Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33"

Transcript

1 Ottimizzazione su grafi: massimo flusso (parte 1) Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33

2 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 Reti di flusso Una rete di flusso è una struttura basata su un grafo orientato che permette la modellazione di flussi a regime stazionario. Esempi di applicazione: flusso di veicoli in un area urbana flusso dell acqua potabile nella rete idrica di una città flusso di informazione lungo una rete di telecomunicazione flusso di materiali in un impianto di produzione

3 Ottimizzazione su grafi:massimo flusso (parte 1) p. 3/33 Network flow Sia dato un grafo orientato G = (V,E) con V = {s,t, 1, 2,...,n 2} e E = m e sia data una capacità c ij associata a ciascun arco (i,j) E. Supponiamo che esistano un nodo s detto sorgente con solo archi uscenti, cioè δ (s) = ; un nodo t detto pozzo con solo archi entranti, cioè δ + (t) = ; I nodi distinti da s e da t sono detti nodi intermedi. Il grafo G con le caratteristiche suddette viene detto rete di flusso.

4 Ottimizzazione su grafi:massimo flusso (parte 1) p. /33 Flusso ammissibile DEFINIZIONE. Data una rete di flusso, si dice flusso ammissibile da s a t una funzione x : E R che soddisfa i seguenti vincoli: 0 x ij c i,j, (i,j) E (1) (h,j) δ + (h) x hj }{{} flusso uscente da h (i,h) δ (h) x ih }{{} flusso entrante in h = 0, h V \ {s,t} (2) Il valore del flusso è il flusso uscente dalla sorgente, dato da: f = (s,j) δ + (s) x sj

5 Ottimizzazione su grafi:massimo flusso (parte 1) p. 5/33 I vincoli (1) indicano che il flusso su ogni arco deve essere sempre non-negativo e non eccedere la capacità dell arco stesso. I vincoli (2) indicano che per ogni nodo intermedio il flusso totale entrante nel nodo deve essere uguale al flusso totale uscente dal nodo stesso. Per questo motivo, le n 2 equazioni (2) sono dette equazioni di conservazione (del flusso).

6 Ottimizzazione su grafi:massimo flusso (parte 1) p. 6/33 Esempio di flusso ammissibile s 3 6 t Valore del flusso:

7 Ottimizzazione su grafi:massimo flusso (parte 1) p. 7/33 Esempio di flusso ammissibile s 3 6 t Valore del flusso: 2

8 Ottimizzazione su grafi:massimo flusso (parte 1) p. 8/33 Esempio di flusso ammissibile s 3 6 t Valore del flusso: 28

9 Ottimizzazione su grafi:massimo flusso (parte 1) p. 9/33 Il problema del massimo flusso Problema del massimo flusso (Max Flow): determinare il flusso massimo che può fluire tra s e t senza contributi dei nodi intermedi.

10 Ottimizzazione su grafi:massimo flusso (parte 1) p. /33 Esempio di problema di flusso mass Immaginiamo che il grafo sia una rete idrica con il quale si tenta di portare dell acqua da un nodo sorgente s ad un utilizzatore rappresentato da un nodo t. Per far questo si usa una rete di tubature rappresentata dagli archi. Le tubature hanno una certa capacità c ij (cioè possono trasportare al più c ij litri di acqua al secondo). Le tubature si intersecano nei nodi, dove può essere deciso come l acqua che arriva nel nodo debba essere distribuita ai tubi in uscita. Si tratta di determinare come incanalare l acqua in modo da massimizzare il flusso da s a t.

11 Ottimizzazione su grafi:massimo flusso (parte 1) p. 11/33 Max flow: problema di PL Il problema del massimo flusso corrisponde dunque al seguente problema di PL: max f = (i,j) δ + (s) x sj 0 x ij c i,j, (i,j) E x hj x ih = 0, h V \ {s,t} (h,j) δ + (h) (i,h) δ (h)

12 Ottimizzazione su grafi:massimo flusso (parte 1) p. 12/33 Tagli DEFINIZIONE. Si chiama taglio s-t o sezione s-t (s-t cut) una partizione (S, S) (con S = V \ S) dell insieme dei nodi tale che s S, t S. DEFINIZIONE. Si chiama capacità di un taglio s-t la quantità: C(S, S) = i S, j S cioè la somma delle capacità degli archi che hanno il primo estremo in S e il secondo estremo in S. c ij

13 Ottimizzazione su grafi:massimo flusso (parte 1) p. 13/33 Esempio di taglio s t Capacità=30

14 Ottimizzazione su grafi:massimo flusso (parte 1) p. 1/33 Esempio di taglio s t Capacità=62

15 Ottimizzazione su grafi:massimo flusso (parte 1) p. 15/33 Esempio di taglio s t Capacità=28

16 Ottimizzazione su grafi:massimo flusso (parte 1) p. 16/33 Il problema del min cut Problema del minimo taglio (Min Cut): determinare un taglio s-t di capacità minima. Come vedremo, rappresenta il duale del problema di Max Flow.

17 Ottimizzazione su grafi:massimo flusso (parte 1) p. 17/33 Flusso netto attraverso un taglio DEFINIZIONE. Dato un flusso ammissibile x, si chiama flusso netto attraverso il taglio s-t (S, S) la quantità: F(S, S) = x ij x ji i S, j S i S, j S cioè la differenza tra: somma dei flussi sugli archi uscenti da S ed entranti in S somma dei flussi sugli archi uscenti da S ed entranti in S

18 Ottimizzazione su grafi:massimo flusso (parte 1) p. 18/ s 3 6 t Valore del flusso=2

19 Ottimizzazione su grafi:massimo flusso (parte 1) p. 19/33 Relazione tra flusso netto di un taglio e valore del flusso TEOREMA. Dato un flusso ammissibile x, il flusso netto attraverso ogni taglio s-t è pari al valore del flusso, cioè F(S, S) = f, per ogni taglio (S, S). In particolare: f = F(V \ {t}, {t}, ) = (i,t) δ (t) x it cioè il flusso uscente dalla sorgente è uguale al flusso entrante nel pozzo.

20 Ottimizzazione su grafi:massimo flusso (parte 1) p. 20/33 Dimostrazione del teorema. Consideriamo un generico taglio (S, S). Sommiamo le equazioni di conservazione del flusso (2) relative ai soli nodi h S \ {s}: x hj = 0 h S\{s} (h,j) δ + (h) (i,h) δ (h) x ih Sommiamo all equazione ottenuta il valore del flusso: f = (s,j) δ + (s) x sj

21 Ottimizzazione su grafi:massimo flusso (parte 1) p. 21/33 Si ottiene: x hj x ih + x sj = f h S\{s} (h,j) δ + (h) (i,h) δ (h) (i,j) δ + (s) (inserendo nella sommatoria il termine relativo a s) x hj h S (h,j) δ + (h) (i,h) δ (h) x ih = f x ih = f h S (h,j) δ + (h)x hj h S (i,h) δ (h)

22 Ottimizzazione su grafi:massimo flusso (parte 1) p. 22/33 h S,j S x hj } {{ } = + h S,j S h S,j S x hj x hj i S,h S x ih } {{ } = i S,h S x ih = f i S,h S x ih = f F(S, S) = f.

23 Ottimizzazione su grafi:massimo flusso (parte 1) p. 23/33 Relazione tra capacità di un taglio e valore del flusso TEOREMA. Dato un flusso ammissibile x, il valore del flusso f è minore o uguale alla capacità di un qualunque taglio s-t, cioè f C(S, S), per ogni taglio (S, S). Dim. Considerato un generico taglio s-t (S, S), si ha: f = F(S, S) }{{} per teor. precedente = i S,j S i S,j S x ij }{{} c ij i S,j S c ij = C(S, S). x ij }{{} 0

24 Ottimizzazione su grafi:massimo flusso (parte 1) p. 2/33 I teoremi precedenti implicano la relazione di dualità debole: dove f max C min f max = valore del massimo flusso C min = capacità del minimo taglio In realtà è possibile dimostrare una relazione di dualità forte, cioè che in ogni rete di flusso, il valore del massimo flusso è uguale alla capacità del minimo taglio.

25 Ottimizzazione su grafi:massimo flusso (parte 1) p. 25/33 Massimo Flusso - Minimo Taglio (Max Flow - Min Cut) TEOREMA. Un flusso ammissibile x è ottimo per il problema Max Flow se e solo se esiste un taglio s-t (S, S) tale che: In tal caso f = C(S, S). f = f max è il valore del massimo flusso S è ottimo per il problema Min Cut C(S, S) = C min è la capacità del minimo taglio. Per la dimostrazione del teorema dobbiamo introdurre il concetto di cammino aumentante.

26 Ottimizzazione su grafi:massimo flusso (parte 1) p. 26/33 Archi saturi DEFINIZIONE. Dato un flusso ammissibile x, si dice che l arco (i,j) è saturo se x ij = c ij cioè il flusso sull arco è uguale alla capacità dell arco stesso

27 Ottimizzazione su grafi:massimo flusso (parte 1) p. 27/33 Archi diretti/archi inversi DEFINIZIONE. Dato un cammino semplice P = {(v 0,v 1 ), (v 1,v 2 ),...,(v p 1,v p )} chiamiamo: arco diretto un arco del tipo (v i 1,v i ) arco inverso un arco del tipo (v i,v i 1 ) Quindi gli archi diretti hanno verso concorde con quello di percorrenza del cammino P, mentre gli archi inversi hanno verso opposto.

28 Ottimizzazione su grafi:massimo flusso (parte 1) p. 28/33 Rete incrementale DEFINIZIONE. Sia dato un flusso ammissibile x. La rete incrementale (o grafo residuo) Ḡ = (V,Ē) associata a x è ottenuta dalla rete originale G(V,E) sostituendo ogni arco (i,j) E con due archi: un arco diretto (i,j) di capacità residua c ij = c ij x ij un arco inverso (j,i)di capacità residua c ij = x ij ed eliminando alla fine gli archi con capacità residua nulla.

29 Ottimizzazione su grafi:massimo flusso (parte 1) p. 29/ s 2 3 t 0 0 Valore del flusso: 5

30 Ottimizzazione su grafi:massimo flusso (parte 1) p. 30/33 Rete incrementale s 2 3 t 3 5

31 Ottimizzazione su grafi:massimo flusso (parte 1) p. 31/33 Cammino aumentante DEFINIZIONE. Un cammino aumentante (augmenting path) è un cammino da s a t nella rete incrementale s 2 3 t 3 5

32 Ottimizzazione su grafi:massimo flusso (parte 1) p. 32/33 Aumentiamo di il valore del flusso 6 13 s 2 3 t Valore del flusso: 1 5

33 Ottimizzazione su grafi:massimo flusso (parte 1) p. 33/33 Rete incrementale s t 7 Non ci sono cammini aumentanti! 5

Grafi e reti di flusso

Grafi e reti di flusso Grafi e reti di flusso Molti problemi di ottimizzazione sono caratterizzati da una struttura di grafo: in molti casi questa struttura emerge in modo naturale, in altri nasce dal particolare modo in cui

Dettagli

Flusso a Costo Minimo

Flusso a Costo Minimo Sapienza Università di Roma - Dipartimento di Ingegneria Informatica, Automatica e Gestionale Flusso a Costo Minimo Docente: Renato Bruni bruni@dis.uniroma.it Corso di: Ottimizzazione Combinatoria Dal

Dettagli

Processi di cost management - Programmazione multiperiodale

Processi di cost management - Programmazione multiperiodale Processi di cost management - Programmazione multiperiodale Queste slide (scrte da Carlo Mannino) riguardano il problema di gestione delle attivà di un progetto allorché i costi di esecuzione sono legati

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 17 giugno 2013 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 7 giugno 0 Nome: Cognome: Matricola: Orale /06/0 ore aula N Orale 0/07/0 ore aula N

Dettagli

Introduzione ai grafi

Introduzione ai grafi TFA A048 Anno Accademico 2012-13 Outline Cenni storici sui grafi Nozioni introduttive: cammini, connessione, alberi, cicli Cammini di costo minimo Origini storiche La nascita della teoria dei grafi risale

Dettagli

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso

Claudio Arbib Università di L Aquila. Ricerca Operativa. Reti di flusso Claudio Arbib Università di L Aquila Ricerca Operativa Reti di flusso Sommario Definizioni di base Flusso di un campo vettoriale Divergenza Integrale di Gauss-Greene Flusso in una rete Sorgenti, pozzi

Dettagli

Problemi di Flusso: Il modello del Trasporto

Problemi di Flusso: Il modello del Trasporto Problemi di Flusso: Il modello del rasporto Andrea Scozzari a.a. 2014-2015 April 27, 2015 Andrea Scozzari (a.a. 2014-2015) Problemi di Flusso: Il modello del rasporto April 27, 2015 1 / 25 Problemi su

Dettagli

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli.

Figura 1: 1) Si scriva la formulazione del problema come problema di PLI (con un numero minimo di vincoli) e la matrice dei vincoli. ESERCIZIO 1 Sia dato il grafo orientato in Figura 1. Si consideri il problema di flusso a 1 2 4 Figura 1: costo minimo su tale grafo con b 1 = 4 b 2 = 2 b = b 4 = e c 12 = 2 c 1 = 4 c 14 = 1 c 2 = 1 c

Dettagli

AMPL Problemi su Reti

AMPL Problemi su Reti Dipartimento di Matematica Università di Padova Corso di Laurea Informatica Outline Problemi su Reti Cammino Minimo Molti problemi di ottimizzazione combinatoria possono essere modellati ricorrendo ai

Dettagli

Appunti lezione Capitolo 15 Ricerca locale

Appunti lezione Capitolo 15 Ricerca locale Appunti lezione Capitolo 15 Ricerca locale Alberto Montresor 03 Giugno, 016 1 Introduzione alla ricerca locale Un approccio miope, ma talvolta efficace è quello della ricerca locale. L idea è la seguente:

Dettagli

Esercizio 1. min. Esercizio 2. Esercizio 3

Esercizio 1. min. Esercizio 2. Esercizio 3 A UNIVERSIÀ DEGLI SUDI ROMA RE Ricerca Operativa Primo appello gennaio 00 Esercizio Portando il problema in forma standard si aggiungono le variabili e 4. Impostando il problema artificiale è sufficiente

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Struttura delle reti logistiche

Dettagli

Esercitazione 6 Ancora sul Network Flow

Esercitazione 6 Ancora sul Network Flow Esercitazione 6 Ancora sul Network Flow Problema 14 (appello 28/09/2015) Un importante azienda di sviluppo software ha n progetti da portare a termine entro la fine dell anno. Il manager dell azienda stima

Dettagli

IL PROBLEMA DEL FLUSSO DI COSTO MINIMO. DANIEL BUCCARELLA

IL PROBLEMA DEL FLUSSO DI COSTO MINIMO. DANIEL BUCCARELLA IL PROBLEMA DEL FLUSSO DI COSTO MINIMO DANIEL BUCCARELLA 698102 danielbuccarella@virgilio.it 1. Definizione del Problema Spesso i problemi di ottimizzazione sono caratterizzati da una struttura di grafo.

Dettagli

Introduzione ai Problemi di Flusso su Reti

Introduzione ai Problemi di Flusso su Reti UNIVERSI DI PIS IROCINIO ORMIVO IVO - I CICLO CLSSE DI BILIZIONE MEMIC PPLIC Introduzione ai Problemi di lusso su Reti Relatore: Prof. V. Georgiev.U: Prof. M. Berni Elisabetta lderighi R.O e Riforma della

Dettagli

Algoritmo basato su cancellazione di cicli

Algoritmo basato su cancellazione di cicli Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo):

Domini di funzioni di due variabili. Determinare i domini delle seguenti funzioni di due variabili (le soluzioni sono alla fine del fascicolo): UNIVERSITA DEGLI STUDI DI SALERNO C.d.L. in INGEGNERIA GESTIONALE Esercizi di Ricerca Operativa Prof. Saverio Salerno Corso tenuto nell anno solare 2009 I seguenti esercizi sono da ritenersi di preparazione

Dettagli

Ottimizzazione Discreta Esercizi V: Soluzioni

Ottimizzazione Discreta Esercizi V: Soluzioni Ottimizzazione Discreta Esercizi V: Soluzioni Grafi e cammini minimi A.A. 214/215 Esercizio 1 (a) Nella terminologia della teoria dei grafi, si chiede di dimostrare che ogni grafo non orientato G = (V,E),

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) memorizzazione compatta di sequenze (DNA) diffusione

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il

Algoritmi esatti. La teoria ci dice che per problemi difficili (come il p. 1/4 Algoritmi esatti La teoria ci dice che per problemi difficili (come il KNAPSACK o, ancora di più, il TSP ) i tempi di risoluzione delle istanze, calcolati tramite analisi worst-case, tendono a crescere

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi

Ottimizzazione nella Gestione dei Progetti - Esercitazione 1: calcolo degli schedule ottimi Università degli Studi di Roma La Sapienza Ottimizzazione nella Gestione dei Progetti - Esercitazione : calcolo degli schedule ottimi di FABIO D ANDREAGIOVANNI Dipartimento di Informatica e Sistemistica

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 3 La dualità nella Programmazione Lineare 3.1 Teoria della dualità Esercizio 3.1.1 Scrivere il problema duale del seguente problema di Programmazione Lineare: min x 1 x 2 + x 3 2x 1 +3x 2 3 x

Dettagli

Teoria della Dualità: I Introduzione

Teoria della Dualità: I Introduzione Teoria della Dualità: I Introduzione Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.2 Maggio 2004 Dualità Per ogni problema PL, detto primale, ne esiste un altro, detto duale, costruito

Dettagli

Parte V: Rilassamento Lagrangiano

Parte V: Rilassamento Lagrangiano Parte V: Rilassamento Lagrangiano Tecnica Lagrangiana Consideriamo il seguente problema di Programmazione Lineare Intera: P 1 min c T x L I Ax > b Cx > d x > 0, intera in cui A = matrice m x n C = matrice

Dettagli

età (anni) manutenzione (keuro) ricavato (keuro)

età (anni) manutenzione (keuro) ricavato (keuro) .6 Cammini minimi. Determinare i cammini minimi dal nodo 0 a tutti gli altri nodi del seguente grafo, mediante l algoritmo di Dijkstra e, se applicabile, anche mediante quello di Programmazione Dinamica.

Dettagli

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I

ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I ALGORITMI DI OTTIMIZZAZIONE M Esercizi Parte I Esercizio 1 Dati n oggetti ed un contenitore, ad ogni oggetto j (j = 1,, n) sono associati un peso p j ed un costo c j (con p j e c j interi positivi). Si

Dettagli

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

2.3 Cammini ottimi. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 . Cammini ottimi E. Amaldi Fondamenti di R.O. Politecnico di Milano .. Cammini minimi e algoritmo di Dijkstra Dato un grafo orientato G = (N, A) con una funzione di costo c : A c ij R e due nodi s e t,

Dettagli

Prova Scritta di Ricerca Operativa

Prova Scritta di Ricerca Operativa Prova Scritta di Ricerca Operativa (Prof. Fasano Giovanni) Università Ca Foscari Venezia - Sede di via Torino 12 gennaio 2017 Regole per l esame: la violazione delle seguenti regole comporta il ritiro

Dettagli

Esame di Ricerca Operativa del 11/07/2016

Esame di Ricerca Operativa del 11/07/2016 Esame di Ricerca Operativa del /0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un erboristeria vuole produrre una nuova tisana utilizzando tipi di tisane già in commercio. Tali tisane sono per lo più composte

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si risolva il problema di PL dato applicando l algoritmo del Simplesso Duale, per via algebrica, a partire dalla base B {,}. Per ogni

Dettagli

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi!

GRAFI. Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! G R A F I 1 GRAFI Cosa sono Grafi non orientati Grafi orientati Grafi pesati Alberi Automi! 2 cip: cip: Pallogrammi Pallogrammi GRAFI: cosa sono I grafi sono una struttura matematica fondamentale: servono

Dettagli

Il valore di flusso che si ottiene è

Il valore di flusso che si ottiene è 1) Si consideri un insieme di piste da sci e di impianti di risalita. Lo si modelli con un grafo orientato che abbia archi di due tipi: tipo D (discesa e orientato nel senso della discesa) e tipo R (risalita

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da calcio e da basket che vende a 1 e 20 euro rispettivamente. L azienda compra ogni settimana

Dettagli

Esame di Ricerca Operativa del 15/01/2015

Esame di Ricerca Operativa del 15/01/2015 Esame di Ricerca Operativa del 1/01/01 (Cognome) (Nome) (Matricola) Esercizio 1. Un azienda produce palloni da basket e da calcio che vende rispettivamente a 1 e euro. L azienda compra ogni settimana 00

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

2.3.3 Cammini ottimi nei grafi senza circuiti

2.3.3 Cammini ottimi nei grafi senza circuiti .. Cammini ottimi nei grafi senza circuiti Sia un grafo G = (N, A) orientato senza circuiti e una funzione di costo che assegna un valore c ij R ad ogni arco (i, j) A circuito Proprietà I nodi di un grafo

Dettagli

Esame di Ricerca Operativa del 09/02/2016

Esame di Ricerca Operativa del 09/02/2016 Esame di Ricerca Operativa del 0/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una sartoria produce tipi di vestiti: pantaloni, gonne e giacche, utilizzando stoffa e filo. Settimanalmente, la disponibilità

Dettagli

Esame di Ricerca Operativa del 16/06/2015

Esame di Ricerca Operativa del 16/06/2015 Esame di Ricerca Operativa del 1/0/01 (Cognome) (Nome) (Matricola) Esercizio 1. Una ditta produce vernici in tre diversi stabilimenti (Pisa, Cascina, Empoli) e le vende a tre imprese edili (A, B, C). Il

Dettagli

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1.

TEORIA della DUALITÀ. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Teoria della Dualità / 1. Prof. R. adei EORIA della DUALIÀ Una piccola introduzione R. adei 1 R. adei 2 EORIA DELLA DUALIA' Il concetto di dualità fu introdotto nel 1947 da Von Neumann, anche se il teorema della dualità fu formulato

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento

UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa 2. Esercizi sul problema dell assegnamento UNIVERSITÀ DEGLI STUDI ROMA TRE Collegio Didattico in Ingegneria Informatica corso di Ricerca operativa Esercizi sul problema dell assegnamento Richiami di Teoria Ricordiamo che, dato un grafo G=(N,A),

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 20 giugno 2014 A Ricerca Operativa 1 Seconda prova intermedia Un tifoso di calcio in partenza da Roma vuole raggiungere Rio De Janeiro per la finale del mondiale spendendo il meno possibile. Sono date le seguenti disponibilità

Dettagli

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema

i completi l'esecuzione dell'algoritmo di programmazione dinamica per questo problema restituendo il valore ottimo e una soluzione ottima del problema Compito di Ricerca Operativa II Esercizio ( punti). ia dato il problema di flusso massimo sulla rete in figura (le capacit a degli archi sono riportate sopra di essi). 0 8 i consideri il seguente flusso

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Possibile applicazione

Possibile applicazione p. 1/4 Assegnamento Siano dati due insiemi A e B entrambi di cardinalità n. Ad ogni coppia (a i,b j ) A B è associato un valore d ij 0 che misura la "incompatibilità" tra a i e b j, anche interpretabile

Dettagli

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza

Sono casi particolari di MCF : SPT (cammini minimi) non vi sono vincoli di capacità superiore (solo x ij > 0) (i, j) A : c ij, costo di percorrenza Il problema di flusso di costo minimo (MCF) Dati : grafo orientato G = ( N, A ) i N, deficit del nodo i : b i (i, j) A u ij, capacità superiore (max quantità di flusso che può transitare) c ij, costo di

Dettagli

4.1 Localizzazione e pianificazione delle base station per le reti UMTS

4.1 Localizzazione e pianificazione delle base station per le reti UMTS esercitazione Ottimizzazione Prof E Amaldi Localizzazione e pianificazione delle base station per le reti UMTS Consideriamo il problema di localizzare un insieme di stazioni radio base, base station (BS),

Dettagli

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco

Ad ogni arco (i,j) del grafo e' associato un valore intero c(i,j) detto capacita' dell'arco 6) FLUSSI Definizione di flusso Si definisce rete di flusso un grafo orientato e connesso con i) un solo vertice con esclusivamente archi uscenti ii) un solo vertice con esclusivamente archi entranti Tradizionalmente

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione

Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani (liverani@mat.uniroma.it)

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

2.1 Pianificazione multiperiodo della produzione energetica. 2.2 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo

2.1 Pianificazione multiperiodo della produzione energetica. 2.2 Confronto tra formulazioni per il problema dell albero di supporto di costo minimo . Pianificazione multiperiodo della produzione energetica Consideriamo il problema di approvvigionamento energetico dell Italia su un orizzonte di T = 0 anni. Sia d t il consumo di potenza elettrica stimato

Dettagli

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8

Dettagli

Compressione Dati. Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente.. p.

Compressione Dati. Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente.. p. Compressione Dati Teorema codifica sorgente: Entropia fornisce un limite sia inferiore che superiore al numero di bit per simbolo sorgente.. p.1/21 Compressione Dati Teorema codifica sorgente: Entropia

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli

OTTIMIZZAZIONE LINEARE MULTICRITERIO

OTTIMIZZAZIONE LINEARE MULTICRITERIO OTTIMIZZAZIONE LINEARE MULTICRITERIO NOTAZIONE Siano x ed y vettori di R n indicati estesamente con x x x x 1 Μ i Μ n, y y1 Μ yi Μ y n e si ponga N = {1,2,, n}. Scriveremo allora: x y ( x è diverso da

Dettagli

4 - Topologia. Topologia delle reti elettriche. Topologia delle reti elettriche. Elettrotecnica. Serie di due bipoli

4 - Topologia. Topologia delle reti elettriche. Topologia delle reti elettriche. Elettrotecnica. Serie di due bipoli Topologia delle reti elettriche Elettrotecnica È data dai collegamenti degli n-poli. Prescinde dalla disposizione spaziale dei componenti. 4 - Topologia Considera le leggi di Kirchhoff (relazioni tra correnti

Dettagli

Appunti sui problemi di matching

Appunti sui problemi di matching Appunti sui problemi di matching A. Agnetis 1 Formulazione I problemi di matching (talvolta chiamati problemi di accoppiamento, o abbinamento) sono tra i più importanti e più studiati problemi di ottimizzazione

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 0/06/06 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via avrai

Dettagli

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema.

Introduzione al Metodo agli Elementi Finiti (FEM) (x, y) Γ Tale formulazione viene detta Formulazione forte del problema. Introduzione al Metodo agli Elementi Finiti (FEM) Consideriamo come problema test l equazione di Poisson 2 u x 2 + 2 u = f(x, y) u = f y2 definita su un dominio Ω R 2 avente come frontiera la curva Γ,

Dettagli

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Introduzione ai grafi. Introduzione ai grafi p. 1/2

Introduzione ai grafi. Introduzione ai grafi p. 1/2 Introduzione ai grafi Introduzione ai grafi p. 1/2 Grafi Un grafo G é costituito da una coppia di insiemi (V,A) dove V é detto insieme dei nodi e A é detto insieme di archi ed é un sottinsieme di tutte

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Makespan con set-up dipendenti dalla sequenza. 1/s jk /C max

Makespan con set-up dipendenti dalla sequenza. 1/s jk /C max Makespan con set-up dipendenti dalla sequenza 1/s jk /C max 1/s jk /C max Un tempo di riattrezzaggio (set-up) s jk è richiesto fra il processamento di j e quello di k. In questo caso, C max dipende dalla

Dettagli

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano

Algoritmi Euristici. Corso di Laurea in Informatica e Corso di Laurea in Matematica. Roberto Cordone DI - Università degli Studi di Milano Algoritmi Euristici Corso di Laurea in Informatica e Corso di Laurea in Matematica Roberto Cordone DI - Università degli Studi di Milano Lezioni: Martedì 14.30-16.30 in Aula Omega Venerdì 14.30-16.30 in

Dettagli

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali»

INFORMATICA AA Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» Università degli Studi di Ferrara Facoltà di Scienze MM FF NN Corso di Laurea in «Scienze e Tecnologie per i Beni Culturali» AA 010-011 INFORMATICA Prof. Giorgio Poletti giorgio.poletti@unife.it Grafi

Dettagli

La Gestione dei Progetti. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena

La Gestione dei Progetti. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena La Gestione dei Progetti Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Gestione di Progetti complessi Il termine progetto fa riferimento ad un vasto

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 13 giugno 2011 A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Stdi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia gigno Nome: Cognome: Matricola: voglio sostenere la prova orale il giorno venerdì //

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Elezione di un leader in una rete ad anello

Elezione di un leader in una rete ad anello Elezione di un leader in una rete ad anello Corso di Algoritmi Distribuiti Prof. Roberto De Prisco Lezione n a cura di Rosanna Cassino e Sergio Di Martino Introduzione In questa lezione viene presentato

Dettagli

Esercizio 1. Esercizio 2

Esercizio 1. Esercizio 2 A-2 a PI Ricerca Operativa 1 Seconda prova intermedia La Pharmatix è un azienda di Anagni che produce due principi attivi, A e B, che consentono un profitto per grammo venduto di 20 e 30 euro rispettivamente.

Dettagli

Riduzione degli schemi a blocchi

Riduzione degli schemi a blocchi 0.0..2 Riduzione degli scemi a blocci Spesso i sistemi complessi vengono rappresentati con scemi a blocci, i cui elementi anno ciascuno un solo ingresso e una sola uscita. I blocci elementari per la rappresentazione

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Modelli per la Logistica Distributiva: Single Commodity Minimum Cost Flow Problem Multi Commodity Minimum Cost Flow Problem Fixed Charge

Dettagli

c(s) := c e (1) e δ(s)

c(s) := c e (1) e δ(s) . Il problema del massimo flusso Nel problema del massimo flusso si considera un grafo, in cui due nodi s e t sono contraddistinti l uno come sorgente e l altro come pozzo e ad ogni arco e =(i, j)è assegnato

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione)

RICERCA OPERATIVA. Tema d esame del 04/03/2008 (Simulazione) RICERCA OPERATIVA Tema d esame del 04/03/2008 (Simulazione) COGNOME: NOME: MATRICOLA:. Una nota azienda automobilistica produce due modelli di auto (un utilitaria e una berlina), che rivende con un guadagno

Dettagli

Corso di elettrotecnica Materiale didattico: i grafi

Corso di elettrotecnica Materiale didattico: i grafi Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi

Dettagli

Algoritmi e Strutture di Dati (3 a Ed.) Algoritmo dei tre indiani. Alan Bertossi, Alberto Montresor

Algoritmi e Strutture di Dati (3 a Ed.) Algoritmo dei tre indiani. Alan Bertossi, Alberto Montresor Algoritmi e Strutture di Dati ( a Ed.) Algoritmo dei tre indiani Alan Bertossi, Alberto Montresor Vediamo a grandi linee un algoritmo proposto da Kumar, Malhotra e Maheswari (978) come raffinamento di

Dettagli

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard

Introduzione al Metodo del Simplesso. 1 Soluzioni di base e problemi in forma standard Introduzione al Metodo del Simplesso Giacomo Zambelli 1 Soluzioni di base e problemi in forma standard Consideriamo il seguente problema di programmazione lineare (PL), relativo all esempio di produzione

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

+1 i j i = j i = j 1 1 i j 2 Il problema di PL associato alla scelta della migliore strategia per te è quindi il seguente: min z

+1 i j i = j i = j 1 1 i j 2 Il problema di PL associato alla scelta della migliore strategia per te è quindi il seguente: min z Esercizio 1. Considera il seguente gioco. Tu e il tuo avversario potete scegliere un intero tra 1 e. Se il numero x che hai scelto è minore di quello y del tuo avversario, allora tu vinci un euro, a meno

Dettagli

Progettazione di Algoritmi

Progettazione di Algoritmi Corso di laurea in Informatica Prova scritta del: Progettazione di Algoritmi 06/07/2016 Prof. De Prisco Inserire i propri dati nell apposito spazio. Non voltare la finché non sarà dato il via. Dal via

Dettagli

Problemi di flusso a costo minimo

Problemi di flusso a costo minimo p. 1/7 Problemi di flusso a costo minimo È data una rete (grafo orientato e connesso) G = (V,A). (i,j) A c ij, costo di trasporto unitario lungo l arco (i, j). i V b i interi e tali che i V b i = 0. p.

Dettagli

1 Programmazione Lineare Intera

1 Programmazione Lineare Intera 1 Programmazione Lineare Intera Fino ad ora abbiamo affrontato problemi in cui le variabili potevano assumere valori reali. Ora invece ci concentreremo su problemi in cui le variabili possono assumere

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore Il problema del commesso viaggiatore Mauro Passacantando Dipartimento di Informatica Largo B. Pontecorvo 3, Pisa mpassacantando@di.unipi.it M. Passacantando TFA 2012/13 - Corso di Ricerca Operativa Università

Dettagli

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04

COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 COMPITO DI RICERCA OPERATIVA APPELLO DEL 08/01/04 Esercizio 1 Si risolva con il metodo branch-and-bound il seguente problema di PLI max x 1 + x 4x 1 + x + x = 0 x 1 + x + x 4 = x 1, x, x, x 4 0 x 1, x,

Dettagli

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici);

Grafi diretti. Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove. V è u n i n s i e m e d i nodi (o vertici); Algoritmi e Strutture di Dati II 2 Grafi diretti Un grafo diretto (o grafo orientato) G è una coppia (V,E) dove V è u n i n s i e m e d i nodi (o vertici); E µ V V è u n i n s i e m e d i archi. Denotiamo

Dettagli

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis

Applicazioni del Massimo flusso. Progettazione di Algoritmi a.a Matricole congrue a 1 Docente: Annalisa De Bonis Applicazioni del Massimo flusso Progettazione di Algoritmi a.a. 06-7 Matricole congrue a Docente: Annalisa De Bonis Matching bipartito Problema del max matching. Input: grafo non direzionato G = (V, E).

Dettagli

Metodo delle due fasi

Metodo delle due fasi Metodo delle due fasi Il problema artificiale la fase I del Simplesso esempi rif. Fi 3.2.5; Osservazione Nel problema min{c T x : Ax = 0, x 0}, dell esempio precedente si ha che b 0 e A contiene una matrice

Dettagli

Automa a Stati Finiti (ASF)

Automa a Stati Finiti (ASF) Automa a Stati Finiti (ASF) E una prima astrazione di macchina dotata di memoria che esegue algoritmi Introduce il concetto fondamentale di STATO che informalmente può essere definito come una particolare

Dettagli

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 15 giugno 2012

A UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Studi in Ingegneria Informatica Ricerca Operativa 1 Seconda prova intermedia 15 giugno 2012 A UNIVRSITÀ GLI STUI ROMA TR orso di Studi in Ingegneria Informatica Ricerca Operativa Seconda prova intermedia 5 giugno 22 sercizio L azienda rogram&o produce software e deve decidere quanto tempo impiegare

Dettagli

Problemi di localizzazione

Problemi di localizzazione Problemi di localizzazione Claudio Arbib Università di L Aquila Prima Parte (marzo 200): problemi con singolo decisore . Introduzione Un problema di localizzazione consiste in generale nel decidere dove

Dettagli

TEORIA DEI GIOCHI SU RETI

TEORIA DEI GIOCHI SU RETI TEORA DE GOCH SU RET Molti problemi reali di tipo tecnico-economico si risolvono mediante una ottimizzazione associata ai flussi su una rete. n queste lezioni vedremo una particolare forma di ottimizzazione,

Dettagli

Grafi (orientati): cammini minimi

Grafi (orientati): cammini minimi Grafi (orientati): cammini minimi Una breve presentazione Definizioni Sia G=(V,E) un grafo orientato con costi w sugli archi. Il costo di un cammino π= è dato da: Un cammino minimo tra

Dettagli

La Gestione dei Progetti. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena

La Gestione dei Progetti. Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena La Gestione dei Progetti Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Gestione di Progetti complessi Il termine progetto fa riferimento ad un vasto

Dettagli

Teoria degli Insiemi

Teoria degli Insiemi Teoria degli Insiemi Docente: Francesca Benanti Ottobre 2017 1 Teoria degli Insiemi La Teoria degli Insiemi è una branca della matematica creata alla fine del diciannovesimo secolo principalmente dal matematico

Dettagli