FUNZIONI TRA INSIEMI. Indice

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FUNZIONI TRA INSIEMI. Indice"

Transcript

1 FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri esercizi 9. Definizioni e risultati.. Introduzione. Siano X e Y due insiemi, una funzione f : X Y è una legge che associa ad ogni elemento x X uno ed un solo elemento f(x) Y. L insieme X si chiama dominio della funzione, mentre Y si chiama codominio. Useremo la notazione f : X Y f(x) o talvolta semplicemente f(x) quando saranno chiari dal contesto il dominio ed il codominio. Sia A X un sottoinsieme non vuoto, chiamiamo immagine di A tramite f il sottoinsieme di Y formato da tutti i valori che sono assunti da f in corrispondenza degli elementi di A, ovvero f(a) = {y Y : x Y tale che y = f(x)}. Se A = X, chiameremo l insieme f(x) semplicemente immagine di f. Nel caso in cui A consista di un solo elemento, ovvero A = {x}, useremo la notazione f(x). Sia B Y un sottoinsieme non vuoto, chiamiamo immagine inversa (o controimmagine) di B tramite f il sottoinsieme di X formato da tutti gli elementi in corrispodenza dei quali i valori di f stanno in B, ovvero f (B) = {x X : f(x) B}.

2 LORENZO BRASCO Nel caso in cui B consista di un solo elemento, ovvero B = {y}, useremo la notazione f (y). Si ha quindi per definizione f (y) = {x X : f(x) = y}... Iniettività e suriettività. I due concetti sono di fondamentale importanza. Definizione.. Una funzione f : X Y si dice iniettiva se vale la proprietà seguente: y Y, l equazione y = f(x) ammette al più una soluzione x X Osservazione.. Un modo equivalente di descrivere l iniettività di f è di dire che elementi diversi hanno immagini diverse, ovvero che x x 0, f(x 0 ) f(x ). Definizione.3. Una funzione f : X Y si dice suriettiva se vale la proprietà seguente: y Y, l equazione y = f(x) ammette almeno una soluzione x X Osservazione.4. Si osservi che quando f : X Y non è suriettiva, sarà sufficiente rimpiazzare il codominio Y con l immagine f(x) per ottenere una funzione suriettiva. In altre parole, f : X f(x) è sempre suriettiva. Definizione.5. Una funzione f : X Y si dice biettiva se è allo stesso tempo iniettiva e suriettiva. In altre parole, f : X Y è biettiva se vale la proprietà seguente: y Y, l equazione y = f(x) ammette una ed una sola una soluzione x X Esempio.6. Siano X = Z e Y = {,,, }. Definiamo la funzione {, se x è pari, f(x) =, se x è dispari. Si vede facilmente che f non è iniettiva e nemmeno suriettiva. Infatti, si ha f(z) = {, } Y, quindi per esempio l elemento Y non è l immagine di un numero intero tramite f, dunque l equazione = f(x), non ha soluzioni x Z. Si vede anche che f() = f(4) =, quindi f non è iniettiva, perché in X ci sono due elementi con la stessa immagine. Esempio.7 (Elevamento al quadrato). Consideriamo la funzione f : R R x Di nuovo, questa funzione non è né iniettiva né suriettiva. Infatti f() = = f( ),

3 FUNZIONI TRA INSIEMI Figura. Il grafico della funzione f dell Esempio.7. Si osservi che ogni valore positivo è assunto da esattamente due numeri reali distinti (quindi f non iniettiva). Al contrario, i valori negativi non sono assunti (quindi f non suriettiva, se il codominio è R). quindi l equazione = x, avrebbe due soluzioni reali e quindi la funzione non può essere iniettiva. D altra parte, se y < 0 allora l equazione y = x, non può avere soluzioni x R, perché per definizione x 0. Quindi f non è nemmeno suriettiva. Esempio.8 (Elevamento al quadrato...reprise). Consideriamo adesso la funzione f : [0, ) [0, ) x Apparentemente niente è cambiato...ma non è vero! La funzione f adesso è diventata biettiva! Infatti, se prendiamo due numeri reali positivi x 0 x, allora f(x 0 ) = x 0 x = f(x ), quindi per ogni y l equazione y = x, può avere al più una soluzione x 0. Questo mostra l iniettività. D altra parte, ogni numero reale positivo y è il quadrato di un numero reale, ovvero per ogni y [0 ) La giustificazione rigorosa di questo fatto intuitivo verrà fatta più avanti.

4 4 LORENZO BRASCO Figura. Il grafico della funzione f dell Esempio.8. Si osservi che stavolta abbiamo una corrispondenza biunivoca tra i punti del semiasse x 0 e quelli del semiasse y 0. Riflettendo il grafico rispetto alla retta y = x, si ottiene il grafico della funzione inversa x. l equazione y = x, ammette soluzione. Quindi la funzione è anche suriettiva. Si osservi che essendo f biettiva, si ha y 0, l equazione y = x ammette una ed una solta soluzione x 0 Ha quindi perfettamente senso definire la funzione g : [0, ) [0, ) y l unica soluzione x 0 di y = x Tale funzione è detta radice quadrata, indicata col simbolo y y. Dalla sua costruzione, è facile verificare che f(g(y)) = y, per ogni y [0, ), e g(f(x)) = x, per ogni y [0, )..3. Composizione di funzioni. In certi casi, quando si hanno a disposizione più funzioni, possiamo comporle. Più precisamente: Definizione.9. Siano X, Y e W, Z quattro insiemi non vuoti tali che Y W. Siano f : X Y e g : Z W due funzioni. Si chiama composizione di f con g, la nuova

5 funzione g f : X W definita da FUNZIONI TRA INSIEMI 5 g f(x) = g(f(x)), x X. Si osservi che affinché l espressione g(f(x)) abbia senso, è necessario che f(x) appartenga che al dominio di g, ovvero che il codominio di f sia contenuto dentro il dominio di g. Questo spiega la richiesta Y W. Esempio.0. Si prendano le funzioni f : R R g : R [0, ] e x + + x In tal caso sono ben definite entrambe le composizioni g f : R [0, ] e f g : R R. Nel secondo caso, basta osservare che [0, ] R. Si ha allora e g f(x) = g(f(x)) = + f(x) = + ( + x), x R, f g(x) = f(g(x)) = g(x) + = +, x R. + x.4. Funzioni inverse. Enunciamo il seguente importante risultato. Esso generalizza una procedura che abbiamo usato nell Esercizio.8, per costruire un altra funzione a partire da una funzione biettiva. Tale funzione è l inversa. Teorema.. Siano X, Y due insiemi non vuoti. Se f : X Y è biettiva, allora esiste ed è unica la funzione inversa f : Y X. La funzione f è definita da () ed ha le proprietà f : Y X y l unica soluzione x X dell equazione f(x) = y f f(x) = x, x X, f f (y) = y, y Y. Osservazione.. Si osservi che f nel Teorema precedente è ben definita proprio grazie alla biettività. Ciò garantische che dato y Y, esiste un unico x X tale che f(x) = y... Esercizi svolti. Esercizio.. La funzione seguente è iniettiva? suriettiva?. Esercizi f : N N n n +,

6 6 LORENZO BRASCO Dimostrazione. La funzione è iniettiva, infatti se n m allora ovviamente f(n) = n + m + = f(m). Al contrario, la funzione non è suriettiva, perché non esiste nessun n N tale che 0 = f(n). Infatti, per definizione f(n) per ogni n N. Esercizio.. La funzione seguente è iniettiva? suriettiva? g : Z Z n n +, Dimostrazione. Come prima, la funzione è iniettiva, perché se n m allora g(n) = n+ m + = g(m). Questa volta, la funzione è anche suriettiva, perché per ogni n N l equazione n = g(m), ammette almeno una soluzione m Z (che sappiamo già dover essere l unica, visto che g è iniettiva). In effetti, dalla definizione di g abbiamo n = g(n ). La funzione g ammette quindi la funzione inversa, data da g : Z Z n n. Si noti che g (g(n)) = g (n + ) = n e g(g (n)) = g(n ) = n. Esercizio.3. La funzione seguente è iniettiva? suriettiva? h : R \ {} R x + x, Dimostrazione. Sia y R, cerchiamo tutte le soluzioni x R \ {} de l equazione x + = h(x) = y. x Si trova (si ricordi che x ) (x + ) = y (x ) (y ) x = + y. Osserviamo adesso che: se y =, l equazione precedente si riduce a 0 =, ovvero per y = non ci sono soluzioni;

7 FUNZIONI TRA INSIEMI 7 se invece y, allora dall equazione precedente otteniamo x = y + y, ovvero per y, l equazione precedente ammette sempre soluzione x R \ {} e tale soluzione è unica. La discussione precedente dimostra che y R, l equazione y = h(x) ammette al più una soluzione, e quindi h è iniettiva. Tuttavia, h non è suriettiva visto che per y = l equazione = h(x) non ammette soluzioni. Osservazione.4. Riprendendo la discussione precedente, si vede facilmente che la funzione (fate attenzione al codominio, che è cambiato) h : R \ {} R \ {} x+ x, è biettiva. Sapreste trovare l inversa di h? Esercizio.5. La funzione seguente è iniettiva? suriettiva? k : R R (x, x ) (x + x, x x ), Dimostrazione. Come sempre, prendiamo un elemento qualsiasi del codominio y = (y, y ) R e vediamo quante soluzioni (x, x ) R ha l equazione (y, y ) = k(x, x ). Ricordando la definizione di k, questa equazione è equivalente al seguente sistema lineare di equazioni in incognite { (E ) x + x = y (E ) x x = y. Con facili calcoli algebrici si vede che { (E ) x + x = y (E ) (E ) (E ) (E ) x x = y. Il sistema in questione ha quindi soluzione unica data da { (E ) x + x = y (E ) x = y y. x = y + y x = y y. Questo dimostra che k è biettiva. Esiste quindi la funzione inversa, che sarà definita da k : R ( R y + y (y, y ), y y ).

8 8 LORENZO BRASCO,5 0,5,5 - -,5 - -0,5 0 0,5,5, -0,5 - -,5 Figura 3. Tutti i punti (x, x ) appartenenti al cerchio di raggio sono tali che l(x, x ) =. Questo conclude l esercizio. Esercizio.6. La funzione seguente è iniettiva? suriettiva? l : R [0, + ) (x, x ) x + x Dimostrazione. Osserviamo innanzitutto che da un punto di vista geometrico, la quantità l(x, x ), rappresenta la distanza dall origine del punto (x, x ). Questo già ci dice che la funzione l non sarà iniettiva: in effetti, per ogni y > 0 tutti i punti che appartengono al cerchio di centro (0, 0) e raggio y hanno come immagine tramite l esattamente y. La funzione l è suriettiva? Si vede facilmente che la risposta è sì, infatti per ogni y 0 l equazione y = l(x, x ) = x + x, ammette almeno una soluzione, per esempio ( y, 0) è una di queste (in realtà sono infinite, come osservato sopra).

9 FUNZIONI TRA INSIEMI 9.. Altri esercizi. Esercizio.7. Dire se le seguenti funzioni sono iniettive e/o suriettive. Nei casi opportuni, dare l espressione della funzione inversa. Funzione Iniettiva? Suriettiva? Funzione inversa f : Z (Z \ {0}) Q (z, z ) z z g : [0, + ) (0, 7] 7 + x h : R \ {} R \ {0} x k : R R x 3 4 x 3 x Esercizio.8. Dire se le seguenti funzioni sono iniettive e/o suriettive. Nei casi opportuni, dare l espressione della funzione inversa.

10 0 LORENZO BRASCO Application Iniettiva? Suriettiva? Funzione inversa f : N (Z \ {0}) R (z, z ) z z g : [0, + ) \ {} R \ [0, 7) 7 x h : R \ {} R \ {0} x 3 k : R R (x, x ) x + x Esercizio.9. Dire se le seguenti funzioni sono iniettive e/o suriettive. Nei casi opportuni, dare l espressione della funzione inversa. Application Iniettiva? Suriettiva? Funzione inversa f : Z Z Z Z (z, z ) (z, z ) g : [0, + ) [0, + ) 7 x h : Q \ {} R \ { } x k : R R x 3 + x

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Lezione 16: La funzione modulo. La composizione

Lezione 16: La funzione modulo. La composizione Lezione 16: La funzione modulo. La composizione Nelle prossime lezioni richiameremo un po di funzioni elementari insieme ad alcune proprietà generali delle funzioni. Prima di cominciare introduciamo una

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Soluzione del compito di Matematica Discreta 1 del 25 luglio 200 1. Qual è il numero di applicazioni f : A = {1,..., 5} B

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

FUNZIONI CONTINUE - ESERCIZI SVOLTI

FUNZIONI CONTINUE - ESERCIZI SVOLTI FUNZIONI CONTINUE - ESERCIZI SVOLTI 1) Verificare che x è continua in x 0 per ogni x 0 0 ) Verificare che 1 x 1 x 0 è continua in x 0 per ogni x 0 0 3) Disegnare il grafico e studiare i punti di discontinuità

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Soluzione dei sistemi lineari con metodo grafico classe 2H

Soluzione dei sistemi lineari con metodo grafico classe 2H Soluzione dei sistemi lineari con metodo grafico classe H (con esempi di utilizzo del software open source multipiattaforma Geogebra e calcolatrice grafica Texas Instruments TI-89) Metodo grafico Il metodo

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

Variabili aleatorie Parte I

Variabili aleatorie Parte I Variabili aleatorie Parte I Variabili aleatorie Scalari - Definizione Funzioni di distribuzione di una VA Funzioni densità di probabilità di una VA Indici di posizione di una distribuzione Indici di dispersione

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata rgomento bis utovalori e autovettori di una matrice quadrata Trasformazioni di R n Consideriamo una matrice quadrata di ordine n a coefficienti, ad esempio, in R. Essa rappresenta una trasformazione di

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Syllabus: argomenti di Matematica delle prove di valutazione

Syllabus: argomenti di Matematica delle prove di valutazione Syllabus: argomenti di Matematica delle prove di valutazione abcdef... ABC (senza calcolatrici, senza palmari, senza telefonini... ) Gli Argomenti A. Numeri frazioni e numeri decimali massimo comun divisore,

Dettagli

Equazione irrazionale

Equazione irrazionale Equazione irrazionale In matematica, un'equazione irrazionale in una incognita è un'equazione algebrica in cui l'incognita compare all'interno del radicando di uno o più radicali. Ad esempio: Non sono

Dettagli

Esercitazioni di statistica

Esercitazioni di statistica Esercitazioni di statistica Misure di associazione: Indipendenza assoluta e in media Stefania Spina Universitá di Napoli Federico II stefania.spina@unina.it 22 ottobre 2014 Stefania Spina Esercitazioni

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Normalizzazione. Definizione

Normalizzazione. Definizione Normalizzazione Definizione Le forme normali 2 Una forma normale è una proprietà di una base di dati relazionale che ne garantisce la qualità, cioè l'assenza di determinati difetti Quando una relazione

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

OFFERTA DI LAVORO. p * C = M + w * L

OFFERTA DI LAVORO. p * C = M + w * L 1 OFFERTA DI LAVORO Supponiamo che il consumatore abbia inizialmente un reddito monetario M, sia che lavori o no: potrebbe trattarsi di un reddito da investimenti, di donazioni familiari, o altro. Definiamo

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari I sistemi di equazioni si incontrano in natura in molti problemi di vita reale. Per esempio, prendiamo in considerazione una bevanda a base di uova, latte e succo d arancia.

Dettagli

Equazioni di I e II grado

Equazioni di I e II grado Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA Equazioni di I e II grado 1 Introduzione ai polinomi Un incognita è un simbolo letterale che sta a simboleggiare un valore

Dettagli

descrivere le caratteristiche della sfera utilizzare le formule inerenti. Introduzione

descrivere le caratteristiche della sfera utilizzare le formule inerenti. Introduzione Anno 4 Sfera 1 Introduzione In questa lezione parleremo di un importante solido di rotazione detto sfera. Ne daremo la definizione, ne studieremo le caratteristiche e le formule a essa inerenti. Al termine

Dettagli

Quali condizionisi si possono richiedere sulla funzione interpolante?

Quali condizionisi si possono richiedere sulla funzione interpolante? INTERPOLAZIONE Problema generale di INTERPOLAZIONE Dati n punti distinti ( i, i ) i=,..,n si vuole costruire una funzione f() tale che nei nodi ( i ) i=,..n soddisfi a certe condizioni, dette Condizioni

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che

Dettagli

Lezione 5: Dipendenza e indipendenza lineare

Lezione 5: Dipendenza e indipendenza lineare Lezione 5: Dipendenza e indipendenza lineare Abbiamo visto varie operazioni tra i vettori, in particolare abbiamo più volte determinato vettori ottenuti con operazioni del tipo: 3u v, u + v, u v,... Diamo

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due

Dettagli

ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI

ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI ESERCITZIONE MICROECONOMI (CORSO ) --009 ESEMPI DI ESERCIZI DI TEORI DEI GIOCHI Questo documento contiene alcuni esempi di esercizi di teoria dei giochi. Gli esercizi presentati non corrispondono esattamente

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

1. La funzione f(x) deve avere uno zero in corrispondenza di x=3

1. La funzione f(x) deve avere uno zero in corrispondenza di x=3 PROBLEMA 1: Il porta scarpe da viaggio Un artigiano vuole realizzare contenitori da viaggio per scarpe e ipotizza contenitori con una base piana e un'altezza variabile sagomata che si adatti alla forma

Dettagli

Introduzione alla programmazione lineare. Mauro Pagliacci

Introduzione alla programmazione lineare. Mauro Pagliacci Introduzione alla programmazione lineare Mauro Pagliacci c Draft date 25 maggio 2010 Premessa In questo fascicolo sono riportati gli appunti dalle lezioni del corso di Elaborazioni automatica dei dati

Dettagli

Le nozioni fondamentali della geometria

Le nozioni fondamentali della geometria Le nozioni fondamentali della geometria Insegnante: Meloni Marta Testi utilizzati: Matematica Oggi di Mario Mariscotti Sistema matematica di Anna Montemurro A.S. 2008/2008 Introduzione... La geometria

Dettagli

I SEGNALI SINUSOIDALI

I SEGNALI SINUSOIDALI I SEGNALI SINUSOIDALI I segnali sinusoidali sono i segnali più importanti nello studio dell elettronica e dell elettrotecnica. La forma d onda sinusoidale è una funzione matematica indispensabile per interpretare

Dettagli

Risoluzione di problemi ingegneristici con Excel

Risoluzione di problemi ingegneristici con Excel Risoluzione di problemi ingegneristici con Excel Problemi Ingegneristici Calcolare per via numerica le radici di un equazione Trovare l equazione che lega un set di dati ottenuti empiricamente (fitting

Dettagli

Parte 1. Sistemi lineari, algoritmo di Gauss, matrici

Parte 1. Sistemi lineari, algoritmo di Gauss, matrici Parte 1. Sistemi lineari, algoritmo di Gauss, matrici A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Brevi richiami sugli insiemi, 1 Insiemi numerici, 3 3 L insieme R n, 4 4 Equazioni

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE 1. Distribuzione congiunta Ci sono situazioni in cui un esperimento casuale non si può modellare con una sola variabile casuale,

Dettagli

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione:

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione: Esercizi Gli esercizi sulla legge di Lavoisier che seguono si risolvono ricordando che la massa iniziale, prima della reazione, deve equivalere a quella finale, dopo la reazione. L uguaglianza vale anche

Dettagli

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio.

La parallela tracciata dal punto medio di un lato di un triangolo a uno degli altri due lati incontra il terzo lato nel suo punto medio. TEOREMA DI TALETE Piccolo Teorema di Talete Dato un fascio di rette parallele tagliate da due trasversali, a segmenti congruenti su una trasversale corrispondono segmenti congruenti sull altra trasversale.

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Le Coordinate Astronomiche

Le Coordinate Astronomiche Le Stelle vanno a scuola Le Coordinate Astronomiche Valentina Alberti Novembre 2003 1 2 INDICE Indice 1 Coordinate astronomiche 3 1.1 Sistema dell orizzonte o sistema altazimutale.......... 3 1.2 Sistema

Dettagli

Equazioni parametriche di primo grado fratte - Esercizi svolti -

Equazioni parametriche di primo grado fratte - Esercizi svolti - Equazioni parametriche di primo grado fratte - Esercizi svolti - Carlo Alberini 15 novembre 2010 In queste poche pagine verranno risolti tre esercizi tratti dal libro di testo in adozione riguardanti alcune

Dettagli

SCOMPOSIZIONE IN FATTORI PRIMI:

SCOMPOSIZIONE IN FATTORI PRIMI: SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Dettagli

Dispense di Matematica Analisi Matematica. Riccarda Rossi

Dispense di Matematica Analisi Matematica. Riccarda Rossi Dispense di Matematica Analisi Matematica Riccarda Rossi Corso di Laurea in Disegno Industriale Università degli Studi di Brescia Anno Accademico 2009/2010 2 Capitolo 1 Nozioni preliminari 4 Riccarda Rossi

Dettagli

Psiche e complessità. 4. L approccio bottom-up ai problemi

Psiche e complessità. 4. L approccio bottom-up ai problemi Psiche e complessità 4. L approccio bottom-up ai problemi Complessità della mente FENOMENI LINEARI (LOGICA, RAZIONALITA, CONTENUTI ESPLICITI) FENOMENI NON LINEARI (ASSOCIAZIONI ANALOGICHE, CONTENUTI IMPLICITI)

Dettagli

Informatica Grafica. Un introduzione

Informatica Grafica. Un introduzione Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI

Dettagli

METODI DI CONVERSIONE FRA MISURE

METODI DI CONVERSIONE FRA MISURE METODI DI CONVERSIONE FRA MISURE Un problema molto frequente e delicato da risolvere è la conversione tra misure, già in parte introdotto a proposito delle conversioni tra multipli e sottomultipli delle

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

SISTEMI LINEARI ULTIMO AGGIORNAMENTO M.M. 25-1-2010

SISTEMI LINEARI ULTIMO AGGIORNAMENTO M.M. 25-1-2010 SISTEMI LINEARI ULTIMO AGGIORNAMENTO M.M. 25-1-2010 Introduzione 1. Sistemi lineari In un cortile ci sono conigli e polli tutti integri ed in ottima salute. Sapendo che ci sono 10 teste e 30 zampe dire

Dettagli

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3)

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) Consideriamo un agente che deve scegliere un paniere di consumo fra quelli economicamente ammissibili, posto che i beni di consumo disponibili sono solo

Dettagli

Derivate delle funzioni di una variabile. Il problema delle tangenti

Derivate delle funzioni di una variabile. Il problema delle tangenti Derivate delle funzioni di una variabile Il concetto di derivata di una funzione di una variabile è uno dei più importanti di tutta la matematica sia per le sue implicazioni di natura puramente teorica,

Dettagli

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f).

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f). Liceo Scientico Paritario Ven. A. Luzzago di Brescia. Classe 5A - Anno Scolastico 2014/2015 - Prof. Simone Alghisi 1 Le funzioni (1.1) Denizione Siano A e B due insiemi. Una funzione f : A B é una legge

Dettagli

8. Topologia degli spazi metrici, II

8. Topologia degli spazi metrici, II 8. Topologia degli spazi metrici, II Compattezza Cominciamo con un esempio Sia E un sottoinsieme di R 2. Esisterà in E un punto x 0 che abbia massima distanza dall origine? Ovviamente E dovrà essere limitato,

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 16 febbraio 2016 - Soluzioni compito 1 ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 6 febbraio 206 - Soluzioni compito E Calcolare, usando i metodi della variabile complessa, il seguente integrale

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

TRAGEDY OF COMMONS. p = x 1 + x 2 + + x n

TRAGEDY OF COMMONS. p = x 1 + x 2 + + x n TRAGEDY OF COMMONS Consideriamo un esempio che mette in evidenza come l altruismo ottiene più dell egoismo. Partiamo da un villaggio in cui abitano n allevatori; ogni estate gli allevatori portano le loro

Dettagli

LE LENTI GLI ELEMENTI CARATTERISTICI DI UNA LENTE

LE LENTI GLI ELEMENTI CARATTERISTICI DI UNA LENTE LE LENTI Le lenti sono corpi omogenei trasparenti costituiti da due superfici curve oppure una curva e una piana; di solito si utilizzano sistemi di lenti con superfici sferiche, attraverso cui la luce

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli