometria 2. Giugno 2. ocenti: F. Lastaria, M. Citterio, M. aita Indice Integrali di superficie. Parte prima. Integrali di superficie. Parte

Dettagli

Integrali doppi - Esercizi svolti

Integrali doppi - Esercizi svolti Integrali doppi - Esercizi svolti Integrali doppi senza cambiamento di variabili Si disegni il dominio e quindi si calcolino gli integrali multipli seguenti:... xy dx dy, con (x, y R x, y x x }; x + y

Dettagli

Simmetrie e quadriche

Simmetrie e quadriche Appendice A Simmetrie e quadriche A.1 Rappresentazione e proprietà degli insiemi nel piano Una delle prime difficoltà che si incontrano nell impostare il calcolo di un integrale doppio consiste nel rappresentare

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Integrali tripli / Esercizi svolti

Integrali tripli / Esercizi svolti M.Guida, S.Rolando, Integrali tripli / Esercizi svolti ESERCIZIO. Rappresentare graficamente l insieme (x, y) R :y x, x + y e calcolare l integrale e x+y dxdy. Posto V (x, y, z) R :(x, y), z, calcolare

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato Le formule f d dy = f (, y ) dy TEOEMA I GEEN [] f d dy = f (, y ) d [] note come formule di Green sono due relazioni semplici ma molto importanti fra gli integrali estesi ad un dominio piano e gli integrali

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove R R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x, C : x + y x Completando

Dettagli

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy.

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy. Analisi Matematica II Integrali curvilinei svolgimenti Svolgimento esercizio Si ha, successivamente, t t, t, t 9t 4 + 4t t 9t + 4, l t dt t 9t + 4 dt a 8 dove in a si è usata la sostituzione 9t + 4 8t

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2 www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

LA GEOMETRIA ANALITICA DELLO SPAZIO

LA GEOMETRIA ANALITICA DELLO SPAZIO CPITL 6 [numeraione araba] [numeraione devanagari] [numeraione cinese] L GEMETRI NLITIC DELL SPI L MSC DI CRTESI Si narra che Cartesio, una sera d estate, mentre si rilassava e meditava sdraiato sul suo

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1

NUMERI COMPLESSI Esercizi svolti. d) (1 i) 3. b) (1 + i)(1 i)(1 + 3 i) c) 1 i 1 Calcolare le seguenti potenze di i: NUMERI COMPLESSI Esercizi svolti a) i b) i 7 c) i d) i e) i f) i 9 Semplificare le seguenti espressioni: a) i) i i) b) + i) i) + ) 0 i c) i) i) i) d) i) Verificare che

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012 Prove scritte dell esame di Analisi Matematica II a.a. / C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 7 giugno. ( punti) Disegnare l insieme E (x,

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

Esercizi su esponenziali, coni, cilindri, superfici di rotazione

Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizi su esponenziali, coni, cilindri, superfici di rotazione Esercizio 1. Risolvere exp (exp (z)) = i. Esercizio. Risolvere i exp(z)z 4 + i exp(z)(1 + i) z 4 i 1 = 0. Esercizio. Risolvere exp(z) =

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del febbraio 6 Regole per lo svolgimento (a) Gli studenti di ingegneria civile e edile -5 faranno gli esercizi,,. (b) Gli studenti

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 11 giugno 213 1. Tre piastre piane omogenee di massa m aventi la forma di triangoli rettangoli con cateti 4l e 3l sono saldate lungo il cateto più lungo come in figura

Dettagli

1 Preliminari sugli angoli

1 Preliminari sugli angoli 26 Trapani Dispensa di Geometria, 1 Preliminari sugli angoli (Questa seione e inserita per completea ma non e parte del programma del corso) Consideriamo in R 2 la circonferena S 1 di centro (, ) e raggio

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012) ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche

Dettagli

Scritto d esame di Analisi Matematica II

Scritto d esame di Analisi Matematica II Capitolo 2: Scritti d esame 145 Pisa, 1 Gennaio 2005 e gli insiemi f(x, y) = x 2 x 2 y + y, A = {(x, y) R 2 : x 2 + y 2 6, x 0, y 0}, B = {(x, y) R 2 : x 0, y 0}. (a) massimo e minimo di f(x, y) in A,

Dettagli

Il Principio di Piero della Francesca e il volume della volta a padiglione

Il Principio di Piero della Francesca e il volume della volta a padiglione Il Principio di Piero della Francesca e il volume della volta a padiglione Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche Ancona La volta a padiglione è la regione

Dettagli

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni Esercizi di Analisi 2 Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni 1.1 Al variare di α IR studiare la convergenza della serie

