APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "APPROSSIMAZIONE NORMALE. 1. Si tirano 300 dadi non truccati. Sia X la somma dei punteggi. Calcolare approssimativamente le probabilità seguenti."

Transcript

1 AROSSIMAZIONE NORMALE 1. Si tirao 300 dadi o truccati. Sia X la somma dei puteggi. Calcolare approssimativamete le probabilità segueti. (a (X 1000; (b (1000 X La quatità di eve, che cade al gioro,i u certo periodo dell ao, su u tratto di autostrada, si può modellizzare come ua variabile aleatoria di media 1.5 pollici e deviazioe stadard 0.3 pollici. (a Qual è la probabilità (approssimata che i 50 giori cadao meo di 70 pollici di eve? (b Qual è la probabilità (approssimata che i 50 giori cadao tra i 70 e i 90 pollici di eve? 3. U dado equilibrato viee laciato 900 volte. Sia X il umero di volte che esce il sei. Utilizzado l approssimazioe ormale della biomiale calcolare: (a (X 180; (b (X U eveto si preseta co probabilità uguale a Si eseguoo 1200 prove. Utilizzado l approssimazioe gaussiaa calcolare la probabilità che l eveto si preseti 576 volte. 5. Si lacia ua moeta equa per 200 volte. Approssimado lo schema biomiale co quello gaussiao calcolare la probabilità che l eveto testa si verifichi (a 100 volte; (b più di 100 volte. 6. Idichiamo co X il umero di teste su 800 laci di ua moeta che dà testa co probabilità p. Usado l approssimazioe ormale: (a el caso p = 0.5, calcolare (380 X 420; (b sempre per p = 0.5, determiare (X 410; (c el caso p = 0.25, determiare (X =

2 7. Due dadi vegoo laciati 360 volte. (a Idividuare la distribuzioe della variabile X= umero di volte che esce 7 ; (b scrivere i termii della variabile X l eveto A={esce 7 almeo 50 volte}; (c scrivere la formula esatta che forisce la probabilità dell eveto A; (d calcolare co ua opportua approssimazioe la probabilità dell eveto A. 8. Si estrae a caso 625 volte u umero compreso tra 1 e 5. Calcolare la probabilità che il umero 3 si preseti fra le 50 e le 60 volte. 9. I pesi di certi pacchi ricevuti da u magazzio hao ua media di 300N ed uo scarto quadratico medio di 50N. Qual è la probabilità che, scelto u campioe di 100 pacchi, questo abbia u peso medio che superi i 400N? 10. Certe valvole prodotte da ua fabbrica hao u tempo di vita medio di 800h ed uo scarto quadratico medio di 60h. Trovare la probabilità che u campioe di 64 valvole abbia u tempo di vita medio (a compreso tra 790 e 810h; (b iferiore a 785h; (c superiore a 820h; (d compreso tra 770h e 830h. 11. U produttore di sigarette dichiara che la quatità di icotia coteuta i ciascua delle sue sigarette è ua variabile aleatoria di media 2.2mg e deviazioe stadard 0.3mg. Aalizzado u campioe di 100 sigarette si trova ua media campioaria di 3.1mg. Se le affermazioi della ditta fossero veritiere, quale sarebbe approssimativamete la probabilità di trovare ua media campioaria così alta (ovvero 3.1? 12. U docete sa dall esperieza passata che il puteggio all esame fiale degli studeti del suo corso è distribuito co media 77 e deviazioe stadard 15. Attualmete egli ha due classi, ua di 64 ed ua di 25 studeti. (a Quato vale la probabilità che il puteggio medio della classe di 25 sia compreso tra 72 e 82? (b E per l altra classe? (c Quale delle due classi è più probabile abbia otteuto più di 82? 2

