Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio Attenzione:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi. Matricole dispari Prof.ssa Anselmo. Pre-appello del 15 Gennaio 2015. Attenzione:"

Transcript

1 COGNOME: Nome: Algoritmi Matricole dispari Prof.ssa Anselmo Pre-appello del 15 Gennaio 2015 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante. Non voltare la pagina finché non sarà dato il via. Dal via avrai 2 ore di tempo per rispondere alle domande. La prova consta di 8 domande a risposta multipla e 3 domande aperte. Per le domande a risposta multipla occorre rispondere inserendo la lettera scelta nell apposito quadratino accanto al numero della domanda. In caso di ripensamento, cancellare la risposta data e disegnare accanto un nuovo quadratino con la lettera scelta. Inoltre: ogni risposta esatta vale 4 punti; ogni risposta errata vale 1 punto; ogni domanda lasciata in bianco vale 0 punti. Le domande a risposta multipla valgono in tutto 32 punti, quelle aperte 68 punti, per un totale di 100 punti. Si è ammessi all orale se si totalizzano almeno 40/100 punti di cui almeno 10/32 nelle domande a risposta multipla. Potete (non è necessario) indicare una preferenza per il periodo in cui sostenere l orale, barrando la corrispondente casella sottostante (le date sono orientative): Pre-appello Primo appello Secondo appello (21-28 gennaio) (4-18 febbraio) (23-28 febbraio) Potete (non è necessario) scrivere qui di seguito 1 o 2 date (del periodo selezionato) in cui avete seri motivi per non poter sostenere l orale: COGNOME:... Nome:... Numero di matricola:... multiple/32 quesito 1/24 quesito 2/24 quesito 3/20 Totale/100

2 1) 1 Qual è la corretta successione delle funzioni seguenti affinché compaiano da sinistra a destra in ordine crescente di crescita asintotica: n 2, n (log n) 2, n 3 log n? A. n 2, n (log n) 2, n 3 log n B. n (log n) 2, n 3 log n, n 2 C. n (log n) 2, n 2, n 3 log n D. Nessuna delle risposte precedenti. 2) 2 Un algoritmo ha tempo di esecuzione T(n) polinomiale se: A. T(n) = O(n c ) per una costante c>0 C. T(n) = (n c ) per una costante c>0 B. T(n) = (n c ) per una costante c>0 D. Nessuna delle precedenti 3) 3 Se T(n) = 3 T( n 1) + n, con T(1) = 3, allora A. T(5) = 729 B. T(5) = 283 C. T(5) = 341 D. Nessuna delle risposte precedenti 4) 4 Il tempo di esecuzione dell algoritmo QUICK-SORT è: A. (n log n) C. ( n 2 ) e O(n log n) B. O(n 2 ) e (n log n) D. Nessuna delle risposte precedenti 5) 5 Se {a, b, c, d} è un alfabeto i cui simboli hanno le seguenti frequenze: f(a)=18, f(b)=13, f(c)=40, f(d)=29, il codice ottimale fornito dall algoritmo di Huffman sarà quello che associa ad a, b, c, d, rispettivamente: A. 100, 101, 0, 11 C. 111, 110, 0, 10 B. 000, 001, 1, 01 D. Nessuna delle risposte precedenti 6) 6 Un minimo albero di copertura (MST) per un grafo pesato G=(V,E) è: A. Un sottografo di peso totale minimo B. Un insieme aciclico di archi di peso totale minimo C. Un albero il cui insieme di vertici è V e col minimo numero di archi D. Nessuna delle risposte precedenti 7) 7 Un ordinamento topologico per il grafo diretto G=(V,E) con V={u, v, x, y, z}, E={(u,v), (u,x), (y,u), (v,y), (v,z), (x,y), (y,z)} A. u, x, v, y, z C. G non ha un ordinamento topologico B. u, v, x, y, z D. Nessuna delle risposte precedenti 8) 8 Gli algoritmi di Dijkstra e di Bellman-Ford risolvono il problema dei cammini minimi in un grafo orientato e pesato. Inoltre: A. Entrambi funzionano correttamente per qualsiasi tipo di grafo (orientato e pesato) B. L algoritmo di Dijkstra funziona correttamente per tutti i grafi (orientati e pesati) in cui non vi siano cicli di costo negativo C. L algoritmo di Bellman-Ford funziona correttamente per tutti i grafi (orientati e pesati) in cui non vi siano cicli di costo negativo D. Nessuna delle risposte precedenti