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

Capitolo 16 Esercizi sugli integrali doppi

Capitolo 16 Esercizi sugli integrali doppi Capitolo 6 sercizi sugli integrali doppi Brevi richiami di teoria Sia f : [a, b] [c, d] B IR una funzione limitata e non negativa, definita sul rettangolo R = [a, b] [c, d]. Dividiamo l intervallo [a,

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21

Federico Lastaria. Analisi e Geometria 2. Integrali multipli. Cambi di variabili. 1/21 Contenuto Integrali doppi. Teorema di Fubini Cambio di variabili: coordinate polari. Cambio di variabili: caso generale. Coordinate sferiche. Federico Lastaria. Analisi e Geometria 2. Integrali multipli.

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2 Capitolo 4 Campi vettoriali Ultimo aggiornamento: 3 maggio 2017 Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F x = n F i x. x i i=1 Esercizio 4.1

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte sintetiche) agli esercizi del 17.XI.17 1. Le curve hanno tutte parametrizzazioni di classe C. Per studiare

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 22/23 Baricentri Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a. 22/23

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del /3/4 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Prima parte: DOMINIO E INSIEMI DI LIVELLO

Prima parte: DOMINIO E INSIEMI DI LIVELLO FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi:

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi: Soluzioni. Disegnare il grafico della funzione f : R 2 R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano (vedi figura). (b) f(, ) = 2.

Dettagli

2. FUNZIONI REALI DI n VARIABILI REALI

2. FUNZIONI REALI DI n VARIABILI REALI FUNZIONI REALI DI n VARIABILI REALI Determinaione del dominio Y Sia D un sottoinsieme dell insieme R R indicato anche con R Graficamente possiamo pensare a D come ad una ona del piano cartesiano secondo

Dettagli

Gli integrali definiti

Gli integrali definiti Gli integrali definiti Sia f : [a, b] ℝ una funzione continua definita in un intervallo chiuso e limitato e supponiamo che 0 [, ]. Consideriamo la regione T delimitata dal grafico di f(x), dalle rette

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 006/007 FUNZIONI IN UE VARIABILI Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due variabili

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio

Capitolo 4. TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equazioni dell arco Equazioni di equilibrio Capitolo 4 TRAVE AD ASSE CURVILINEO (prof. Elio Sacco) 4.1 Le equaioni dell arco 4.1.1 Equaioni di equilibrio Si consideri una trave ad asse curvilineo. Per determinare le equaioni di equilibrio si consideri

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Esercizi sulle funzioni polidrome (non svolti a lezione per mancanza di tempo)

Esercizi sulle funzioni polidrome (non svolti a lezione per mancanza di tempo) Esercizi sulle funzioni polidrome non svolti a lezione per mancanza di tempo) ACHTUNG: Questi appunti sono pieni di errori... Okkio... Esercizio 1 Calcolare in campo complesso, l integrale π dθ + cos θ)

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.

Meccanica. 3. Elementi di Analisi Vettoriale.  Domenico Galli. Dipartimento di Fisica e Astronomia. Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione multipla

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione multipla Analisi Matematica (Fisica e Astronomia) Esercizi di autoverifica sull integrazione multipla Università di Padova - Lauree in Fisica ed Astronomia - A.A. 7/8 venerdì novembre 7 Istruzioni generali. Risolvere

Dettagli

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2

; r 0 2 m = l 2 (s 2 θ + c 2 θ) = l 2 1 Calcolo del momento d inerzia Esercizio I.1 Pendolo semplice Si faccia riferimento alla Figura 1, dove è rappresentato un pendolo semplice; si utilizzeranno diversi sistemi di riferimento: il primo,

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Esercizi Riepilogativi Svolti. = 1 = Or(v, w)

Esercizi Riepilogativi Svolti. = 1 = Or(v, w) Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini

Dettagli

Corso di Laurea in Fisica - A.A. 2015/2016

Corso di Laurea in Fisica - A.A. 2015/2016 Corso di Laurea in Fisica - A.A. 15/16 Meccanica Analitica Tutoraggio X - 1 maggio 16 Esercizio 1 Momenti e assi principali di inerzia Dopo aver scelto un sistema di riferimento conveniente, si trovi la

Dettagli

ADATTATORI di IMPEDENZA

ADATTATORI di IMPEDENZA ADATTATORI di IMPEDENZA 1. Carta di Smith PREMESSA: per motivi che saranno chiari in seguito si ricorda che nel piano complesso, l equaione della generica circonferena di centro w 0 ( C ) e raggio R (

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli