P = r. o + r. O + ω r (1)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "P = r. o + r. O + ω r (1)"

Transcript

1 1 5.1-MOTI RELATIVI Parte I 5.1-Moti relativi-cap Moti relativi Teorema delle velocità relative Riprendiamo l impostazione tracciata nel paragrafo 2.6 (moti relativi 2-D) e consideriamo un sistema fisso O ed uno mobile O P r P r P O O r O abbiamo che OP = r p = OO + O P = r o + r p Dimostriamoilteorema che afferma che per le velocità si ha: v = v + v O + ω r (1) Con ω la velocità angolare con cui ruotano gli assi di O rispetto ad O. Il termine che definisce la differenza di velocità tra i due sistemi è detta velocità di trascinamento ed è v t = v v = v O + ω r Due casi sono fondamentali (gli altri si possono pensare una sovrapposizione di questi due: il sistema mobile non ruota rispetto a quello fisso ω = 0 In questo caso si parla di moto di trascinamento traslatorio e v t = v O il sistema mobile ruota ma non trasla v O = 0 In questo caso si parla di moto di trascinamento rotatorio e avremo che v t = ω r Dimostrazione per la rotazione tra i due assi Cap.5-Moti relativi 1

2 2 ACCELERAZIONI RELATIVE Dimostrazione per la rotazione tra i due assi Consideriamo il sistema O fisso O in rotazione rispetto ad O con velocità angolare ω Possiamo indicare i raggi vettori r = xî+yĵ+zˆk e analogamente r = x î +y ĵ +z ˆk con r = r dato che l origine dei due sistemi e comune e quindi il vettore OP = r = r Ricordiamo che abbiamo detto che nei moti circolari si ha v = ω r e v = d r dt applichiamo queste due formule ad ognuno dei versori degli assi ottenendo dî dt = ω i ecc. Deriviamo i vettori r ed r : v = d r dt e d r dt = d(x î +y ĵ +z ˆk ) dt = dx dt î +x dî dx +... = dt dt î +x ω i +... = dx dt î + dy dt ĵ + dz dt ˆk +ω (x î +y ĵ +z ˆk ) = dx dt î + dy dt ĵ + dz dt ˆk +ω r = v + ω r Avendo usato la condizione r = r in quanto i due vettori sono identici ma sono gli assi a cambiare Teorema delle accelerazione relative 2 accelerazioni relative Teorema delle accelerazioni relative se a è l accelerazione del punto P rispetto al sistema fisso, a quella del punto rispetto al sistema mobile O, e a O l accelerazione del sistema mobile rispetto ad O si ha che: a = a + a O + ω ( ω r )+2 ω v (2) Quindi in generale le accelerazioni tra i due sistemi sono diverse e differiscono a = a + a t + a c con il termine a t = a O + ω ( ω r ) detta accelerazione di trascinamento e l ultimo termine della (2) a c = 2 ω v viene detta accelerazione di Coriolis e dipende dal moto del punto relativamente al sistema mobile Cap.5-Moti relativi 2

3 2 ACCELERAZIONI RELATIVE Dim.acc.relative Dim.acc.relative La dimostrazione completa la trovate a parte. Comunque partendo da v = v + ω r e derivando rispetto al tempo e tenendo conto dei passaggi precedenti relativamente alle derivate dei versori si ottiene in pochi passaggi la dimostrazione nel caso di moto relativo rotatorio. 5.2 Sistemi riferimento inerziali 5.2 Sistemi riferimento inerziali I sistemi di riferimento inerziali sono quelli per i quali vale rigorosamente la legge d inerzia. Se consideriamo un altro sistema di riferimento che si muove rispetto ad uno inerziale con moto rettilineo uniforme si ha ω = 0 a o = 0 e otterremo a = a per cui definito un sistema inerziale, tutti i sistemi in moto rettilineo uniforme rispetto al primo sono anch essi inerziali relatività galileiana In conseguenza di questo risultato la legge di newton si esprime nella stessa maniera in tutti i sistemi di riferimento inerziali, che comporta che non è possibile a seguito di misure di meccanica, stabilire se un sistema è in moto o in quiete (non ha senso cioè il concetto di moto assoluto) Viceversa se la descrizione del moto è fatta in sistemi non inerziali avremo che la forza vera F = m a m a anzi se vogliamo specificare come appare la legge della dinamica nel sistema mobile rispetto alla legge nel sistema inerziale si ottiene moltiplicando per m le precedenti equazioni: m a = m a m a t m a c = F m a t m a c Che implica che per mantenere valida la legge della dinamica dobbiamo aggiungere delle forze apparenti che sono proporzionali alla massa (per cui vengono anche dette forze inerziali), queste non sono dovute ad interazioni fondamentali ma all uso di un sistema non inerziale, e NON esistono o NON si devono considerare nei sistemi inerziali 5.3 Trascinamento traslatorio rettilineo Cap.5-Moti relativi 3

4 3 MOTO RISPETTO ALLA TERRA 5.3 Trascinamento traslatorio rettilineo Supponiamo di avere la situazione più semplice O in moto rettilineo rispetto ad O per esempio sull asse x. Se il moto è rettilineo uniforme allora i due sistemi sono entrambi inerziali e si avrà a = a v = v + v O ed infine r = r + v O t Queste relazioni costituiscono le cosidette trasformazioni galileiane Nel caso in cui O sia in moto unif. accelerato si avrà : a = a + a O a = a a O e v = v v O ed infine r = r OO che proiettate sugli assi cartesiani (nel caso in cui a o è diretta lungo x) diventano: x o = v in t+ 1 2 a tt 2, v o = v in +a t t x = x v in t+ 1 2 a tt 2 y = y z = z v x = v x v in a t t v y = v y v z = v z a x = a x a t a y = ay a z = a z 5.4 Moto di trascinamento rotatorio uniforme 5.4 Moto di trascinamento rotatorio uniforme Nel caso in cui O ruoti rispetto ad O con moto circolare uniforme allora abbiamo v O = 0 e a O = 0 per cui si ottiene: v = v + ω r a = a + ω ( ω r)+2 ω v Ma abbiamo anche visto che ma = m a m a t m a c = F m a t m a c per cui confrontando possiamo riscrivere come m a = F + F centrif + F Cor con F centrif = m ω ( ω r) e F Cor = 2m ω v 3 Moto rispetto alla Terra Moto rispetto alla Terra Un sistema di riferimento che si possa considerare inerziale è con origine nel centro di massa del sistema solare e con assi orientati verso le stelle lontane che si possono ragionevolmente ritenere fisse. Di norma però tutte le descrizione dei moti vengono date rispetto la Terra, che non è un riferimento Cap.5-Moti relativi 4

5 3 MOTO RISPETTO ALLA TERRA inerziale. Vediamo cosa comporta la scelta di un sistema solidale alla Terra nella descrizione dei moti. Consideriamo la Terra che ruota intorno al proprio asse con T = 24h = 86400s da cui ω = 2π T = rad/s. Trascuriamo il moto della Terra intorno al Sole che ha una ω più piccola. L accelerazione di un corpo vicino la Terra utilizzando le trasformazioni relative diventa g 0 = g + ω ( ω r)+2 ω v con g 0 l accelerazione di gravità nel sistema inerziale Per cui l accelerazione riscontrata sulla Terra è g = g 0 ω ( ω r) 2 ω v il cui effetto è una diminuzione di g con la latitudine dovuto al termine centrifugo e uno scostamento dalla verticale (dell ordine di 0.1 ) N y F centrif θ L x Vediamo in dettaglio: nel caso v = 0 vogliamo determinare la direzione di g rispetto alla verticale e facciamo il prodotto vettoriale dell accelerazione centrifuga indicando la latitudine θ L l angolo tra equatore e zenith: ω r = ωrcos(θ L ) ed è uscente rispetto al piano e di conseguenza ω ( ω r) = ω 2 R T cosθ L = 0.024m/s 2 diretta centrifuga cioe a est della figura (il valore calcolato per θ L = 45 ) scomponiamo rispetto ad un sistema di coordinare polari (y radiale x tangenziale): tanφ = g x g y g x = +ω 2 R T cosθ L sinθ L g y = g 0 +ω 2 R T cos 2 θ L = ω2 R T sinθ L cosθ L g 0 ω 2 R T cos 2 θ L φ = Problema 5.7 Un corpo puntiforme di massa m A = 2kg è posto su un carrello che scorre su un piano orizzontale. Inizialmente il corpo è fermo ed è ad una distanza di d=1 m dal bordo del carrello, la cui massa è m B = 8 kg. Tra carrello e corpo il coefficiente di attrito dinamico è µ d = 0.2. Il carrello viene mosso da una forza F=30 N e anche il corpo A inizia a scivolare sul carrello. Quanto tempo occorre ad A per raggiungere il bordo? Cap.5-Moti relativi 5

6 3 MOTO RISPETTO ALLA TERRA F F att B A R Il diagramma delle forze lo ricostruiamo pensando a come avviene il moto: l attrito tra A e B si tramette in B e lo valutiamo col principio di azione e reazione Scriveremo allora: B : F +R = M B a B A : µ d N = µ d m A g = m A a A e R = µ d N dacuisiottieneche F+µ d m A g = m B a B a B = F µ dm A g m B = 3.26m/s 2 e a A = µ d g = 1.96m/s 2 Per i moti relativi si a t = a a O = a A a B = 1.96 ( 3.26) = +1.3m/s 2 Dalla cinematica abbiamo che d = 1 2 at2 t 2 = 2d a t = 1.24s Problema 5.8 Mazzoldi Un pendolo semplice di lunghezza l=0.4 m è appeso ad un supporto che avanza con accelerazione a=5 m/s 2 (orizzontale). Calcolare l angolo di equilibrio rispetto la verticale e il periodo delle piccole oscillazioni rispetto la posizione di equilibrio. Le forze agenti sono T della fune, P e nel sistema modile la forze apparente F a orizzontale. cotgθ = a g θ = 27 x : F ap +T cosθ = 0 y : T sinθ Mg = 0 e F ap = Ma M\a = T cosθ = M\g cosθ sinθ Periodo di oscillazioni: nel sistema in moto appare come una diversa accelerazione di gravità : g = g + a il modulo g = g 2 +a 2 perchè sono tra loro perpendicolari il cui valore è a = = 11m/s 2 e poichè T = 2π L g si ottiene T=1.25 s Cap.5-Moti relativi 6

Meccanica. 10. Pseudo-Forze. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 10. Pseudo-Forze.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 10. Pseudo-Forze http://campus.cib.unibo.it/2429/ Domenico Galli Dipartimento di Fisica e Astronomia 17 febbraio 2017 Traccia 1. Le Pseudo-Forze 2. Esempi 3. Pseudo-Forze nel Riferimento Terrestre

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Il moto ed i sistemi di riferimento

Il moto ed i sistemi di riferimento Consideriamo il moto di un punto materiale riferito ad un sistema cartesiano S... che chiameremo fisso o assoluto e ad un sistema S che chiameremo mobile o relativo Il sistema S si può muovere perché si

Dettagli

Meccanica. 5. Moti Relativi. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Moti Relativi.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Moti Relativi http://campus.cib.unibo.it/2423/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. Cambiamento del Sistema di Riferimento 2. Trasformazione del Vettore

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare

approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare approfondimento Cinematica ed energia di rotazione equilibrio statico di un corpo esteso conservazione del momento angolare Moto di rotazione Rotazione dei corpi rigidi ϑ(t) ω z R asse di rotazione v m

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Cinematica in due o più dimensioni

Cinematica in due o più dimensioni Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In

Dettagli

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti di contatto Le forze di contatto o reazioni vincolari sono forze efficaci che descrivono l interazione tra corpi estesi (dotati di una superficie!) con un modello fenomenologico. La validità della descrizione

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

1 Sistemi di riferimento

1 Sistemi di riferimento Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate

Dettagli

Meccanica. 5. Cinematica del Corpo Rigido. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 5. Cinematica del Corpo Rigido.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 5. Cinematica del Corpo Rigido http://campus.cib.unibo.it/252232/ Domenico Galli Dipartimento di Fisica e Astronomia 22 febbraio 2017 Traccia 1. 2. 2 Si chiama numero dei gradi di libertà (GdL)

Dettagli

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1).

j B Dati: ω1=100 rad/s velocità angolare della manovella (1); l = 250 mm (lunghezza della biella 2); r = 100 mm (lunghezza della manovella 1). j B A l 2 1 ω1 r ϑ i Piede di biella Testa di biella Biella Braccio di manovella Siti interessanti sul meccanismo biella-manovella: http://it.wikipedia.org/wiki/meccanismo_biella-manovella http://www.istitutopesenti.it/dipartimenti/meccanica/meccanica/biella.pdf

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Equazioni di Eulero del corpo rigido.

Equazioni di Eulero del corpo rigido. Equazioni di Eulero del corpo rigido. In questa nota vogliamo scrivere e studiare le equazioni del moto di un corpo rigido libero, sottoposto alla sola forza di gravità. Ci occuperemo in particolare delle

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

) 2 + β 2. Il primo membro si semplifica tenendo conto che

) 2 + β 2. Il primo membro si semplifica tenendo conto che Calcolo vettoriale 1) Sono dati due vettori uguali in modulo a e b e formanti un certo angolo θ ab. Calcolare m = a = b sapendo che il modulo della loro somma vale 8 e che il modulo del loro prodotto vettoriale

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

SISTEMI DI RIFERIMENTO NON INERZIALI

SISTEMI DI RIFERIMENTO NON INERZIALI SISTEMI DI RIFERIMENTO NON INERZIALI ESERCIZIO 1 Un punto materiale di massa m è disposto sul pavimento della cabina di una funicolare che si muove con accelerazione costante a lungo un pendio inclinato

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

SR P. G. Bracco - Appunti di Fisica Generale

SR P. G. Bracco - Appunti di Fisica Generale Moti relativi Nel trattare i moti bisogna definire il sistema di riferimento (SR) rispetto a cui si descrive il moto. A volte è più semplice usare un SR particolare (in moto rispetto ad un altro) ed è

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE

IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE www.aliceappunti.altervista.org IL MOTO ARMONICO QUALCHE RIMANDO ALLA FORZA CENTRIPETA E AL MOTO CIRCOLARE Nel moto circolare uniforme, il moto è generato da una accelerazione centripeta, diretta verso

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

Angolo polare, versori radiale e trasverso

Angolo polare, versori radiale e trasverso Angolo polare, versori radiale e trasverso Desideriamo descrivere il moto di un corpo puntiforme che ruota su una circonferenza attorno ad un asse fisso. Nella figura l asse di rotazione coincide con l

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come:

Il vettore velocità angolare (avendo scelto θ come in Figura) si scrive come: 9 Moti rigidi notevoli In questo capitolo consideriamo alcuni esempi particolarmente significativi di moto di un sistema rigido. Quelle che seguono sono applicazioni delle equazioni cardinali di un sistema

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Lezione 8 Dinamica del corpo rigido

Lezione 8 Dinamica del corpo rigido Lezione 8 Dinamica del corpo rigido Argomenti della lezione:! Corpo rigido! Centro di massa del corpo rigido! Punto di applicazione della forza peso! Punto di applicazione della forza peso! Momento della

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

Cap 7 - Lavoro ed energia Lavoro di una forza costante

Cap 7 - Lavoro ed energia Lavoro di una forza costante N.Giglietto A.A. 2005/06-7.3 - Lavoro di una forza costante - 1 Cap 7 - Lavoro ed energia Abbiamo visto come applicare le leggi della dinamica in varie situazioni. Spesso però l analisi del moto spesso

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 1 Dicembre 007 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

3.8 - Attrito Radente

3.8 - Attrito Radente 3.8 - Attrito Radente 3.8 - Attrito Radente Nel movimento di un corpo su una superficie SCABRA o attraverso mezzi viscosi (aria,acqua) vi è una resistenza al moto dovuta all interazione del corpo con la

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1)

III ESERCITAZIONE. Soluzione. (F x û x + F y û y ) (dx û x + dy û y ) (1) III ESERCITAZIONE 1. Lavoro Una particella è sottoposta ad una forza F =axy û x ax û y, dove a=6 N/m e û x e û y sono i versori degli assi x e y. Si calcoli il lavoro compiuto dalla forza F quando la particella

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ Equilibrio dei corpi Leggi di Newton e momento della forza, τ Corpi in equilibrio 1. Supponiamo di avere due forze di modulo uguale che agiscono lungo la stessa direzione, ma che siano rivolte in versi

Dettagli

Lezione 2 - Lo studio del moto

Lezione 2 - Lo studio del moto Lezione 2 - Lo studio del moto Tradizionalmente lo studio del moto viene diviso in cinematica e dinamica Cinematica pura descrizione del moto Dinamica investigazione sulle cause del moto con l applicazione

Dettagli

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT

SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT SISTEMI DI CONTROLLO Laurea Specialistica in Ingegneria Meccanica e del Veicolo SISTEMI DI CONTROLLO CINEMATICA E DINAMICA DEI ROBOT Ing. Cristian Secchi Tel. 0522 522235 e-mail: secchi.cristian@unimore.it

Dettagli

Soluzioni della prima prova di accertamento Fisica Generale 1

Soluzioni della prima prova di accertamento Fisica Generale 1 Corso di Laurea in Ineneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 20 aprile 2013 Soluzioni della prima prova di accertamento Fisica Generale

Dettagli

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N

Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N Lavoro ed energia 1 Si consideri un punto materiale in moto su una traiettoria curvilinea e soggetto ad una forza non costante. F i F 2 F N 2 vettorizzare una traiettoria Si divide la traiettoria s in

Dettagli

MP. Moti rigidi piani

MP. Moti rigidi piani MP. Moti rigidi piani Quanto abbiamo visto a proposito dei moti rigidi e di moti relativi ci consente di trattare un esempio notevole di moto rigido come il moto rigido piano. Un moto rigido si dice piano

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2)

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.42 del Mazzoldi 2) Un disco di massa M = 8Kg e raggio R è posto sopra un piano, inclinato di un angolo θ = 30 o rispetto all orizzontale; all asse del disco è collegato

Dettagli

Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia

Esercitazioni di Fisica Corso di Laurea in Biotecnologie e Geologia Esercitazioni di Corso di Laurea in Biotecnologie e Geologia Ninfa Radicella Università del Sannio 6 Aprile 2016 Moto in due dimensioni Cinematica delle particelle in moto su un piano Cosa ci serve: Vettore

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BRESCIA Facoltà di Ingegneria ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello DM 509/99 e DM 270/04 e Diploma Universitario)

Dettagli

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra FISICA GENERALE I - Sede di Spezia - Prova A di Meccanica del 15/02/2016 ME 1 Un blocchetto di massa =5.0 è appoggiato sopra una di massa =10 e tra e blocchetto vi è attrito con coefficiente statico =0.90

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

MOTO DI PURO ROTOLAMENTO

MOTO DI PURO ROTOLAMENTO MOTO DI PURO ROTOLAMENTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOTO DI PURO ROTOLAMENTO

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

approfondimento Lavoro ed energia

approfondimento Lavoro ed energia approfondimento Lavoro ed energia Lavoro compiuto da una forza costante W = F. d = F d cosθ dimensioni [W] = [ML T - ] Unità di misura del lavoro N m (Joule) in MKS dine cm (erg) in cgs N.B. Quando la

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Figura 1: Il corpo rigido ed il sistema solidale

Figura 1: Il corpo rigido ed il sistema solidale Esercizio. onsideriamo il sistema mostrato in fiura, costituito da due aste A e B, di uual massa b ed uual lunhezza L, vincolate con cerniera nell estremo comune ed i cui estremi A e B sono vincolati a

Dettagli

1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati.

1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati. Suggerimenti per la risoluzione di un problema di dinamica: 1) Fare il diagramma delle forze, cioè rappresentare graficamente tutte le forze agenti sul corpo o sui corpi considerati. Forza peso nero) Forza

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

Quesiti di Fisica Generale

Quesiti di Fisica Generale Quesiti di Fisica Generale 1. Meccanica prof. Domenico Galli 13 settembre 2012 I compiti scritti di esame del prof. D. Galli propongono 4 quesiti, sorteggiati individualmente per ogni studente da questa

Dettagli

Corso di Fisica I per Matematica

Corso di Fisica I per Matematica Corso di Fisica I per Matematica DOCENTE: Marina COBAL: marina.cobal@cern.ch Tel. 339-2326287 TESTO di RIFERIMENTO: Mazzoldi, Nigro, Voci: Elementi d fisica,meccanica e Termodinamica Ed. EdiSES FONDAMENTI

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Tutorato di Fisica 1 - AA 2014/15

Tutorato di Fisica 1 - AA 2014/15 Tutorato di Fisica - AA 04/5 Emanuele Fabbiani 8 febbraio 05 Quantità di moto e urti. Esercizio Un carrello di massa M = 0 kg è fermo sulle rotaie. Un uomo di massa m = 60 kg corre alla velocità v i =

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

III esperimento: determinazione del momento d inerzia

III esperimento: determinazione del momento d inerzia III esperimento: determinazione del momento d inerzia Consideriamo un corpo esteso (vedi figura seguente) che possa ruotare attorno ad un asse fisso passante per il punto di sospensione PS; si immagini

Dettagli

FISICA GENERALE T-A 25 Luglio 2013 prof. Spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 25 Luglio 2013 prof. Spighi (CdL ingegneria Energetica) FISICA GENERALE T-A 5 Luglio 013 prof. Spighi (CdL ingegneria Energetica) 1) L energia potenziale di un campo di forze è pari a V (x, y, z) = α y βz. Determinare: a) l espressione della forza; b) le equazioni

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2 Le leggi di Keplero Lo studio del moto dei pianeti, tramite accurate misure, permise a Keplero tra il 1600 ed il 1620 di formulare le sue tre leggi: I legge: I pianeti percorrono orbite ellittiche intorno

Dettagli

Lezione 4. Meccanica del punto materiale Dinamica

Lezione 4. Meccanica del punto materiale Dinamica Lezione 4 Meccanica del punto materiale Dinamica Forze di attrito Se si misura sperimentalmente la legge del moto di un corpo che cade liberamente nell atmosfera si verifica il moto che non e esattamente

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - La Forza di Coriolis

CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - La Forza di Coriolis CORSO DI METEOROLOGIA GENERALE E AERONAUTICA 11 - Dr. Marco Tadini meteorologo U.M.A. Home Page - Ufficio Meteorologico Aeroportuale www.ufficiometeo ufficiometeo.itit PREMESSE Leggi di Newton (Principi

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Esercizi svolti di Statica e Dinamica

Esercizi svolti di Statica e Dinamica Esercizi svolti di Statica e Dinaica 1. La assa è sospesa coe in figura. Nota la costante elastica k della olla, deterinarne l allungaento in condizioni di equilibrio. 1.6 Kg ; θ 30 ; k 10 N -1 θ Il diagraa

Dettagli

Il problema dei due corpi La dinamica planetaria

Il problema dei due corpi La dinamica planetaria Il problema dei due corpi La dinamica planetaria La Meccanica Classica Lagrange Hamilton Jacobi Vettori Per rendere conto della 3-dimensionalità in fisica, e in matematica, si usano delle grandezze più

Dettagli