3 Quesito 1 (24 punti) Si consideri il problema di calcolare il massimo in un array A[1,, n] di interi. a) Descrivere tre algoritmi che risolvono il problema. Gli algoritmi devono essere sostanzialmente diversi. b) Analizzare il tempo di esecuzione di ogni algoritmo. c) Confrontare gli algoritmi per valutare quale (se ve ne è uno) possa essere considerato il migliore.

4 Quesito 2 (24 punti) Dopo le festività natalizie avete messo sù qualche chilo, e decidete di cominciare una dieta. Ne avete trovato una che fa al caso vostro. La Dieta consiste nel comporre ogni pasto scegliendo fra alcuni cibi che avete a disposizione, ognuno con un assegnato numero di calorie, senza superare una data quantità di calorie a pasto. Potete però scegliere secondo il vostro gusto. Ad ogni porzione di cibo a disposizione, assegnate quindi un vostro personale "grado di appetibilità" (un intero da 1 a 10). Il problema è allora di calcolare il pasto che non superi il massimo di calorie ammesse in quel pasto, ma che sia il più appetitoso possibile. Ricordate che ogni porzione di cibo va scelta per intera al più una volta. Formalizzate il problema reale in un problema computazionale e risolvetelo con la tecnica che ritenete più opportuna affinché la soluzione sia il più efficiente possibile. Giustificate le risposte. Esempio. Il pranzo non deve superare 700 calorie. Cibi disponibili: una porzione di pasta al pomodoro da 500 calorie, una porzione di riso da 300 calorie, un uovo da 200 calorie, una porzione di petto di pollo da 400 calorie, una mela da 30 calorie, una pera da 40 calorie, uno yogurt magro di 120 calorie. Gradimento: della pasta è 8; del riso è 5; dell uovo è 3; del pollo è 7; della mela è 7; della pera è 7; dello yogurt è 6. Pasti possibili: pasta+uovo di gradimento 8+3=11; pasta+mela+yogurt di gradimento 8+7+6=21; riso+pollo di gradimento 5+7=12. Il pasto pasta+pollo non è permesso.

5 Quesito 3 (20 punti) a) Definire cos'è un grafo bipartito. b) Definire cos'è un matching massimale in un grafo bipartito. Si consideri il grafo G =(V,E) con V={1, 2, 3, 4, 5, 6, 7}, E={(1,2), (1,3), (2,4), (2,5), (3,4), (3,6), (4,7), (5,7), (6,7)} c) Dimostrare che G è bipartito, eseguendo l'algoritmo di test studiato. d) Determinare un matching massimale di G, eseguendo l'algoritmo studiato.

6 Pagina per appunti

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione:

Progettazione di algoritmi. Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo. Appello del 15 Novembre Attenzione: COGNOME: Nome: Progettazione di algoritmi Classe 3 (matricole congrue 2 modulo 3) Prof.ssa Anselmo Appello del 15 Novembre 2016 Attenzione: Inserire i propri dati nell apposito spazio soprastante e sottostante.

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 1/01/016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Algoritmi. a.a. 2013/14 Classe 2: matricole dispari

Algoritmi. a.a. 2013/14 Classe 2: matricole dispari Algoritmi a.a. 2013/14 Classe 2: matricole dispari Marcella Anselmo Presentazioni Info: http://www.di.unisa.it/professori/anselmo/ Orario ricevimento: Lunedì 15-17 Giovedì 12-13 Il mio studio è il n 57

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 29/01/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

40 Algoritmi sui Grafi

40 Algoritmi sui Grafi Università degli Studi di Napoli Parthenope Corso di Laurea in Informatica A.A 2014/15 PROGETTO PROGRAMMAZIONE III 40 Algoritmi sui Grafi Relatore: Prof. Raffaele Montella Studente: Diego Parlato Matricola:

Dettagli

Algoritmi e strutture dati. Codici di Huffman

Algoritmi e strutture dati. Codici di Huffman Algoritmi e strutture dati Codici di Huffman Memorizzazione dei dati Quando un file viene memorizzato, esso va memorizzato in qualche formato binario Modo più semplice: memorizzare il codice ASCII per

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli

IL PROBLEMA DELLO SHORTEST SPANNING TREE

IL PROBLEMA DELLO SHORTEST SPANNING TREE IL PROBLEMA DELLO SHORTEST SPANNING TREE n. 1 - Formulazione del problema Consideriamo il seguente problema: Abbiamo un certo numero di città a cui deve essere fornito un servizio, quale può essere l energia

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 3 5 7-8 9 57

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

Minimo Albero Ricoprente

Minimo Albero Ricoprente Minimo lbero Ricoprente Pag. 1/20 Minimo lbero Ricoprente Il problema della definizione di un Minimo lbero Ricoprente trova applicazione pratica in diverse aree di studio, quali ad esempio la progettazione

Dettagli

Moduli (schede compilabili) in Word Esempio: scheda di alimentazione per un degente

Moduli (schede compilabili) in Word Esempio: scheda di alimentazione per un degente Moduli (schede compilabili) in Word Esempio: scheda di alimentazione per un degente Vediamo come utilizzare Word per costruire un modulo compilabile, ovvero una scheda che contenga delle parti fisse di

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Le Macchine di Turing

Le Macchine di Turing Le Macchine di Turing Come è fatta una MdT? Una MdT è definita da: un nastro una testina uno stato interno un programma uno stato iniziale Il nastro Il nastro è infinito suddiviso in celle In una cella

Dettagli

Cognome:.. Nome:.. 1/5

Cognome:.. Nome:.. 1/5 Cognome:.. Nome:.. 1/5 Sistemi P2P Prova del 17/12/2007 Note: 1) Per ogni risposta corretta a domande di tipo A vengono assegnati 4 punti 2) Per ogni risposta scorretta a domande di tipo A viene sottratto

Dettagli

b i 1,1,1 1,1,1 0,1,2 0,3,4

b i 1,1,1 1,1,1 0,1,2 0,3,4 V o Appello // RICERCA OPERATIVA - Corso A (a.a. 9/) Nome Cognome: Corso di Laurea: L C6 LS LM Matricola: ) Si consideri il problema di flusso di costo minimo in figura. Si verifichi se il flusso ammissibile

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Introduzione al corso Alberto Montresor Università di Trento This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of

Dettagli

TSP con eliminazione di sottocicli

TSP con eliminazione di sottocicli TSP con eliminazione di sottocicli Un commesso viaggiatore deve visitare 7 clienti in modo da minimizzare la distanza percorsa. Le distanze (in Km) tra ognuno dei clienti sono come segue: 7-8 9 7 9-8 79

Dettagli

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015

Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015 Corso di Algoritmi e Strutture Dati Informatica per il Management Prova Scritta, 25/6/2015 Chi deve recuperare il progetto del modulo 1 ha 1 ora e 30 minuti per svolgere gli esercizi 1, 2, 3 Chi deve recuperare

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME

Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME Politecnico di Milano Facoltà di Ingegneria dell Informazione AGENTI AUTONOMI E SISTEMI MULTIAGENTE Appello COGNOME E NOME 5 luglio 2006 RIGA COLONNA MATRICOLA Il presente plico pinzato, composto di quattro

Dettagli

Grafi (non orientati e connessi): minimo albero ricoprente

Grafi (non orientati e connessi): minimo albero ricoprente Grafi (non orientati e connessi): minimo albero ricoprente Una breve presentazione Definizioni Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è

Dettagli

COGNOME E NOME (IN STAMPATELLO) MATRICOLA

COGNOME E NOME (IN STAMPATELLO) MATRICOLA Politecnico di Milano Facoltà di Ingegneria dell Informazione Informatica 3 Proff. Ghezzi, Lanzi, Matera e Morzenti Seconda prova in itinere 4 Luglio 2005 COGNOME E NOME (IN STAMPATELLO) MATRICOLA Risolvere

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Kangourou Italia Gara del 18 marzo 2010 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 18 marzo 2010 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_10Mat.qxp 15-02-2010 7:17 Pagina 5 Kangourou Italia Gara del 18 marzo 2010 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Nella

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 18/12/12. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x + x x x + x 8 x Base

Dettagli

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006)

Ricerca Operativa. Claudio Arbib Universitàdi L Aquila. Problemi combinatorici (Gennaio 2006) Claudio Arbib Universitàdi L Aquila Ricerca Operativa Problemi combinatorici (Gennaio 2006) Sommario Problemi combinatorici Ottimizzazione combinatoria L algoritmo universale Il metodo greedy Problemi

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

26 Febbraio 2015 Modulo 2

26 Febbraio 2015 Modulo 2 Reti di Comunicazione e Internet Prof. I. Filippini Cognome Nome Matricola 26 Febbraio 2015 Modulo 2 Tempo complessivo a disposizione per lo svolgimento: 1h 40m E possibile scrivere a matita E1 E2 Domande

Dettagli

Microsoft Excel. Il foglio elettronico Microsoft Excel Cartelle, Fogli di lavoro e celle Contenuto delle celle. Numeri, date, formule, testo, funzioni

Microsoft Excel. Il foglio elettronico Microsoft Excel Cartelle, Fogli di lavoro e celle Contenuto delle celle. Numeri, date, formule, testo, funzioni Microsoft Excel Sommario Il foglio elettronico Microsoft Excel Cartelle, Fogli di lavoro e celle Contenuto delle celle Numeri, date, formule, testo, funzioni Formattazione dei dati Creazione di serie di

Dettagli

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi

Sommario. Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi Sommario Linguaggi formali: motivazioni, definizione ed esempi operazioni su parole e linguaggi 1 Tipi di problemi Nelle teorie della calcolabilità e della complessità si considerano problemi di decisione,

Dettagli

Esame di Statistica Prof.ssa Paola Zuccolotto

Esame di Statistica Prof.ssa Paola Zuccolotto Esame di Statistica Prof.ssa Paola Zuccolotto Tema 1 indicare cognome, nome e numero di matricola su tutti i fogli; utilizzare i fogli protocollo per effettuare i calcoli, indicando tutti i passaggi necessari

Dettagli

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE -

Esame di Ricerca Operativa - 20 settembre 2007 Facoltà di Architettura - Udine - CORREZIONE - Esame di Ricerca Operativa - settembre 7 Facoltà di rchitettura - Udine - CORREZIONE - Problema ( punti): Un azienda pubblicitaria deve svolgere un indagine di mercato per lanciare un nuovo prodotto. L

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

L ALIMENTAZIONE EQUILIBRATA FREQUENZE SETTIMANALI DI CONSUMO E PORZIONI STANDARD

L ALIMENTAZIONE EQUILIBRATA FREQUENZE SETTIMANALI DI CONSUMO E PORZIONI STANDARD ASL LECCO - GRUPPI DI CAMMINO 2008 L ALIMENTAZIONE EQUILIBRATA FREQUENZE SETTIMANALI DI CONSUMO E PORZIONI STANDARD Estratto dalle LINEE GUIDA PER UNA SANA ALIMENTAZIONE ITALIANA predisposte dall Istituto

Dettagli

CURRICOLO di MATEMATICA Scuola Primaria

CURRICOLO di MATEMATICA Scuola Primaria CURRICOLO di MATEMATICA Scuola Primaria MATEMATICA CLASSE I Indicatori Competenze Contenuti e processi NUMERI Contare oggetti o eventi con la voce in senso progressivo e regressivo Riconoscere e utilizzare

Dettagli

PROGRAMMA SCUOLA DI DIETETICA NUTRIRSI DI SALUTE ANNO SCOLASTICO 2012

PROGRAMMA SCUOLA DI DIETETICA NUTRIRSI DI SALUTE ANNO SCOLASTICO 2012 PROGRAMMA SCUOLA DI DIETETICA NUTRIRSI DI SALUTE ANNO SCOLASTICO 2012 DOCENTE: Madaschi Rossana Dietista e Docente di Scienza dell Alimentazione MATERIE: Dietologia - Scienza dell Alimentazione CLASSE:

Dettagli

TaleteWeb Prevenzione. Manuale d uso

TaleteWeb Prevenzione. Manuale d uso TaleteWeb Manuale d uso 1 L applicazione consente la programmazione ed il controllo delle attività del Dipartimento di di un azienda sanitaria locale. Per accedere all applicazione, selezionare l app dell

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

COORDINAMENTO PER MATERIE SETTEMBRE 2013

COORDINAMENTO PER MATERIE SETTEMBRE 2013 Pagina 1 di 6 COORDINAMENTO PER MATERIE SETTEMBRE 2013 MATERIA DI NUOVA INTRODUZIONE PER EFFETTO DELLA RIFORMA AREA DISCIPLINARE [ ] Biennio, Attività e Insegnamenti di area generale (Settore Tecnologico)

Dettagli

ALBO FORNITORI MEDIASET

ALBO FORNITORI MEDIASET e-procurement TMP-018_11 MEDIASET ALBO FORNITORI MEDIASET Manuale_BUYER_vOnline.doc Pagina 1 di 46 e-procurement TMP-018_11 Sommario MEDIASET... 1 ALBO FORNITORI MEDIASET... 1 INTRODUZIONE... 4 STRUTTURA

Dettagli

STRUTTURE NON LINEARI

STRUTTURE NON LINEARI PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi mnappi@unisa.it www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo

Dettagli

Matematica e statistica 10 febbraio 2012

Matematica e statistica 10 febbraio 2012 Matematica e statistica 10 febbraio 2012 Compito A Cognome e nome Matricola Parte I Una soluzione è un sistema omogeneo prodotto dallo scioglimento di una sostanza solida, liquida o gassosa (soluto) in

Dettagli

Attività 9. La città fangosa Minimal Spanning Trees

Attività 9. La città fangosa Minimal Spanning Trees Attività 9 La città fangosa Minimal Spanning Trees Sommario la nostra società ha molti collegamenti in rete: la rete telefonica, la rete energetica, la rete stradale. Per una rete in particolare, ci sono

Dettagli

15. FRAZIONI SOVRAPPOSTE

15. FRAZIONI SOVRAPPOSTE 16 o RMT Finale maggio 2008 ARMT.2008 15 15. FRAZIONI SOVRAPPOSTE (Cat. 7, 8, 9, 10) Gianni e Lina hanno disposto ciascuno nove numeri su tre righe e tre colonne e hanno inserito sei linee tra due numeri

Dettagli

Fondamenti di Informatica. Allievi Automatici A.A. 2014-15. Informazioni Generali

Fondamenti di Informatica. Allievi Automatici A.A. 2014-15. Informazioni Generali Fondamenti di Informatica Allievi Automatici A.A. 2014-15 Informazioni Generali Informazioni generali Docente: Daniele M. BRAGA e-mail: daniele.braga@polimi.it Dip. di Elettronica e Informazione (DEI)

Dettagli

Prova esperta asse matematico LAVORO INDIVIDUALE

Prova esperta asse matematico LAVORO INDIVIDUALE Il tasso alcolico CERTIFICAZIONE DELLE COMPETENZE Prova esperta asse matematico LAVORO INDIVIDUALE Cognome e nome dell'allievo Classe CONSEGNE RELATIVE AL LAVORO INDIVIDUALE Dopo aver indicato il tuo cognome,nome

Dettagli

Programma MyHatch. Manuale d'uso

Programma MyHatch. Manuale d'uso Programma MyHatch Manuale d'uso PREMESSE... 2 SCOPO DEL PROGRAMMA... 2 I TRATTEGGI DI AUTOCAD... 2 IL PROGRAMMA MYHATCH... 2 LA DEFINIZIONE DEI MOTIVI... 3 USO DEL PROGRAMMA... 5 INSTALLAZIONE... 5 BARRA

Dettagli

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1.

NOME:... MATRICOLA:... Scienza dei Media e della Comunicazione, A.A. 2007/2008 Analisi Matematica 1, Esame scritto del 08.02.2008. x 1. NOME:... MATRICOLA:.... Scienza dei Media e della Comunicazione, A.A. 007/008 Analisi Matematica, Esame scritto del 08.0.008 Indicare per quali R vale la seguente diseguaglianza : + >. Se y - - è il grafico

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Bilanciamento dei carichi di lavoro

Bilanciamento dei carichi di lavoro Bilanciamento dei carichi di lavoro Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici A.A. 2003-04 Sommario Il problema

Dettagli

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12};

Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; ESERCIZI 2 LABORATORIO Problema 1 Definire all'interno del codice un vettore di interi di dimensione DIM, es. int array[] = {1, 5, 2, 4, 8, 1, 1, 9, 11, 4, 12}; Chiede all'utente un numero e, tramite ricerca

Dettagli

Teoria dei Giochi Prova del 30 Novembre 2012

Teoria dei Giochi Prova del 30 Novembre 2012 Cognome, Nome, Corso di Laurea, email: Teoria dei Giochi Prova del 30 Novembre 2012 Esercizio 1. Si consideri il seguente gioco. Il primo giocatore può scegliere un numero tra {1,3,,6}; il secondo giocatore

Dettagli

Grafi pesati Minimo albero ricoprente

Grafi pesati Minimo albero ricoprente Algoritmi e Strutture Dati Definizioni Grafi pesati Minimo albero ricoprente Sia G=(V,E) un grafo non orientato e connesso. Un albero ricoprente di G è un sottografo T G tale che: T è un albero; T contiene

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.

Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p. Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l

Dettagli

Comprensione dell etichetta nutrizionale e utilizzo nelle scelte alimentari

Comprensione dell etichetta nutrizionale e utilizzo nelle scelte alimentari Comprensione dell etichetta nutrizionale e utilizzo nelle scelte alimentari. Anna Saba CRA-NUT, Centro di Ricerca per gli Alimenti e la Nutrizione 1 Comprensione dell etichetta nutrizionale e utilizzo

Dettagli

Programmazione lineare

Programmazione lineare Programmazione lineare Un modello matematico per un problema di programmazione lineare Problema 1. Un reparto di un azienda di elettrodomestici può produrre giornalmente non più di 6 lavatrici, delle quali

Dettagli

Microsoft Access Maschere

Microsoft Access Maschere Microsoft Access Maschere Anno formativo: 2007-2008 Formatore: Ferretto Massimo Mail: Skype to: ferretto.massimo65 Profile msn: massimoferretto@hotmail.com "Un giorno le macchine riusciranno a risolvere

Dettagli

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia

Appunti di Algoritmi e Strutture Dati. Grafi. Gianfranco Gallizia Appunti di Algoritmi e Strutture Dati Grafi Gianfranco Gallizia 12 Dicembre 2004 2 Indice 1 Grafi 5 1.1 Definizione.............................. 5 1.2 Implementazione........................... 5 1.2.1

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Esercizi Capitolo 14 - Algoritmi Greedy

Esercizi Capitolo 14 - Algoritmi Greedy Esercizi Capitolo 14 - Algoritmi Greedy Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

AREA DOCENTE - ACCESSO, REG. DI CLASSE E VOTI Indice Del Manuale

AREA DOCENTE - ACCESSO, REG. DI CLASSE E VOTI Indice Del Manuale AREA DOCENTE - ACCESSO, REG. DI CLASSE E VOTI Indice Del Manuale 1 - Come Accedere a Nuvola 2 - Home Page Area Docente 3 - Come Modificare il proprio Profilo 4 - Come Modificare la propria Password 5 -

Dettagli

Programma di mesi. Bentornato peso forma!

Programma di mesi. Bentornato peso forma! Programma di mesi Bentornato peso forma! 2 3 Mettiti in forma con il nuovo anno! Programma mesi Tra i 10 propositi dell anno nuovo c è il desiderio, o meglio la volontà di perdere peso, di alimentarsi

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Analisi I - IngBM - 2014-15 COMPITO A 21 Febbraio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =...

Analisi I - IngBM - 2014-15 COMPITO A 21 Febbraio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =... Analisi I - IngBM - 2014-15 COMPITO A 21 Febbraio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioni Gli

Dettagli

La gestione degli esami di profitto in UniTn -Verbalizzazione cartacea-

La gestione degli esami di profitto in UniTn -Verbalizzazione cartacea- La gestione degli esami di profitto in UniTn -Verbalizzazione cartacea- Area Docente Sommario Premessa... 2 1 Gli esami di profitto... 3 1.1 La gestione degli esami di profitto in UniTn... 3 1.1.1 Definizione

Dettagli

Esercizio su MT. Svolgimento

Esercizio su MT. Svolgimento Esercizio su MT Definire una macchina di Turing deterministica M a nastro singolo e i concetti di configurazione e di transizione. Sintetizzare una macchina di Turing trasduttore che trasformi un numero

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Marco Tarini Tasselli e malta Consegna Progetto: entro Dom 28 Nov 2010 - ore 24.00 1 Il problema Si vuole rivestire un pavimento rettangolare con un mosaico di

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE febbraio 007 a prova Cognome e Nome:... Autorizzo Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Non autorizzo la pubblicazione su

Dettagli

Uff. I. - OLIMPIADI DI PROBLEM SOLVING - Informatica e pensiero algoritmico nella scuola dell'obbligo

Uff. I. - OLIMPIADI DI PROBLEM SOLVING - Informatica e pensiero algoritmico nella scuola dell'obbligo Uff. I - OLIMPIADI DI PROBLEM SOLVING - Informatica e pensiero algoritmico nella scuola dell'obbligo Il Ministero dell Istruzione, dell Università e della Ricerca Direzione Generale per gli Ordinamenti

Dettagli

1 Sistema additivo e sistema posizionale

1 Sistema additivo e sistema posizionale Ci sono solamente 10 tipi di persone nel mondo: chi comprende il sistema binario e chi no. Anonimo I sistemi di numerazione e la numerazione binaria 1 Sistema additivo e sistema posizionale Contare per

Dettagli

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore

Kangourou Italia Gara del 15 marzo 2001 Categoria Student Per studenti di quarta e quinta superiore Kangourou Italia Gara del 1 marzo 001 Categoria Student Per studenti di quarta e quinta superiore Regole:! La prova è individuale. E vietato l uso di calcolatrici di qualunque tipo.! Vi è una sola risposta

Dettagli

Corso introduttivo all utilizzo di TQ Qualifica

Corso introduttivo all utilizzo di TQ Qualifica Corso introduttivo all utilizzo di TQ Qualifica Le pagine che seguono introducono l utente all uso delle principali funzionalità di TQ Qualifica mediante un corso organizzato in quattro lezioni. Ogni lezione

Dettagli

Le soluzioni dei quesiti sono in fondo alla prova

Le soluzioni dei quesiti sono in fondo alla prova SCUOLA MEDIA STATALE GIULIANO DA SANGALLO Via Giuliano da Sangallo,11-Corso Duca di Genova,135-00121 Roma Tel/fax 06/5691345-e.mail:scuola.sangallo@libero.it SELEZIONE INTERNA PER LA MARATONA DI MATEMATICA

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 A Ricerca Operativa Primo appello 4 novembre 005 Esercizio Incontrate una ragazza con il suo cane Fido e vi chiedete che età possa avere. Lei sembra leggervi nel pensiero e vi dice: Non si chiede l età

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

USO DI EXCEL CLASSE PRIMAI

USO DI EXCEL CLASSE PRIMAI USO DI EXCEL CLASSE PRIMAI In queste lezioni impareremo ad usare i fogli di calcolo EXCEL per l elaborazione statistica dei dati, per esempio, di un esperienza di laboratorio. Verrà nel seguito spiegato:

Dettagli

Giuseppe Pigola Dipartimento di Matematica e Informatica Università di Catania Italy

Giuseppe Pigola Dipartimento di Matematica e Informatica Università di Catania Italy Giovanni Giuffrida, Giuseppe Giura, Carlo Pennisi, Calogero Zarba Dipartimento di Sociologia e Metodi delle Scienze Sociali Università di Catania - Italy Giuseppe Pigola Dipartimento di Matematica e Informatica

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ 1 Esercitazione di laboratorio: Problema del venditore Terza parte 2 1 Esercizio del venditore

Dettagli

Manuale utente. Versione aggiornata al 29/01/2011

Manuale utente. Versione aggiornata al 29/01/2011 Manuale utente Versione aggiornata al 29/01/2011 Pagina di Login Per utilizzare al meglio GASdotto è raccomandato di usare il browser Mozilla Firefox ; se non è installato sul vostro PC potete scaricarlo

Dettagli

RE Genitori e Alunni

RE Genitori e Alunni RE Genitori e Alunni Premessa Alcune delle funzionalità prima presenti in SISSIWEB sono state trasferite nella più accattivante interfaccia di RE, tra queste ci sono quelle legate al rapporto scuola famiglia

Dettagli

Algoritmi e Strutture Dati (Mod. B) Introduzione

Algoritmi e Strutture Dati (Mod. B) Introduzione Algoritmi e Strutture Dati (Mod. B) Introduzione Modulo B Orari Lunedì ore 11-13 aula A6 Mercoledì ore 14-16 aula A6 Ricevimento Martedì ore 14-16 Ufficio 2M13 Dip. Fisica (2 piano edificio M) Laboratori

Dettagli

Se avete domande scrivetemi a vtornar@libero.it

Se avete domande scrivetemi a vtornar@libero.it QuestionMark Il QuestionMark è un applicazione java che non richiede installazione, per avviarla bisogna fare doppio clic sul file QuestionMark.jar presente nella stessa cartella di questo file Leggimi.

Dettagli

Guida all uso del software Gestione Agenzie Remax

Guida all uso del software Gestione Agenzie Remax Guida all uso del software Gestione Agenzie Remax 1 INDICE Capitolo 0: Per iniziare Configurazione. 3 Struttura del software.. 4 Utilizzo del software 5 Capitolo 1: Tabelle di base Clienti 6 Consulenti

Dettagli

Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 19 marzo 2009 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_09.qxp 15-04-2009 20:23 Pagina 5 Kangourou Italia Gara del 19 marzo 2009 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Hai

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

MATEMATICA Classe I ATTIVITÀ:

MATEMATICA Classe I ATTIVITÀ: OBIETTIVO GENERALE: MATEMATICA Classe I Acquisire una crescente capacità di ordinare, quantificare, misurare i fenomeni della realtà, iniziare a problematizzare la propria esperienza e a rappresentarla

Dettagli

Esercizi di Excel. Parte seconda

Esercizi di Excel. Parte seconda Esercizi di Excel Parte seconda Questa settimana verranno presentati alcuni esercizi sull'uso delle funzioni. Alcuni di questi esercizi presentano una certa difficoltà, ma si consiglia anche gli utenti

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico 2006 2007 PROVA DI MATEMATICA. Scuola Secondaria di II grado. Classe Terza Tipo A. Codici. Scuola:... Ministero della Pubblica Istruzione Rilevazione degli apprendimenti Anno Scolastico 2006 2007 PROVA DI MATEMATICA Scuola Secondaria di II grado Classe Terza Tipo A Codici Scuola:..... Classe:.. Studente:.

Dettagli

Progetto Febbraio 2013 - Appello 1: Diffusione di tweets sul grafo di Twitter

Progetto Febbraio 2013 - Appello 1: Diffusione di tweets sul grafo di Twitter UNIVERSITÀ DEGLI STUDI DI MILANO, DIPARTIMENTO DI INFORMATICA LAUREA TRIENNALE IN COMUNICAZIONE DIGITALE CORSO DI RETI DI CALCOLATORI ANNO ACCADEMICO 2011/2012 Progetto Febbraio 2013 - Appello 1: Diffusione

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria

Kangourou Italia Gara del 15 marzo 2007 Categoria Ecolier Per studenti di quarta o quinta della scuola primaria Testi_07.qxp 16-04-2007 12:02 Pagina 5 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di quarta o quinta della scuola primaria I quesiti dal N. 1 al N. 8 valgono 3 punti ciascuno 1. Osserva

Dettagli

Microsoft Word Nozioni di base

Microsoft Word Nozioni di base Corso di Introduzione all Informatica Microsoft Word Nozioni di base Esercitatore: Fabio Palopoli SOMMARIO Esercitazione n. 1 Introduzione L interfaccia di Word Gli strumenti di Microsoft Draw La guida

Dettagli