3 SOLUZIONI 1. Siao X 1, X 2,..., X 300 i risultati otteuti ei 300 laci. Le v.a. X i soo idipedeti ed ideticamete distribuite co legge: X i prob 1/6 1/6 1/6 1/6 1/6 1/6 Calcoliamo la media e lo scarto quadratico medio delle X i. metre da cui µ = E[X i ] = = 7 2 = 3.50, E[X 2 i ] = = 91 6, σ = Var(X = 91 ( E[Xi 2] E[X i] 2 = 6 = 2 12 = Allora X = X 1 + X X 300 è la somma dei puteggi. Dal TLC si ha, X 300µ σ 300 = X N(0, 1. (a Si ha (X 1000 = ( X (Z 1.69 = Φ(1.69 = = , dove Z N(0, 1 e, come sempre, Φ(t = (0 Z t, ovvero l area sottesa dalla ormale stadard tra 0 e t. Usado la correzioe di cotiuità, idicado co Z ua gaussiaa co stessa media e stessa variaza di X, avremmo avuto, (X 1000 ( Z (Z = = (Z 1.67 = Φ(1.67 = = (b Si ha (1000 X 1100 = ( X ( 1.69 Z 1.69 = 2 (0 Z 1.69 = 2 Φ(1.69 = = Usado la correzioe di cotiuità, idicado co Z ua gaussiaa co stessa media e stessa variaza di X, avremmo avuto, (1000 X 1100 ( Z ( = Z = ( 1.67 Z 1.71 = Φ( Φ(1.71 = =

4 2. Siao X i, i = 1, 2,..., 50, le quatità di eve che cadoo i ciascu gioro. Allora µ = E[X i ] = 1.5 e σ = Var(X i = 0.3. La quatità di eve che cade i 50 giori è allora X = X 1 + X X 50. Suppoedo che la quatità di eve che cade i ciascu gioro è idipedete da quella che cade egli altri giori, posso applicare il TLC e quidi X 50µ σ 50 = X N(0, 1. (a La probabilità richiesta è (X 70. Si ha (X 70 = ( X (Z 2.36 = Φ(2.36 = = , (b La probabilità richiesta è (70 X 90. (70 X 90 = ( X ( 2.36 Z 7.08 = Φ( Φ(2.36 = = ATTENZIONE! I questo esercizio o si applica la correzioe di cotiuità. Le variabili X i, quatità di eve, soo esse stesse cotiue. La correzioe di cotiuità si applica el passaggio dal discreto al cotiuo. 3. Se X è il umero di volte che esce il 6 i 900 laci di u dado, X Bi(, p, co = 900 e p = 1/6. Allora per il TLC si ha (a = X 150 p(1 p N(0, 1. (X 180 = ( X = (Z = Φ(2.68 = = stessa media e stessa variaza di X, avremmo otteuto, (X 180 ( Z (Z = = (Z 2.73 = Φ(2.73 = = (b (X 160 = ( X = (Z = Φ(0.89 = = Usado la correzioe di cotiuità, idicado co Z ua gaussiaa co stessa media e stessa variaza di X, avremmo otteuto, (X 160 ( Z (Z = = (Z 0.85 = Φ(0.85 = =

5 4. Se X è il umero di successi i 1200 prove, X Bi(, p, co = 1200 e p = 0.48 = 12/25. Allora per il TLC si ha = X 576 p(1 p N(0, 1. Si chiede (X = 576. Qui se o si usa la correzioe di cotiuità la probabilità viee zero. Usado la correzioe di cotiuità, sempre idicado co Z ua ormale co stessa media e stessa variaza di X, si ha (X = 576 ( (575.5 Z = Z = ( 0.03 Z 0.03 = 2 (0 Z 0.03 = 2 Φ(0.03 = = = Se X è il umero di teste i 200 laci, X Bi(, p, co = 200 e p = 1/2. Allora per il TLC si ha = X 100 N(0, 1. p(1 p 7.07 (a Si chiede (X = 100. Qui se o si usa la correzioe di cotiuità la probabilità viee zero. Usado la correzioe di cotiuità, sempre idicado co Z ua ormale co stessa media e stessa variaza di X, si ha (b Si chiede (X 100. (X = 100 (99.5 Z ( = Z = ( 0.07 Z 0.07 = 2 (0 Z 0.07 ( X 100 (X 100 = 7.07 = 2 Φ(0.07 = = = (Z 0 = stessa media e stessa variaza di X, avremmo otteuto, (X 100 ( Z 100 (Z = 7.07 = (Z = Φ(0.07 = = Se X è il umero di teste i 800 laci di ua moeta che dà testa co probabilità p, X Bi(, p, co = 800. Allora per il TLC si ha p(1 p = X 800p 800p(1 p N(0, 1. 5

6 (a Se p = 0.5, per il TLC = X 400 p(1 p 14.1 La probabilità richiesta è (380 X 420. N(0, 1. (380 X 420 = ( X ( 1.42 Z 1.42 = 2 (0 Z 1.42 = 2 Φ(1.42 = = stessa media e stessa variaza di X, avremmo otteuto, (380 X 420 (380.5 Z ( = X = ( 1.45 Z 1.38 = Φ( Φ(1.38 (b La probabilità richiesta è (X 410. = = (X 410 = ( X (Z 0.71 = Φ(0.71 = = stessa media e stessa variaza di X, avremmo otteuto, (X 410 ( X (Z = = (Z 0.67 = Φ(0.67 = = (c Se p = 0.25, per il TLC = X 200 p(1 p 12.2 N(0, 1. Si chiede (X = 200. Qui se o si usa la correzioe di cotiuità la probabilità viee zero. Usado la correzioe di cotiuità, sempre idicado co Z ua ormale co stessa media e stessa variaza di X, si ha (X = 200 (199.5 Z ( = Z = = ( 0.04 Z 0.04 = 2(0 Z 0.04 = 2 Φ(0.04 = = (a Se X è il umero di volte ce esce 7 i 360 laci di ua copia di dadi, X Bi(360, 1/6. 6

7 (b Se A= esce 7 almeo 50 volte, allora A = {X 50}. (c Si ha (d er il TLC (X 50 = 360 k=50 ( 360 (1 k 6 = X 60 p(1 p 7.1 k ( k. N(0, 1. Si chiede (X 50. (X 50 = ( X = (Z 1.41 = Φ(1.41 = = stessa media e stessa variaza di X, avremmo otteuto, (X 50 ( Z (Z 49.5 = = (Z 1.48 = Φ(1.48 = Se X è il umero di successi i 625 prove, X Bi(, p, co = 625 e p = 1/5. Allora per il TLC si ha = X 125 N(0, 1. p(1 p 10 Si chiede (50 X 60. (50 X 60 = ( X ( 7.5 Z 6.5 = Φ(7.5 Φ(6.5 = = 0. stessa media e stessa variaza di X, avremmo otteuto, (50 X 60 (50.5 Z 59.5 ( = Z = ( 7.45 Z 6.55 = Φ(7.45 Φ(6.55 = = Idichiamo co X 1, X 2,..., X 100 i pesi dei 100 pacchi giuti i magazzio. Dai dati si sa che µ = E[X i ] = 300N e σ = Var(X i = 50N. Allora idicata co X ( = 100 la media del campioe, per il TLC, si ha, X µ σ = X N(0, 1. 7

8 Si chiede (X (X = ( X (Z 20 = Φ(20 = = Idichiamo co X 1, X 2,..., X 64 le durate delle 64 valvole. Dai dati si sa che µ = E[X i ] = 800h e σ = Var(X i = 60h. Allora idicata co X ( = 64 la durata media del campioe, per il TLC, si ha, (a Si chiede (790 X X µ σ = X N(0, 1. (790 X = ( X ( 1.33 Z 1.33 = 2 (0 Z 1.33 (b Si chiede (X = 2 Φ(1.33 = = (X = ( X (Z 2 = Φ(2 = = (c Si chiede (X (X = ( X (Z 2.66 = Φ(2.66 = = (d Si chiede (770 X (770 X = ( X ( 4 Z 4 = 2(0 Z 4 = 2 Φ(4 = = Idichiamo co X 1, X 2,..., X 100 il coteuto di icotia delle 100 sigarette esamiate. Dai dati si sa che µ = E[X i ] = 2.2mg e σ = Var(X i = 0.3mg. Allora idicato co X ( = 100 il coteuto medio di icotia del campioe, per il TLC, si ha, Si chiede (X X µ σ = X (X = ( X (Z 30 = N(0, = Φ(30 = = 0 8

9 12. Idichiamo co X 1, X 2,..., X il puteggio otteuto da ciascuo studete. Dai dati si sa che µ = E[X i ] = 77 e σ = Var(X i = 15. Allora idicato co X il puteggio medio della classe, per il TLC, si ha, per = 64, X µ σ = X N(0, 1, e per = 25, X µ σ = X N(0, 1, (a Si chiede (72 X (72 X = ( X ( 1.67 Z 1.67 = 2 (0 Z 1.67 (b Si chiede (72 X = 2 Φ(1.67 = = (72 X = ( X ( 2.66 Z 2.66 = 2 (0 Z 2.66 = 2 Φ(2.66 = = (c Si chiede se (X sia maggiore o miore di (X Calcoliamo le due probabilità. (X = ( X (Z (X = ( X (Z Quidi è più grade quest ultima. 9

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09

Probabilità 1, laurea triennale in Matematica II prova scritta sessione estiva a.a. 2008/09 Probabilità, laurea trieale i Matematica II prova scritta sessioe estiva a.a. 8/9. U ura cotiee dadi di cui la metà soo equilibrati, metre gli altri soo stati maipolati i modo che, per ciascuo di essi,

Dettagli

Esercizi di Calcolo delle Probabilità e Statistica Matematica

Esercizi di Calcolo delle Probabilità e Statistica Matematica Esercizi di Calcolo delle Probabilità e Statistica Matematica Lucio Demeio Dipartimeto di Igegeria Idustriale e Scieze Matematiche Uiversità Politecica delle Marche 1. Esercizio (31 marzo 2012. 1). Al

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza

iovanella@disp.uniroma2.it http://www.disp.uniroma2.it/users/iovanella Intervalli di confidenza iovaella@disp.uiroma.it http://www.disp.uiroma.it/users/iovaella Itervalli di cofideza Itroduzioe Note geerali La stima putuale permette di otteere valori per i parametri di ua fuzioe ma i alcui casi può

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard Statistica Computazioale Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa

Dettagli

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo

Soluzioni. Se l interallo avesse livello di confidenza 99%, al posto di 1,96 avremmo Esercizio 1 Soluzioi 1. Ricordiamo che l ampiezza di u itervallo di cofideza è fuzioe della umerosità campioaria edellivellodicofideza. Aparità di tutto il resto, l ampiezza dimiuisce al crescere di eaumetaal

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

Teoremi limite classici

Teoremi limite classici Capitolo 4 Teoremi limite classici I Teoremi limite classici, la Legge dei Gradi Numeri e il Teorema Limite Cetrale, costituiscoo il ucleo del Calcolo delle Probabilità, per la loro portata sia teorica

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

Laboratorio di R - 2 a lezione Prof. Mauro Gasparini

Laboratorio di R - 2 a lezione Prof. Mauro Gasparini Laboratorio di R - 2 a lezioe Prof. Mauro Gasparii. Distribuzioi i R R può essere usato come ua calcolatrice delle segueti distribuzioi: geom pois chisq t gamma lorm weibull f uif orm biom hyper exp geometrica

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

Esercitazione 5 del corso di Statistica (parte 2)

Esercitazione 5 del corso di Statistica (parte 2) Eercitazioe 5 del coro di Statitica (parte ) Dott.a Paola Cotatii 5 Maggio Eercizio Per verificare l efficacia di u coro di tatitica vegoo cofrotati i redimeti medi di due campioi di tudeti di ampiezza

Dettagli

PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE

PROBABILITÀ SCHEDA N. 6 LE VARIABILI ALEATORIE DI BERNOULLI E BINOMIALE Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) PROBABILITÀ SCHEDA N.

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it

Esercitazioni di Statistica Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Esercitazioi di Statistica Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Cocetrazioe Esercizio 1. Nell'ultima settimaa ua baca ha erogato i segueti importi (i migliaia di euro) per prestiti a imprese:

Dettagli

Intervalli di confidenza

Intervalli di confidenza Itervalli di cofideza Fracesco Lagoa Itroduzioe Questa dispesa riassume schematicamete i pricipali risultati discussi a lezioe sulla costruzioe di itervalli di cofideza. Itervalli di cofideza per la media

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

DENSITA. La densità di un oggetto è la sua massa per unità di volume. massa volume

DENSITA. La densità di un oggetto è la sua massa per unità di volume. massa volume DENSITA La desità di u oggetto è la sua massa per uità di volume d massa volume m V Nel SI (sistema iterazioale) l'uità base per la massa è il chilogrammo (Kg). Spesso i chimica si usao dei sottomultipli

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO 0. Itroduzioe Oggetto del calcolo combiatorio è quello di determiare il umero dei modi mediate i quali possoo essere associati, secodo prefissate regole, gli elemeti di uo stesso

Dettagli

Domande di teoria. Esercizi

Domande di teoria. Esercizi Chiorri, C. (01). Fodameti di psicometria - Risposte e soluzioi Capitolo 11 1 omade di teoria 1. Vedi pp. 97-301. Vedi pp. 301-30 3. Vedi p. 30. Vedi pp. 30-307 5. Vedi p. 309 6. Vedi p. 309-31 7. Vedi

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ARGOMENTI TRATTATI: VARIABILI CASUALI DISCRETE VARIABILI CASUALI CONTINUE DISEGUAGLIANZA DI TCHEBYCHEFF TEOREMA DEL LIMITE CENTRALE

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO Pricipio fodametale del calcolo combiatorio Se u eveto E si può presetare i modi e u secodo eveto E 2 si può maifestare i 2 modi, allora l eveto composto E E 2 si può presetare i modi. 2 ORDINE/ RIPETIZIONE

Dettagli

Esercizi sulle successioni

Esercizi sulle successioni Esercizi sulle successioi 1 Verificare, attraverso la defiizioe, che la successioe coverge a 2 3. a := 2 + 3 3 7 2 Verificare, attraverso la defiizioe, che la successioe coverge a 0. a := 4 + 3 3 5 + 7

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136

Libri T ablet 1284 47 971 62 1123 75 1047 69 921 103 874 113 889 136 Esercitazioe 0 ESERCIZIO arco e Giulio hao due egozi i viale dei Giardii. arco vede libri, Giulio vede elettroica, tra cui tablet. arco e Giulio, avedo a disposizioe il umero di libri veduti ed il umero

Dettagli

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim.

Esercizi svolti. 1. Calcolare i seguenti limiti: log(1 + 3x) x 2 + 2x. x 2 + 3 sin 2x. l) lim. b) lim. x 0 sin x. 1 e x2 d) lim. c) lim. Esercizi svolti. Calcolare i segueti iti: a log + + c ± ta 5 + 5 si π e b + si si e d + f + 4 5 g + 6 4 6 h 4 + i + + + l ± + log + log 7 log 5 + 4 log m + + + o cos + si p + e q si s e ta cos e u siπ

Dettagli

Mole e Numero di Avogadro

Mole e Numero di Avogadro Mole e Numero di Avogadro La mole È ua uatità i grammi di ua sostaza che cotiee u umero preciso e be determiato di particelle (atomi o molecole) Numero di Avogadro Ua mole di ua sostaza cotiee u umero

Dettagli

1. Variabili casuali discrete

1. Variabili casuali discrete Le variabili casuali discrete A cura di Claudio Cereda - dicembre 2005 pag. 1 1. Variabili casuali discrete 1.1 defiizioi 1.1.1 variabile casuale def Ua variabile casuale è ua gradezza X che può assumere

Dettagli

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA

IPSAA U. Patrizi Città di Castello (PG) Classe 5A Tecnico Agrario. Lezione di martedì 10 novembre 2015 (4 e 5 ora) Disciplina: MATEMATICA IPSAA U. Patrizi Città di Castello (PG) Classe A Tecico Agrario Lezioe di martedì 0 ovembre 0 (4 e ora) Disciplia: MATEMATICA La derivata della fuzioe composta Fuzioe composta Df(g())f (g())g () Questa

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

ANALISI DEI RISULTATI

ANALISI DEI RISULTATI ANALISI DEI RISULTATI I 4 passi pricipali del processo simulativo Formulare ed aalizzare il problema Sviluppare il Modello del Sistema Raccolta e/o Stima dati per caratterizzare l uso del Modello Attività

Dettagli

Distribuzioni per unità

Distribuzioni per unità Questa ota cosiste per la maggior parte ella traduzioe (co alcue modifiche e itegrazioi) da Descriptive statistics di J. Shalliker e C. Ricketts, 000, Uiversity of Plymouth Questa ota si occupa dell illustrazioe

Dettagli

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione

PREMESSA. = η valore medio della popolazione = σ deviazione standard della popolazione. Descrizione parametrica di una popolazione PREMESSA Descrizioe parametrica di ua popolazioe Sappiamo che u famiglia parametrica di fuzioi desità di probabilità è defiita da uo o più parametri Θ = {θ, θ,., θ }. Ad esempio, la d.d.p. di tipo espoeziale

Dettagli

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale

1. I numeri naturali. 2. Confronto degli interi naturali. 3. Il sistema di numerazione decimale umeri aturali Scrivere il precedete e il successivo dei segueti umeri Milleciquecetoovatacique ottomilasettecetoottatuo Diecimilioisettecetoottatuomilaciquecetoveti Zero umiliardosettecetomilioiciquecetomila

Dettagli

Il campionamento e la distribuzione di Poisson

Il campionamento e la distribuzione di Poisson Il campioameto e la distribuzioe di Poisso Obiettivi l l l utilizzare le pricipali teciche di campioameto compredere il sigificato di variabile campioaria e di stimatore determiare i valori di sitesi di

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Indici di attività, case-mix e performance in ospedale.

Indici di attività, case-mix e performance in ospedale. Idici di attività, case-mix e performace i ospedale Case-mix: defiizioe Tipologia di casistica trattata da u reparto di degeza o da u ospedale. Efficieza Si defiisce come efficiete u iterveto che ottiee

Dettagli

Esercitazione # 3. Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti

Esercitazione # 3. Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti Statistica Matematica A Esercitazione # 3 Binomiale: Esercizio # 1 Trovate la probabilita che in 5 lanci di un dado non truccato il 3 si presenti 1. mai 2. almeno una volta 3. quattro volte Esercizio #

Dettagli

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 -

1. LEGGE DI SNELL. β<α FIBRE OTTICHE. se n 2 >n 1. sin. quindi 1 se n 1 >n 2 β>α. Pag. - 1 - ISTITUTO TECNICO INDUSTRIALE STATALE G. Marcoi PONTEDERA Prof. Pierluigi D Amico - Apputi su FIBRE OTTICHE - Classi QUARTE LICEO TECNICO A.S. 005/006 - Pagia. 1 di 5 1. LEGGE DI SNELL FIBRE OTTICHE si

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Laboratorio di onde II anno CdL in Fisica

Laboratorio di onde II anno CdL in Fisica Laboratorio di ode II ao CdL i Fisica Itroduzioe Oda stazioaria di spostameto Quado u oda soora stazioaria si stabilisce i u tubo a fodo chiuso i cui la lughezza del tubo è molto maggiore del suo diametro,

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

RENDIMENTO DEI TRASFORMATORI

RENDIMENTO DEI TRASFORMATORI RENDIMENTO DEI TRASFORMATORI Il redimeto di u trasformatore è defiito come rapporto tra poteza resa e poteza assorbita: poteza resa redimeto poteza assorbita poteza resa poteza resa perdite Sebbee il redimeto

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con

Dettagli

Capitolo 6. La distribuzione normale

Capitolo 6. La distribuzione normale Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 6 La distribuzione normale Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007 Tecica delle misurazioi applicate Esame del 4 dicembre 7 Problema 1. Il propulsore Mod. WEC viee prodotto da ACME Ic. mediate u processo automatizzato: dati storici cofermao che la lavorazioe di ogi elemeto

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI)

MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) Matematica Finanziaria, a.a. 2011/2012 p. 1/315 UNIVERSITA DEGLI STUDI DI PARMA FACOLTA DI ECONOMIA MATEMATICA FINANZIARIA RISCHI: RAPPRESENTAZIONE E GESTIONE (CENNI) ANNAMARIA OLIVIERI a.a. 2011/2012

Dettagli

maturità 2015

maturità 2015 wwwmatematicameteit matuità QUETIONIO Detemiae l esessioe aalitica della fuzioe =f saedo ce la etta =-+ è tagete al gafico di f el secodo quadate e ce f =- + Dimostae ce il volume del toco di coo è esesso

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015

Università di Milano Bicocca Esercitazione 4 di Matematica per la Finanza 24 Aprile 2015 Uiversità di Milao Bicocca Esercitazioe 4 di Matematica per la Fiaza 24 Aprile 205 Esercizio Completare il seguete piao di ammortameto: 000 2 3 234 3 6 369 Osserviamo iazitutto che, per il vicolo di chiusura

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

Calcolo delle Probabilità: esercitazione 3

Calcolo delle Probabilità: esercitazione 3 Argometo: Probabilità codizioata e teorema di Bayes (par. 3.4 libro di testo) Esercizio Tra i partecipati ad u cocorso per giovai musicisti, il 50% suoa il piaoforte, il 30% suoa il violio ed il restate

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Rifiuto H 0 Non Rifuto H 0 è vera H 0 errore I o tipo nessun errore α

Rifiuto H 0 Non Rifuto H 0 è vera H 0 errore I o tipo nessun errore α 1. La verifica delle ipotesi Nelle due sezioi precedeti abbiamo visto che la media campioaria è u buo stimatore del valore atteso della distribuzioe da cui provegoo i dati ed è stato ache possibile cotrollare

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 23/06/2006 Igegeria Elettroica, Iformatica e delle Telecomuicazioi Prova scritta di ANALISI B - 23/06/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere ome e cogome ache su

Dettagli

Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado)

Viti prigioniere. Barre filettate. Dadi. Bulloni (vite + dado) omeclatura: Vite: Viti mordeti Viti prigioiere (prigioieri) Madrevite: Barre ilettate Dadi Bulloi (vite + dado) 1 ipologie delle ilettature: h/8 60 madrevite IO h riagolari UI Whitworth h/4 vite Gas (cilidriche

Dettagli

Principi base di Ingegneria della Sicurezza

Principi base di Ingegneria della Sicurezza Pricipi base di Igegeria della Sicurezza L aalisi delle codizioi di Affidabilità del sistema si articola i: (i) idetificazioe degli sceari icidetali di riferimeto (Eveti critici Iiziatori - EI) per il

Dettagli

EDICOM si impegna con i propri Clienti a rispettare tre variabili fondamentali per garantire la qualità del servizio:

EDICOM si impegna con i propri Clienti a rispettare tre variabili fondamentali per garantire la qualità del servizio: EDICOM, Service Level Agreemet Termii e Codizioi www.edicomgroup.com EDICOM si impega co i propri Clieti a rispettare tre variabili fodametali per garatire la qualità del servizio: DISPONIBILITÀ della

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Elementi di Calcolo Combinatorio

Elementi di Calcolo Combinatorio Elemeti di Calcolo Combiatorio Alessadro De Gregorio Sapieza Uiversità di Roma alessadro.degregorio@uiroma1.it Idice 1 Premessa 1 2 Permutazioi 2 3 Disposizioi 3 4 Combiazioi 4 5 Il coefficiete multiomiale

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli

L'ALGORITMO DI STURM Michele Impedovo, Simone Pavanelli L'ALGORITMO DI STURM Michele Impedovo, Simoe Pavaelli Lettera P.RI.ST.EM, 10, dicembre 1993 Questo lavoro asce dalla collaborazioe tra u isegate e uo studete; lo studete ha curato iteramete la costruzioe

Dettagli

INTEGRAZIONE NUMERICA

INTEGRAZIONE NUMERICA INTEGRAZIONE NUMERICA ANALISI SPERIMENTALE DEGLI ERRORI Prof. Michele Impedovo 1. Itroduzioe Il lavoro seguete è stato svolto i ua quita classe di liceo scietifico tradizioale. Sia data ua fuzioe ƒ cotiua

Dettagli

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride?

Qual è il numero delle bandiere tricolori a righe verticali che si possono formare con i 7 colori dell iride? Calcolo combiatorio sempi Qual è il umero delle badiere tricolori a righe verticali che si possoo formare co i 7 colori dell iride? Dobbiamo calcolare il umero delle disposizioi semplici di 7 oggetti di

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata.

q V C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una DV fissata. I codesatori codesatore è u dispositivo i grado di immagazziare eergia, sottoforma di eergia poteziale, i u campo elettrico Ogi volta che abbiamo a che fare co due coduttori di forma arbitraria detti piatti

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione

C a p i t o l o s e t t i m o. Trasmissione del calore per radiazione C a p i t o l o s e t t i m o Trasmissioe del calore per radiazioe Problema. Si cosideri u corpo ero i uo spazio o assorbete le radiazioi elettromagetiche; se il corpo viee mateuto alla temperatura di

Dettagli

Distribuzioni di probabilità Unità 79

Distribuzioni di probabilità Unità 79 Prerequisiti: - Primi elemeti di probabilità e statistica. - Nozioi di calcolo combiatorio. - Rappresetazioe di puti e rette i u piao cartesiao. Questa uità iteressa tutte le scuole ad eccezioe del Liceo

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 3 1 Distribuzione di Bernoulli e Distribuzione Binomiale Esercizio 1 Sia n un intero maggiore

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1

Calcolo combinatorio. Introduzione. Paolo Siviglia. Calcolo combinatorio 1 Paolo Siviglia Calcolo combiatorio Itroduzioe I questa parte della matematica vegoo affrotati i problemi riguardati lo studio dei raggruppameti che si possoo realizzare co gli elemeti di u isieme. Problemi

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli