NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno"

Transcript

1 NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno

2 PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione. E importante che questo schema abbia alcune importanti proprieta. Studieremo queste proprieta e daremo degli algoritmi per produrre schemi buoni. Anche se spesso accade che la progettazione logica da noi descritta produce schemi gia normalizzati. In ogni caso potremo usare queste tecniche per verificare le proprieta.

3 RIDONDANZE Il telefono e ripetuto per ogni esame (ridondanza) Matricola Nome Telefono Corso Voto IL Nome ed il Telefono sono funzione solo della Matricola e non dipendono dagli esami. Quindi non vanno associati ad ogni esame Viceversa gli esami hanno bisogno solo della matricola.

4 ANOMALIE Se il telefono dello studente cambia allora esso deve essere aggiornato in tutti i record dello studente (anomalia di aggiornamento) Se vengono annullati gli esami dati non rimane traccia dello studente (anomalia di cancellazione) Similmente se uno studente non ha ancora dato esami non puo essere inserito (anomalia di inserimento) Soluzione:decomporre in due relazioni!!

5 DIPENDENZE FUNZIONALI Dipendenza Funzionale e un particolare vincolo di integrita che esprime legami funzionali tra gli attributi di una relazione. Cosi ad esempio il valore di Matricola implica quelli di Nome e Telefono. Inoltre Matricola e Corso implicano il Voto. Matricola -----> Nome Telefono Matricola Corso ----> Voto

6 Definizione di Dipendenza Funzionale Sia R(A1,A2,,An) uno schema relazionale, X ed Y sottoinsiemi di {A1,A2,,An}. Diciamo che X implica funzionalmente Y, in simboli X--->Y se, per ogni relazione r dello schema R, se due tuple t1 e t2 di r coincidono su tutti gli attributi di X allora devono anche coincidere su tutti gli attributi di Y. Esempio : Matricola, Corso ---> Voto

7 NOTAZIONI A,B, attributi U,V,W,X,Y,Z insiemi di attributi R schema relazionale, r relazione. ABC sta per {A,B,C}, XY sta per X Y, XA e AX stanno per X {A}

8 Soddisfazione di Dipendenze Funzionali Diciamo che una relazione r soddisfa la dipendenza funzionale X---> Y se per ogni coppia di tuple t1 e t2 in r t1[x] = t2[x] implica t1[y] = t2[y].

9 Una Logica delle Dipendenze Funzionali : SEMANTICA Sia F un insieme di dipendenze funzionali per uno schema relazionale R e sia X--->Y una dipendenza funzionale. Diciamo che F logicamente implica X--->Y, e si scrive F == X--->Y, se per ogni relazione r di R che soddisfa tutte le dipendenze di F, r soddisfa anche X--->Y. Esempio: {A--->B,B--->C} == A--->C.

10 Chiusura di un insieme di dipendenze funzionali Dato un insieme F di dipendenze funzionali la sua chiusura F + e l insieme delle dipendenze funzionali che sono implicate logicamente da F, in simboli F + = {X--->Y F == X--->Y}.

11 Chiavi per uno schema con insieme di dipendenze funzionali Sia R(A1,A2,,An) uno schema, F un insieme di dipendenze funzionali su R ed X un sottoinsieme di {A1,A2,,An}. Si dice che X e una chiave di (R,F) se: X---> A1A2 An e in F +. Per ogni sottoinsieme proprio Y di X la dipendenza Y---> A1A2 An non e in F +.

12 Necessita di un Calcolo Logico Quindi il problema e quello di calcolare la chiusura di un insieme F di dipendenze funzionali. Per far cio definiamo un calcolo logico tale che F == X--->Y se e soltanto se X--->Y si puo sintatticamente dedurre da F nel calcolo logico. I punti di partenza e le regole del calcolo sono i seguenti:

13 Assiomi di Armstrong U={A1,A2,,An} Riflessivita Se Y X U allora F --- X--->Y Aumento Se F --- X--->Y allora F --- XZ--->YZ Transitivita Se F --- X--->Y e F --- Y--->Z allora F --- X--->Z Notazione X--->Y si deduce da F applicando gli assiomi di Armstrong F --- X--->Y

14 Deducibilita di dipendenze funzionali Diciamo che F --- X--->Y se X--->Y si puo dedurre da F applicando un numero finito di volte gli assiomi di Armstrong. Cioe esiste una catena D1,D2,,Dk= X--- >Y tale che Di e in F oppure si ottiene da precedenti mediante gli assiomi di Armstrong. Esempio {A--->B, B--->C, C--->D} - A--- >D (applicando 2 volte la transitivita )

15 Correttezza e Completezza Correttezza: Se F --- X---> Y allora F == X---> Y Completezza: Se F == X---> Y allora F --- X---> Y

16 Dimostrazione della Correttezza Basta dimostrare che gli assiomi di Armstrong sono corretti Riflessivita Se Y X U allora F == X--->Y Dimostrazione: se t1(x)=t2(x) allora ovviamente anche t1(y)=t2(y) perché ogni attributo di Y sta anche in X.

17 Correttezza dell Aumento Aumento Se F == X--->Y allora F == XZ--->YZ Dimostrazione: Supponiamo che r ==F allora, per ipotesi, r == X--->Y. Supponiamo che t1(xz)=t2(xz) allora t1(x)=t2(x) da cui segue, per ipotesi, t1(y)=t2(y) e quindi t1(yz)=t2(yz).

18 Transitivita Correttezza della TRANSITIVITA Se F == X--->Y e F == Y--->Z allora F == X--->Z Dimostrazione: Supponiamo che r ==F allora, per ipotesi, r == X--->Y e r == Y--->Z. Supponiamo che t1(x)=t2(x) allora per la prima t1(y)=t2(y) da cui per la seconda t1(z)=t2(z).

19 Correttezza Supponiamo che F --- X--->Y e sia D1,D2,,Dn= X--->Y la relativa catena. Procedendo per induzione, se Di e in F allora ovviamente F = Di. Se Di si ottiene da precedenti Dj mediante gli assiomi di Armstrong allora per l ipotesi induttiva F = Dj e per la correttezza dei singoli assiomi si ha F = Di. Segue F = Dn cioe F = X--->Y.

20 Prima di verificare la completezza degli assiomi di amstrong introduciamo altre regole per derivare dipendenze funzionali

21 Primo lemma preliminare: La regola di Decomposizione Se F --- X--->Y e Z Y allora F --- X--->Z Dimostrazione: Se F ---X--->Y e Z Y allora per riflessivita F --- Y--->Z da cui per transitivita si ottiene F --- X--->Z.

22 Secondo lemma preliminare: La Regola dell Unione Se F --- X--->Y e F --- X--->Z allora F --- X--->YZ Dimostrazione: Se F ---X--->Y e F --- X--->Z aumentando la prima di X e la seconda di Y si ha F --- X--->XY e F --- XY--->YZ che per transitivita implicano F --- X--->YZ.

23 Terzo lemma preliminare: La Regola di pseudotransitivita Se F --- X--->Y e F --- WY--->Z allora F --- WX--->Z Dimostrazione: Se F ---X--->Y e F --- WY--->Z aumentando la prima di W e si ha F --- WX--->WY e F --- WY--->Z che per transitivita implicano F --- WX--->Z.

24 Chiusura di un insieme funzionale La chiusura di un insieme funzionale F + e un lavoro che consuma molto tempo perche F + puo essere molto grande anche se F e piccolo.

25 Lemma Fondamentale Definiamo X F + = {A F --- X--->A}. Ometteremo l indice F quando non c e ambiguita e scriveremo semplicemente X +. LEMMA. F --- X--->Y se e solo se Y X +. Dimostrazione: Sia Y=A1A2 An e supponiamo che Y X +. Allora per definizione F --- X--->Ai per ogni i = 1,2,,n. Da questa per la regola dell unione si ha F --- X--->Y. Viceversa se F --- X--->Y allora per la regola di decomposizione si ha F --- X--->Ai per ogni i = 1,2,,n, e quindi Y X +.

26 Dimostrazione di Completezza degli Assiomi di Armstrong Dobbiamo dimostrare che se F ==X--->Y allora F --- X---> Y. Basta far vedere che se non F --- X---> Y allora non F == X---> Y. Infatti supponiamo che non F --- X---> Y allora per il lemma Y X + e Y X +. Allora e possibile considerare la relazione r dello stesso schema fatta dalle due tuple t1 e t2 t1= , t2= X + not X + X + not X +

27 Facciamo vedere che r soddisfa tutte le dipendenze di F. Infatti, supponiamo che ci sia una V--->W in F tale che r non la soddisfa. Questo vuol dire che t1 e t2 coincidono su V ma non su W. Questo vuol dire che V X + e W X +. Per il lemma segue che F ---X--- >V che assieme a F --- V--->W per transitivita da F ---X---> W che contraddice W X +. Quindi r soddisfa tutte le dipendenze di F. Tuttavia r non soddisfa X--->Y. Infatti t1(x)=t2(x) ma t1(y) t2(y) poiche Y X + in quanto, per ipotesi, non F --- X--->Y. Quindi non F == X--->Y, che conclude la dimostrazione di completezza.

28 Chiusure,Equivalenze e Ricoprimenti Minimi Prof.ssa Rosalba Giugno

29 Calcolo delle Chiusure Ricordiamo che F + = {X--->Y F == X--->Y}. Il calcolo puo essere molto costoso in quanto ad esempio se F= {A--->B1,A--->B2,,A--->Bn} allora F + include A--->Y per ogni Y sottoinsieme di {B1,B2,,Bn}. Quindi ha cardinalita almeno 2 n.

30 Chiusura di un insieme di Facciamo vedere invece come e possibile un calcolo efficace di X + = {A F == X--->A}. attributi Il calcolo avviene attraverso il seguente Algoritmo

31 Algoritmo per X + X (0) <--- X (inizializzazione) X (j+1) <--- X (j) {A esiste Y--->Z in F A in Z e Y X (j) } Sia i il minimo indice tale che X (i) = X (i+1) = X (i+2) =.. Allora X + = X (i).

32 Correttezza dell algoritmo Dimostriamo per induzione su j che X (j) X + per ogni j. Infatti X (0) = X X +. Inoltre supponiamo che X (j) X +, allora X (j+1) <--- X (j) {A esiste Y--->Z in F A in Z e Y X (j) } Consideriamo Y X (j) X + con Y--->Z in F e A in Z. Allora F == X--->Y e F == Y--->Z da cui per transitivita F == X- -->Z, per la riflessivita Z- A, per transitivita X A, per cui A e in X + che implica X (j+1) X +.

33 Viceversa Viceversa supponiamo che A e in X + e facciamo vedere che A e in X (i) dove i e il minimo indice tale che X (i) = X (i+1). Infatti supponiamo per assurdo che A non appartenga a X (i) e consideriamo la relazione r fatta dalle due tuple t1= , t2= X (i) not X (i) X (i) not X (i)

34 Dimostriamo che r soddisfa F. Infatti supponiamo che esista una V--->W in F tale che r non la soddisfa. Questo vuol dire che t1 e t2 coincidono su V ma non su W. Questo vuol dire che V X (i) e W X (i). D altra parte W X (i+1) in quanto essendo V in X (i) applicando la dipendenza funzionale V--->W potremmo aggiungere W in X (i+1). Quindi X (i) e diverso da X (i+1) che contraddice X (i) = X (i+1). Quindi r soddisfa tutte le dipendenze di F. Poiche A e in X + allora F ==X--->A. Quindi r deve soddisfare X--->A. Ma cio e assurdo poiche t1(x)=t2(x) in quanto X (0) X (i),ma t1(a) t2(a) poiche A non e in X (i). Quindi X (i) = X +. Questo conclude la dimostrazione di correttezza.

35 Equivalenze di dipendenze funzionali Siano F,G insiemi di dipendenze funzionali allora diciamo che sono equivalenti se F + = G +. La relazione di equivalenza tra insiemi di dipendenza ci permette di capire quando due schemi di relazione rappresentano gli stessi fatti: basta controllare che gli attributi sono uguali e hanno le stesse dipendenze. L algoritmo e il seguente:

36 Algoritmo di equivalenza Per ogni Y--->Z in F controlliamo se essa e in G + calcolando Y G + e controllando se Z Y G +.Questo implica F + G +. Viceversa in maniera analoga si puo controllare se G + F +.

37 Insiemi di Dipendenze Minimali Un insieme di dipendenze funzionali F e minimale se: 1. Ogni lato destro di una dipendenza e un singolo attributo. 2. Per ogni dipendenza X--->A in F, F - {X--->A} non e equivalente a F 3. Per ogni X--->A in F e Z e un sottoinsieme proprio di X, F - {X--->A} {Z--->A} non e equivalente a F La regola 2 garantisce che nessuna dipendenza in F e ridondante. La regola 3 garantisce che nessun attributo in qualunque primo membro sia ridondante.

38 Ricoprimenti Minimali Dato F si dice che G e un suo ricoprimento minimale se G e minimale ed e equivalente a F. TEOREMA: Ogni insieme di dipendenze funzionali ha un ricoprimento minimale

39 Dimostrazione del teorema del ricoprimento minimale Dato l insieme F costruiamo un insieme F ad esso equivalente con la proprieta 1 (Ogni lato destro di una dipendenza e un singolo attributo). Per garantire la proprieta 2 (Per ogni dipendenza X--->A in F, F - {X--->A} non e equivalente a F). Basta cancellare ogni dipendenza X--->A che non soddisfa 2. Analogamente se esiste una regola che non soddisfa la 3 (Per ogni X--->A in F e Z e un sottoinsieme proprio di X, F - {X--->A} {Z--->A} non e equivalente a F ), si accorcia e si continua il processo che avra termine ottenendo il ricoprimento minimale. Si puo dimostrare che basta applicare la regola 3. E solo alla fine la 2. Ma non viceversa!!

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno

Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizioni di uno schema, Decomposizioni che preservano i dati (loss-less joins) Prof.ssa Rosalba Giugno Decomposizione di uno schema Dato uno schema relazionale R={A1,A2, An} una sua decomposizione

Dettagli

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie

b) Costruire direttamente le relazioni e poi correggere quelle che presentano anomalie TEORIA RELAZIONALE: INTRODUZIONE 1 Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma

Raffinamento dello schema e forme normali. T. Catarci, M. Scannapieco, Corso di Basi di Dati, A.A. 2008/2009, Sapienza Università di Roma Raffinamento dello schema e forme normali 1 Forme Normali Le forme normali consentono di valutare la qualità delle relazione Sono state proposte diverse forme normali che includono, in ordine di generalità:

Dettagli

DOMINI A FATTORIZZAZIONE UNICA

DOMINI A FATTORIZZAZIONE UNICA DOMINI A FATTORIZZAZIONE UNICA CORSO DI ALGEBRA, A.A. 2012-2013 Nel seguito D indicherà sempre un dominio d integrità cioè un anello commutativo con unità privo di divisori dello zero. Indicheremo con

Dettagli

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI

BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI BASI DI DATI DIPENDENZE FUNZIONALI E FORME NORMALI Prof. Fabio A. Schreiber Dipartimento di Elettronica e Informazione Politecnico di Milano ERRORI DI PROGETTAZIONE INSERIMENTO DI ELEMENTI RIDONDANTI SPRECO

Dettagli

Normalizzazione. Normalizzazione. Normalizzazione e modello ER. Esempio. Normalizzazione

Normalizzazione. Normalizzazione. Normalizzazione e modello ER. Esempio. Normalizzazione Normalizzazione Normalizzazione Introduzione Forma normale di Boyce Codd Decomposizione in forma normale Normalizzazione Introduzione La normalizzazione è un procedimento che, a partire da uno schema relazionale

Dettagli

È fatta male? Perché? Come si può correggere?

È fatta male? Perché? Come si può correggere? UNA TABELLA N Inv Stanza Resp Oggetto Produttore Descrizione 1012 256 Ghelli Mac Mini Apple Personal Comp 1015 312 Albano Dell XPS M1330 Dell Notebook 2 GHZ 1034 256 Ghelli Dell XPS M1330 Dell Notebook

Dettagli

5. La teoria astratta della misura.

5. La teoria astratta della misura. 5. La teoria astratta della misura. 5.1. σ-algebre. 5.1.1. σ-algebre e loro proprietà. Sia Ω un insieme non vuoto. Indichiamo con P(Ω la famiglia di tutti i sottoinsiemi di Ω. Inoltre, per ogni insieme

Dettagli

DIP. FUNZIONALI E FORME NORMALI esempi cfr. Albano Ghelli Orsini Basi di dati relazionali e a oggetti Zanichelli, 1997, cap.6 RIDONDANZE E ANOMALIE

DIP. FUNZIONALI E FORME NORMALI esempi cfr. Albano Ghelli Orsini Basi di dati relazionali e a oggetti Zanichelli, 1997, cap.6 RIDONDANZE E ANOMALIE DIP. FUNZIONALI E FORME NORMALI esempi cfr. Albano Ghelli Orsini Basi di dati relazionali e a oggetti Zanichelli, 1997, cap.6 Ridondanze e anomalie Dipendenze funzionali e implicazione logica Regole di

Dettagli

Il Modello Relazionale

Il Modello Relazionale Il Modello Relazionale Il modello relazionale 1 Il modello relazionale Proposto da E. F. Codd nel 1970 per favorire l indipendenza dei dati e reso disponibile come modello logico in DBMS reali nel 1981

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Normalizzazione. Relazionali

Normalizzazione. Relazionali Normalizzazione di Schemi Relazionali Normalizzazione Forme Normali Una forma normale è una proprietà di uno schema relazionale che ne garantisce la qualità, cioè l assenza di determinati difetti Una relazione

Dettagli

Organizzazione degli archivi

Organizzazione degli archivi COSA E UN DATA-BASE (DB)? è l insieme di dati relativo ad un sistema informativo COSA CARATTERIZZA UN DB? la struttura dei dati le relazioni fra i dati I REQUISITI DI UN DB SONO: la ridondanza minima i

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

Decomposizione senza perdita. Decomposizione senza perdita. Conservazione delle dipendenze. Conservazione delle dipendenze

Decomposizione senza perdita. Decomposizione senza perdita. Conservazione delle dipendenze. Conservazione delle dipendenze Decomposizione senza perdita Data una relazione r su X, se X 1 e X 2 sono due sottoinsiemi di X la cui unione è X stesso, allora il join delle due relazioni ottenute per proiezione di r su X 1 e X 2 è

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

Basi di dati. Le funzionalità del sistema non vanno però ignorate

Basi di dati. Le funzionalità del sistema non vanno però ignorate Basi di dati La progettazione di una base di dati richiede di focalizzare lo sforzo su analisi, progettazione e implementazione della struttura con cui sono organizzati i dati (modelli di dati) Le funzionalità

Dettagli

MODELLO RELAZIONALE. Introduzione

MODELLO RELAZIONALE. Introduzione MODELLO RELAZIONALE Introduzione E' stato proposto agli inizi degli anni 70 da Codd finalizzato alla realizzazione dell indipendenza dei dati, unisce concetti derivati dalla teoria degli insiemi (relazioni)

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Il modello relazionale

Il modello relazionale Il modello relazionale Il modello relazionale è stato introdotto nel 1970 da E.F. Codd. Soltanto a metà degli anni ottanta ha trovato una buona diffusione sul mercato, in quanto all epoca della sua introduzione

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

LA NORMALIZZAZIONE. Introduzione

LA NORMALIZZAZIONE. Introduzione LA NORMALIZZAZIONE Introduzione La normalizzazione e' una tecnica di progettazione dei database, mediante la quale si elimina la rindondanza dei dati al fine di evitare anomalie nella loro consistenza

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Il modello Entity-Relationship: elementi di base

Il modello Entity-Relationship: elementi di base Il modello Entity-Relationship: elementi di base Sistemi Informativi T Versione elettronica: 06.1.ER.base.pdf I modelli concettuali dei dati Vogliamo pervenire a uno schema che rappresenti la realtà di

Dettagli

Soluzione proposta dal Prof. Rio Chierego dell ISIS Guido Tassinari di Pozzuoli

Soluzione proposta dal Prof. Rio Chierego dell ISIS Guido Tassinari di Pozzuoli PARTE SECONDA: III quesito COME DA APPUNTI ILLUSTRATI A LEZIONE DEF: Una forma normale è una proprietà di uno schema relazionale che ne garantisce la qualità misurata in assenza di determinati difetti.

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

Secondo Compitino di Basi di Dati

Secondo Compitino di Basi di Dati Secondo Compitino di Basi di Dati 10 Giugno 2004 NOME: COGNOME: MATRICOLA: Esercizio Punti previsti 1 18 2 12 3 3 Totale 33 Punti assegnati Esercizio 1 (Punti 18) Si vuole realizzare un applicazione per

Dettagli

PROGETTAZIONE CONCETTUALE

PROGETTAZIONE CONCETTUALE Fasi della progettazione di basi di dati PROGETTAZIONE CONCETTUALE Parte V Progettazione concettuale Input: specifiche utente Output: schema concettuale (astrazione della realtà) PROGETTAZIONE LOGICA Input:

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Modello relazionale. ing. Alfredo Cozzi 1

Modello relazionale. ing. Alfredo Cozzi 1 Modello relazionale E fondato sul concetto matematico di relazione tra insiemi di oggetti Una relazione su n insiemi A1, A2,..,An è un sottoinsieme di tutte le n-uple a1,a2,,an che si possono costruire

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

Algoritmi di progettazione di basi di dati relazionali e altre dipendenze

Algoritmi di progettazione di basi di dati relazionali e altre dipendenze Algoritmi di progettazione di basi di dati relazionali e altre dipendenze Nel Capitolo 11 è stata illustrata la tecnica di progettazione relazionale top-down e i relativi concetti che risultano ampiamente

Dettagli

Attributi e domini. A per {A}; XY per X Y (pertanto A 1 A 2 A 3 denota

Attributi e domini. A per {A}; XY per X Y (pertanto A 1 A 2 A 3 denota Attributi e domini Assumiamo un universo infinito numerabile U = {A 0, A 1, A 2...} di attributi. Denotiamo gli attributi con A, B, C, B 1, C 1... e gli insiemi di attributi con X, Y, Z, X 1,... per brevità

Dettagli

Data Base Relazionali

Data Base Relazionali Data Base Relazionali Modello Relazionale dei dati Basi di Dati Relazionali 1 Progettazione di DB METODOLOGIA DI PROGETTO IN TRE FASI Descrizione formalizzata e completa della realtà di interesse REALTA'

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

L Ultimo Teorema di Fermat per n = 3 e n = 4

L Ultimo Teorema di Fermat per n = 3 e n = 4 Università degli Studi di Cagliari Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica L Ultimo Teorema di Fermat per n = 3 e n = 4 Relatore Prof. Andrea Loi Tesi di Laurea

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

TEORIA sulle BASI DI DATI

TEORIA sulle BASI DI DATI TEORIA sulle BASI DI DATI A cura del Prof. Enea Ferri Cos è un DATA BASE E un insieme di archivi legati tra loro da relazioni. Vengono memorizzati su memorie di massa come un unico insieme, e possono essere

Dettagli

Insiemi con un operazione

Insiemi con un operazione Capitolo 3 Insiemi con un operazione 3.1 Gruppoidi, semigruppi, monoidi Definizione 309 Un operazione binaria su un insieme G è una funzione: f : G G G Quindi, un operazione binaria f su un insieme G è

Dettagli

Modulo 2 Data Base 2

Modulo 2 Data Base 2 Modulo 2 Data Base 2 Università degli Studi di Salerno Corso di Laurea in Scienze della comunicazione Informatica generale Docente: Angela Peduto A.A. 2004/2005 Relazioni: riepilogo Relazione : concetto

Dettagli

Basi di dati. Il Modello Relazionale dei Dati. K. Donno - Il Modello Relazionale dei Dati

Basi di dati. Il Modello Relazionale dei Dati. K. Donno - Il Modello Relazionale dei Dati Basi di dati Il Modello Relazionale dei Dati Proposto da E. Codd nel 1970 per favorire l indipendenza dei dati Disponibile come modello logico in DBMS reali nel 1981 (non è facile realizzare l indipendenza

Dettagli

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari

Calcolo Relazionale Basi di dati e sistemi informativi 1. Calcolo Relazionale. Angelo Montanari Calcolo Relazionale Basi di dati e sistemi informativi 1 Calcolo Relazionale Angelo Montanari Dipartimento di Matematica e Informatica Università di Udine Calcolo Relazionale Basi di dati e sistemi informativi

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica

Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Liceo Scientifico Statale P. Paleocapa, Rovigo XX Settimana della Cultura Scientifica e Tecnologica 19 marzo 2010 Sui concetti di definizione, teorema e dimostrazione in didattica della matematica Prof.

Dettagli

APPENDICE NOZIONI BASE E VARIE

APPENDICE NOZIONI BASE E VARIE pag. 131 Appendice: Nozioni base e varie G. Gerla APPENDICE NOZIONI BASE E VARIE 1. Funzioni e relazioni di equivalenza Questi appunti sono rivolti a persone che abbiano già una conoscenza elementare della

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

L anello dei polinomi

L anello dei polinomi L anello dei polinomi Sia R un anello commutativo con identità. È possibile costruire un anello commutativo unitario, che si denota con R[x], che contiene R (come sottoanello) e un elemento x non appartenente

Dettagli

Modello Relazionale. Modello Relazionale. Relazioni - Prodotto Cartesiano. Relazione: tre accezioni. Es. Dati gli insiemi

Modello Relazionale. Modello Relazionale. Relazioni - Prodotto Cartesiano. Relazione: tre accezioni. Es. Dati gli insiemi Modello Relazionale Modello Relazionale Proposto agli inizi degli anni 70 da Codd Finalizzato alla realizzazione dell indipendenza dei dati Unisce concetti derivati dalla teoria degli insiemi (relazioni)

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

Esercitazioni (a cura di R. Basili)

Esercitazioni (a cura di R. Basili) Esercitazioni (a cura di R. Basili) E1. Elementi di Algebra Insiemi Nozione intuitiva di insieme L'insieme vuoto Operazioni tra insiemi Domini Prodotto Cartesiano Proprieta' delle operazioni tra insiemi

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

TEORIA RELAZIONALE: INTRODUZIONE

TEORIA RELAZIONALE: INTRODUZIONE TEORIA RELAZIONALE: INTRODUZIONE Tre metodi per produrre uno schema relazionale: a) Partire da un buon schema a oggetti e tradurlo b) Costruire direttamente le relazioni e poi correggere quelle che presentano

Dettagli

Basi di Dati e Sistemi Informativi. Progettazione logica: Il modello relazionale

Basi di Dati e Sistemi Informativi. Progettazione logica: Il modello relazionale Basi di Dati e Sistemi Informativi Progettazione logica: Il modello relazionale Corso di Laurea in Ing. Informatica Ing. Gestionale Magistrale Introduzione Basato sul lavoro di Codd (~1970) E attualmente

Dettagli

Informatica (Basi di Dati)

Informatica (Basi di Dati) Corso di Laurea in Biotecnologie Informatica (Basi di Dati) Modello Entità-Relazione Anno Accademico 2009/2010 Da: Atzeni, Ceri, Paraboschi, Torlone - Basi di Dati Lucidi del Corso di Basi di Dati 1, Prof.

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Basi di Dati II. Qualità di schemi relazionali (2) Qualità di schemi relazionali. 1) Semantica degli attributi di una relazione

Basi di Dati II. Qualità di schemi relazionali (2) Qualità di schemi relazionali. 1) Semantica degli attributi di una relazione Basi di Dati II LE FASI DI PROGETTAZIONE DI UN DATABASE Indipendente dal DBMS Miniworld RACCOLTA ED ANALISI DEI REQUISITI 1 Lezione 1. Dipendenze funzionali e Normalizzazione di DB Relazionali Prof.ssa

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( )

Algebra di Boole. Le operazioni base sono AND ( ), OR ( + ), NOT ( ) Algebra di Boole Circuiti logici: componenti hardware preposti all'elaborazione delle informazioni binarie. PORTE LOGICHE (logical gate): circuiti di base. Allo scopo di descrivere i comportamenti dei

Dettagli

Vincoli di integrità

Vincoli di integrità Vincoli di integrità Non tutte le istanze di basi di dati sintatticamente corrette rappresentano informazioni plausibili per l applicazione di interesse Studenti Matricola Nome Nascita 276545 Rossi 23-04-72?

Dettagli

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4 RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora

Dettagli

Modello concettuale dei dati e Disegno Logico di un Database. L.Vigliano

Modello concettuale dei dati e Disegno Logico di un Database. L.Vigliano Modello concettuale dei dati e Disegno Logico di un Database Modello concettuale dei dati Progettare una base di dati significa definirne struttura, caratteristiche e contenuto. Uso di opportune metodologie.

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Corso di Sistemi di Elaborazione delle Informazioni I Anno 2005/2006. Esercizi entità relazione risolti. a cura di Angela Campagnaro 802749

Corso di Sistemi di Elaborazione delle Informazioni I Anno 2005/2006. Esercizi entità relazione risolti. a cura di Angela Campagnaro 802749 Corso di Sistemi di Elaborazione delle Informazioni I Anno 2005/2006 Esercizi entità relazione risolti a cura di Angela Campagnaro 802749 Indice: Esercizio 1: Un insieme di officine 1.1 Testo esercizio.3

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione

SISTEMI INFORMATIVI AVANZATI -2010/2011 1. Introduzione SISTEMI INFORMATIVI AVANZATI -2010/2011 1 Introduzione In queste dispense, dopo aver riportato una sintesi del concetto di Dipendenza Funzionale e di Normalizzazione estratti dal libro Progetto di Basi

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme

ESERCIZI SVOLTI. 1) Dimostrare che l insieme. non è ricorsivo. Soluzione: Definiamo l insieme ESERCIZI SVOLTI 1) Dimostrare che l insieme Allora notiamo che π non è vuoto perché la funzione ovunque divergente appartiene all insieme avendo per dominio l insieme. Inoltre π non coincide con l insieme

Dettagli

16. Vari modi di convergenza delle successioni di funzioni reali misurabili.

16. Vari modi di convergenza delle successioni di funzioni reali misurabili. 16. Vari modi di convergenza delle successioni di funzioni reali misurabili. L argomento centrale di questa ultima parte del corso è lo studio in generale della convergenza delle successioni negli spazi

Dettagli

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 2 Algebra Booleana e Porte Logiche. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 2 Algebra Booleana e Porte Logiche Zeynep KIZILTAN zkiziltan@deis.unibo.it Argomenti Algebra booleana Funzioni booleane e loro semplificazioni Forme canoniche Porte

Dettagli

2.2b: RELAZIONI E BASI DI DATI. Atzeni, cap. 2.1.4

2.2b: RELAZIONI E BASI DI DATI. Atzeni, cap. 2.1.4 2.2b: RELAZIONI E BASI DI DATI Atzeni, cap. 2.1.4 Il modello è basato su valori Una Base di Dati è generalmente costituita da più di una Tabella Le corrispondenze fra dati presenti in tabelle diverse sono

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

Progettazione di Database. Un Esempio

Progettazione di Database. Un Esempio Progettazione di Database Un Esempio Data Base Management System Applicazione 1 Applicazione 2 Applicazione 3 DBMS A B C D E Il Modello Relazionale Una relazione è costituita su un insieme di domini, non

Dettagli

Le derivate versione 4

Le derivate versione 4 Le derivate versione 4 Roberto Boggiani 2 luglio 2003 Riciami di geometria analitica Dalla geometria analitica sulla retta sappiamo ce dati due punti del piano A(x, y ) e B(x 2, y 2 ) con x x 2 la retta

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Lo schema concettuale risultante dalla progettazione concettuale è l input alla fase di progettazione logica.

Lo schema concettuale risultante dalla progettazione concettuale è l input alla fase di progettazione logica. Progettazione logica Lo schema concettuale risultante dalla progettazione concettuale è l input alla fase di progettazione logica. La progettazione logica è basata su un particolare modello logico dei

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Gestione Voti Scolastici

Gestione Voti Scolastici Gestione Voti Scolastici Progettare un modello di dati per la gestione delle informazioni riguardanti le prove, nelle diverse materie, sostenute dagli studenti di una scuola media superiore. Il sistema

Dettagli

I costi. Costi economici vs. costi contabili

I costi. Costi economici vs. costi contabili I costi Costi economici vs. costi contabili I costi economici connessi alla produzione di una certa quantità di output Y includono tutte le spese per i fattori produttivi. In altre parole, i costi economici

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

Il modello relazionale dei dati

Il modello relazionale dei dati Il modello relazionale dei dati Master Alma Graduate School Sistemi Informativi Home Page del corso: http://www-db.deis.unibo.it/courses/alma_si1/ Versione elettronica: 04Relazionale.pdf Obiettivi della

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 17/2/215 NOME: COGNOME: MATRICOLA: Esercizio 1 Un sistema di

Dettagli

FORME NORMALI E DIPENDENZE

FORME NORMALI E DIPENDENZE Sistemi Informativi: Forme Normali e Dipendenze FORME NORMALI E DIPENDENZE La teoria della normalizzazione e delle dipendenze ha come scopo principale quello di fornire gli strumenti teorici e pratici

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Progettazione di Basi di Dati

Progettazione di Basi di Dati Progettazione di Basi di Dati Prof. Nicoletta D Alpaos & Prof. Andrea Borghesan Entità-Relazione Progettazione Logica 2 E il modo attraverso il quale i dati sono rappresentati : fa riferimento al modello

Dettagli

Capitolo II Le reti elettriche

Capitolo II Le reti elettriche Capitolo II Le reti elettriche Fino ad ora abbiamo immaginato di disporre di due soli bipoli da collegare attraverso i loro morsetti; supponiamo ora, invece, di disporre di l bipoli e di collegarli tra

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI

ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI ALGEBRA I: ARITMETICA MODULARE E QUOZIENTI DI ANELLI 1. CLASSI DI RESTO E DIVISIBILITÀ In questa parte sarò asciuttissimo, e scriverò solo le cose essenziali. I commenti avete potuto ascoltarli a lezione.

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli