CHIMICA ANALITICA 2 (MODULO B)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CHIMICA ANALITICA 2 (MODULO B)"

Transcript

1 A.A. 2013/2014 DISPENSE DEL CRS CHIMICA ANALITICA 2 (MDUL B) corso di Laurea in Chimica Gabriella Favaro Valerio Di Marco 1

2 Determinazione degli acidi grassi in lipidi di origine naturale mediante Gas-Cromatografia I grassi (o lipidi) sono sostanze di origine vegetale o animale, e possono trovarsi allo stato solido o liquido (oli). Sono insolubili in acqua e meno densi di essa. Dal punto di vista chimico sono costituiti quasi esclusivamente da acidi grassi lineari esterificati (R = residuo alchilico) con la glicerina (trigliceridi). H 2 C R1 HC R2 H 2 C R3 Gli acidi grassi possono essere sia saturi che insaturi e sono generalmente formati da catene lineari con un numero pari di atomi di carbonio (da C 4 fino a C 26 ). I saturi più abbondanti sono l acido palmitico (C 16 ) e l acido stearico (C 18 ), mentre gli insaturi più importanti sono l acido oleico (C 18:1 ), l acido linoleico (C 18:2 ) e l acido linolenico (C 18:3 ). Le molecole dei trigliceridi naturali sono di solito formate da due o tre acidi grassi diversi. Quando un acido grasso supera il 60% del totale si hanno anche gliceridi costituiti da un unico acido, come accade nell olio di oliva che contiene circa il 50% di trioleato di glicerina (trioleina). Alcuni acidi occupano posizioni preferenziali nei trigliceridi degli oli vegetali. In particolare, gli acidi palmitico e stearico (entrambi saturi) occupano di preferenza le posizioni 1 e 3. Gli acidi insaturi oleico e linoleico, invece, occupano di preferenza la posizione 2. Diversamente dai prodotti naturali, nei trigliceridi di sintesi la posizione dei diversi acidi segue una distribuzione di tipo statistico e ciò può evidenziare eventuali frodi. Nel caso dell olio di oliva si considera normale una percentuale di acido palmitico in posizione 2 che non superi il 2 % nell'olio di sansa e d'oliva, e addirittura l'1.3 % nell'olio d'oliva vergine. A seconda della provenienza del grasso la composizione dei trigliceridi è molto variabile. Di conseguenza la determinazione della composizione acidica in campioni di olio, burro, margarina, ed in prodotti contenenti frazioni significative di sostanza grassa (alimenti, cosmetici, farmaci, ecc.) 2

3 risulta essenziale per una loro caratterizzazione sia in termini di composizione che di qualità del prodotto. L analisi degli acidi grassi può essere convenientemente eseguita per via gas-cromatografica, sfruttando la volatilità dei loro esteri metilici che è maggiore sia degli acidi grassi liberi che degli originali trigliceridi. Gli esteri metilici si ottengono per trans-esterificazione catalizzata dei trigliceridi con metanolo, secondo la seguente reazione: H 2 C HC R1 R2 catalizzatore H 2 C HC H H + R1 R2 CH 3 CH 3 H 2 C R3 H 2 C H R3 CH 3 Analisi gas-cromatografica Impostare o caricare il metodo di analisi (tra cui i valori di T iniettore, T rivelatore, T colonna ; i valori normalmente impiegati con una colonna EC-WAX sono: T iniettore = C, T rivelatore = 260 C, T colonna = C). Regolare il flusso del gas di trasporto a 14 psi (se necessario), e scegliere i parametri di acquisizione ed integrazione del segnale. La composizione qualitativa degli acidi grassi presenti nel campione si fa per confronto con una miscela standard a composizione nota di esteri metilici degli acidi grassi; oppure, sulla base delle proprietà della fase stazionaria, si può prevedere il seguente ordine di eluizione. 1) il tempo di ritenzione aumenta all aumentare del numero di atomi di carbonio; 2) gli esteri insaturi escono dopo i corrispondenti esteri saturi; 3) il tempo di ritenzione degli esteri insaturi aumenta all aumentare del numero di doppi legami; 4) gli esteri ramificati escono prima degli esteri lineari con uguale numero di atomi di carbonio; In realtà con l invecchiamento delle colonne i tempi di ritenzione possono cambiare e si possono anche verificare delle inversioni nell ordine di eluizione. L analisi quantitativa del campione di olio con rivelatore FID può essere eseguita in maniera più semplice rispetto ad una generica analisi cromatografica, evitando la calibrazione. Infatti, l'olio 3

4 può essere considerato come costituito al 100 % da trigliceridi, cioè solo da componenti che vengono rivelati in fase di analisi, e tali componenti presentano all'incirca lo stesso fattore di risposta strumentale f rispetto alla massa di analita (f è la costante di proporzionalità tra area del picco e concentrazione: A = f C) utilizzando come rivelatore il FID. La concentrazione relativa percentuale C i (w/w %) di ogni componente si ricava dalla formula: C i Ai 100 A i dove le A i sono le varie aree misurate durante la corsa del campione incognito. Tale metodo di analisi è denominato normalizzazione interna. Un altro requisito per la validità della normalizzazione interna è che tutti i componenti vengano eluiti (cioè la corsa cromatografica deve essere sufficientemente lunga). Per calcolare con maggiore accuratezza i valori di concentrazione relativa percentuale è necessario calcolare i fattori di risposta f i di ciascun componente. Ciò viene fatto iniettando, prima del campione incognito, una miscela di calibrazione avente un contenuto noto degli esteri in esame. Dalla corsa di calibrazione si possono ricavare i valori di f i : Ai fi C dove A i è l'area del picco dell'estere i-esimo, e C i è la sua concentrazione relativa percentuale (w/w %) (valore dato dal produttore). Il valore di C i per ciascun componente nel campione incognito si ricava da: C i dove A i è l'area del picco dell'estere i-esimo nel campione incognito, ed f i è il fattore di risposta calcolato dalla miscela di calibrazione. i A i f i A f i i 4

5 Procedimento sperimentale Reagenti, frasi di rischio e di sicurezza acido solforico al 98 % (C, R35, S26, S30, S45) metanolo (F, T, R11, R23/24/25, R39/23/24/25, S7, S16, S36/37, S45) n- pentano (F+, Xn, N, R12, R51/53, R65, R66, R67, S9, S16, S29, S33, S61, S62) oppure n-esano (F+, Xn, N, R11, R38, R48/20, R51/53, R62, R65, R67, S9, S16, S29, S33, S36/37, S61, S62) oppure etere di petrolio (p. eb C) (F+, Xn, N, R11, R51/53, R65, R67, S61, S62) standard singoli o in miscela dei principali esteri metilici degli acidi grassi (Xi, R36/37/38, S26, S36) carbonato di sodio (Xi, R36, S22, S26) solfato di sodio anidro (-) oppure solfato di magnesio anidro (S22, S24/25) Attrezzatura gas-cromatografo equipaggiato con colonna capillare polare, per esempio EC-WAX (30 m) e rivelatore FID integratore o computer bagno riscaldante fiala da 20 ml munita di setto rivestito in teflon e ghiera in allumino (con cup crimper) pipetta graduata da 1 ml pipetta tarata da 2 ml pipetta tarata da 5 ml pipetta Pasteur con tettarella siringa da GC da 5 µl spatolina in acciaio 6 matracci da 2 o 5 ml Procedimento 1. Introdurre nella fiala circa 0.5 g di campione di olio; 2. Aggiungere 2 ml di metanolo e 80 L di acido solforico concentrato (98 %) utilizzando una pipetta graduata da 1.0 ml. NB. Seguire questo ordine di aggiunta dei reagenti. L acido solforico va introdotto con cautela perché la sua solvatazione è fortemente esotermica. 3. Chiudere con setto e ghiera la fiala; 5

6 4. Indossando occhiali protettivi porre la fiala in un bagno termostatico alla temperatura di 80 C per 40 minuti; 5. Nel frattempo preparare una soluzione sciogliendo la minima quantità possibile per ogni estere metilico a disposizione in n-esano, e successivamente una soluzione contenente una miscela di questi, utilizzando dei matracci da 2 o 5 ml od una fiala con tappo, di volume opportuno; se invece è disponibile una miscela standard commerciale, diluirla opportunamente prima di iniettarla; 6. Tenendo conto che la fiala è calda, raffreddare a temperatura ambiente con acqua corrente, dopo aver tolto il sostegno metallico; 7. Aprire la fiala e introdurre 5 ml di n-esano; 8. Agitare bene in modo da estrarre completamente gli esteri metilici nella fase organica (strato superiore) e poi separare la fase organica (per esempio con una Pasteur) e conservarla a parte; se la soluzione è appena torbida (per la presenza di acido solforico), aggiungere del carbonato di sodio e agitare fino al termine dell effervescenza; aggiungere poi del solfato di sodio o di magnesio anidro per eliminare l acqua residua; 9. Iniettare i singoli standard, 0.1 L, e poi la miscela di questi, verificando la sequenza di uscita; 10. Se tutti i picchi risultano separati procedere col campione, altrimenti modificare le condizioni di separazione (T della colonna od eventuale rampa di temperatura); 11. Iniettare 0.1 L di campione (fase organica) nel gas-cromatografo nelle condizioni scelte, 2 o 3 volte. Elaborazione dati Dai cromatogrammi ricavare una tabella con i componenti e i relativi tempi di ritenzione e aree. Calcolare le concentrazioni relative col metodo della normalizzazione interna. Dare valore medio con incertezza se il campione è stato analizzato più volte. ttenere una seconda serie di concentrazioni relative e deviazioni standard tenendo conto dei fattori di risposta; riportare i fattori di risposta normalizzati, cioè ponendo uguale ad 1 il fattore di risposta del primo componente che eluisce. Riportare nella relazione un cromatogramma della miscela degli standard ed un cromatogramma del campione. 6

7 Determinazione della caffeina in caffè, tè, Coca-Cola e farmaci analgesici tramite HPLC con rivelazione spettrofotometrica nell'uv La presente esperienza prevede l uso della cromatografia liquida ad alta pressione (HPLC) per determinare la concentrazione della caffeina in bevande o analgesici, come per esempio nel caffè, nel tè, nella Coca-Cola, ecc.. Il metodo tradizionale per la determinazione della caffeina prevede un estrazione dal campione e determinazione mediante spettrofotometria UV-Vis. L uso dell HPLC permette una veloce e facile separazione della caffeina da altre sostanze come acido tannico, acido caffeico e saccarosio, normalmente presenti nei campioni considerati. La procedura qui suggerita prevede di analizzare direttamente il campione di interesse e di determinare il contenuto di caffeina mediante una calibrazione esterna. H 3 C N N CH 3 N CH 3 N Caffeina Procedimento sperimentale Reagenti, frasi di rischio e di sicurezza caffeina 98% (Xn, S22) metanolo (F, T, R11, R23/24/25, R39/23/24/25, S7, S16, S36/37, S45) acido fosforico (C, R34, S26, S45) campioni da analizzare (uno o più): caffè, tè, Coca-Cola, farmaci analgesici contenenti caffeina. Strumentazione e attrezzatura cromatografo per HPLC con rivelatore spettrofotometrico UV-VIS colonna analitica a fase inversa C18, 250x4.6 mm i.d., 5 µm vetrino da orologio piccolo 7

8 spatolina imbuto spruzzetta propipette 1 matraccio da 100 ml 7 matracci tarati da 25 ml micropipette a volume variabile 2 cilindri da 500 o 1000 ml per preparare l eluente una bottiglia di vetro da 1000 ml per l eluente Procedimento 1. Preparare, servendosi di cilindri tarati e di una bottiglia in vetro da litro, una quantità di eluente sufficiente per utilizzarlo sia come eluente che come solvente per le soluzioni standard e del campione (0.5 1 L). La miscela deve contenere metanolo/acqua 40/60 v/v (solventi per HPLC ad elevata purezza e acqua milliq) e deve essere acidificata con 1 goccia/l di acido fosforico. 2. Preparare 100 ml di soluzione madre standard di caffeina da 1000 ppm (mg/l), sciolta in metanolo (sufficiente per 2 gruppi); se si scioglie con difficoltà utilizzare il bagno ad ultrasuoni con cautela (inserire per pochi secondi di seguito, per evitare surriscaldamento del metanolo). 3. In 5 matracci tarati da 25 ml (o 50 ml) preparare soluzioni a concentrazione 1.0, 5.0, 10.0, 20.0, 50.0 ppm di caffeina in eluente, utilizzando una micropipetta e relativi puntali, o una pipetta di vetro graduata. 4. Accendere i vari moduli del cromatografo ed il computer. 5. Impostare una velocità di flusso di 1.0 ml/min (0.6 ml/min per una colonna con particelle da 3 m, strumento verso la finestra) raggiungendo gradualmente tale valore. Accendere il rivelatore e impostare una = 270 nm (massimo di assorbimento della caffeina). 6. Fare stabilizzare il segnale di fondo lasciando fluire l eluente per almeno una decina di minuti per l equilibrazione della colonna e la stabilizzazione della lampada. 7. Avvinare 3 volte la siringa di iniezione con la soluzione da iniettare. Iniziare con il bianco (eluente) e poi procedere con la soluzione standard più diluita e via via con quelle più concentrate. 8. Introdurre la siringa nell apposito alloggiamento dell iniettore e riempire il «loop». Per lavarlo al meglio inserire un volume di almeno 3 volte il loop, in modo da riempire anche i 8

9 tubi di collegamento. Assicurandosi di essere nella posizione «LAD». 9. Commutare la valvola di iniezione nella posizione «INJECT» attivando simultaneamente l integratore o il computer. 10. Ripetere l iniezione dello stesso standard per tre volte, e riportare i valori delle tre aree corrispondenti in grafico in funzione della concentrazione. Si faccia lo stesso per le rimanenti soluzioni standard. 11. Analizzare con la stessa procedura i campioni incogniti (trattati e/o diluiti come indicato nella sezione seguente). Preparazione dei campioni di caffeina da caffè, tè e Coca Cola Per il caffè (bevanda) si suggerisce di diluire il campione 1:100 o 1:200 v/v con l'eluente. Per il caffé macinato si trattano 2 g con 20 ml di CH 2 Cl 2 a ricadere per 2 ore. L estratto viene filtrato, portato a secchezza in evaporatore rotante (dotato di trappola per il recupero del solvente) e ripreso in metanolo. La soluzione (eventualmente diluita con acqua) viene iniettata direttamente. (N.B. l estrazione con acqua calda (caffettiera) è più efficiente).per il tè si suggerisce di diluire il campione 1:25 v/v. Per la Coca-Cola si deve prima degassare in bagnetto ad ultrasuoni, e poi si suggerisce di diluire 2:25 la bevanda degassata. Per i farmaci, l estrazione della caffeina si ottiene macinando la compressa in mortaio, trasferendo il tutto in beuta e trattando con 50 ml di metanolo (eventualmente portare in bagno ad ultrasuoni per 10 min). Si filtra su carta e si raccogliere la soluzione in matraccio da 100 ml. Si lava il filtro con metanolo e si porta a volume. La soluzione può essere iniettata tal quale o eventualmente diluita con acqua (previa filtrazione). Le diluizioni suggerite per le bevande sono indicative, dato che i campioni commerciali possono variare da uno all altro. Tutti i campioni incogniti vanno filtrati su filtro da siringa in materiale inerte prima dell analisi. Si inietti il campione incognito per 3-5 volte. Elaborazione dati Costruire la retta di calibrazione e riportarne i parametri richiesti (cfr. dispense statistica). Determinare il contenuto di caffeina nel campione per interpolazione sulla retta di taratura. Tenendo conto della diluizione riportare il valore finale con il suo intervallo di confidenza. Nella relazione inserire un cromatogramma degli standard ed uno del campione. 9

10 Determinazione di anioni inorganici presenti in acque potabili tramite cromatografia ionica e rivelazione conduttimetrica soppressa Questa esperienza vuole introdurre lo studente alla cromatografia ionica (IC). Questa tecnica riveste oggi un ruolo estremamente importante in quanto con essa è stato possibile determinare specie non facilmente analizzabili per altra via come ad esempio gli ioni solfato, ammonio, fluoruro, e fosfato. La grande versatilità della tecnica è data sia dall odierna tecnologia delle resine a scambio ionico che dalla possibilità di utilizzare la tecnica conduttimetrica per la rivelazione degli analiti. Quest ultima circostanza è dovuta alla possibilità di sopprimere la conducibilità del fondo dovuta all eluente utilizzato, aumentando nel contempo la conducibilità e quindi il segnale degli analiti. In questa esperienza la IC viene usata per la quantificazione degli anioni inorganici presenti nell acqua potabile (o in un acqua oligominerale o in un acqua di scarico, in quest ultimo caso previa filtrazione ed eventuale diluizione) ed in particolare di Cl, N 3, P 3 4 e S 2 4, per mezzo di una calibrazione esterna. Procedimento sperimentale Reagenti, frasi di rischio e di sicurezza carbonato di sodio (Xi, R36, S22, S26) bicarbonato di sodio (-) acido solforico (C, R35, S26, S30, S45) cloruro di sodio (-) nitrato di sodio (, Xn, R8, R22, R36/37/38, S17, S26, S27, S36/37/39) fosfato biacido di potassio (S22, S24/25) solfato di sodio (-) Strumentazione e attrezzatura cromatografo ionico (inerte) dotato di rivelatore conduttimetrico colonna analitica anionica DINEX AS4A-SC 250x4 mm con precolonna AG4A-SC 50x4 mm o AS22 250x4 mm con precolonna AG22 50x4 mm soppressore anionico a micromembrana DINEX ASRS ULTRA II 4 mm, o AMMS 300 4mm 2 spatoline 10

11 2 vetrini da orologio 4 imbuti 2 propipette 1 matraccio tarato da 1000 ml per l acido solforico per il soppressore, se necessario 1 matraccio tarato da 1000 ml per l eluente 4 matracci tarati da 100 ml 5 matracci tarati da 25 ml 4 pipette graduate da 1 ml, 4 pipette graduate da 2 ml oppure micropipette a volume variabile e relativi puntali Procedimento 1. Utilizzando i matracci tarati da 100 ml preparare quattro soluzioni madre contenenti 1000 ppm (mg/l di ione, non di sale!) rispettivamente di Cl, N 3, P 3 4 e S 2 4 ; utilizzare i rispettivi sali disponibili come standard primari, e diluire con acqua milliq. 2. Se non disponibile, preparare la soluzione eluente costituita da una miscela di carbonato/bicarbonato di sodio rispettivamente 1.8/1.7 mm per una colonna AS4A-SC ed invece 4.5/1.4 mm per una colonna AS22 (ICS900). Tale soluzione va preparata in acqua milliq. 3. Se il soppressore non è di tipo elettrochimico, preparare una soluzione di H 2 S 4 25 mm per la rigenerazione della membrana di soppressione (ICS900). 4. In 5 matracci tarati da 25 ml preparare le soluzioni standard miste contenenti tutti gli anioni, rispettivamente in concentrazione: Cl (ppm) N 3 (ppm) P 3 4 (ppm) S 2 4 (ppm) soluzione soluzione soluzione soluzione soluzione portando a volume con acqua milliq. 5. Accendere il cromatografo e tutti i suoi moduli, innescare la pompa (PRIME/PURGE); impostare una velocità di flusso di 1.5 ml/min per lo strumento di DX ed invece 1.2 ml/min per l ICS900, ed azionare la pompa stessa; 11

12 - subito dopo avviare la rigenerazione del soppressore impostando un valore di corrente di 50 ma per il soppressore elettrochimico (strumento a DX); Fare stabilizzare il segnale di fondo, lasciando fluire l eluente per almeno una decina di minuti (conducibilità di fondo minore di 25 S). 6. Accendere il computer e caricare il software di gestione dei dati (Chromeleon a SX e PeakNet a DX); creare una propria cartella (per esempio gruppo_1) nella directory opportuna. 7. Avvinare 3 volte la siringa di iniezione con la soluzione da iniettare. Si inizi con il bianco (acqua milliq) e si proceda con la soluzione standard più diluita. 8. Introdotta la siringa nell apposito alloggiamento dell iniettore si riempia il «loop» (inserire almeno 3 volte il suo volume) assicurandosi di essere nella posizione LAD. 9. ICS900 (a SX): scegliere o costruire un metodo con le condizioni cromatografiche, un metodo di quantificazione e preparare una sequenza di iniezioni; far partire la corsa e attivare l acquisizione, premendo il tasto BATCH/START Software PeakNet (a DX): aprire e caricare il metodo ISCRATICASTUDENTI2 e premere RUN/START; nominare il campione o lo standard in modo riconoscibile e progressivo, anche nella seconda riga dove compare la directory (ad esempio std1a) e premere K; in entrambi i casi la valvola verrà commutata automaticamente. 10. Lasciare eluire i picchi e poi ripetere l iniezione dello stesso standard per altre 2 volte. 11. Costruire una tabella riportando le aree dei picchi di ogni ione per i diversi livelli di concentrazione. 12. Analizzare con la stessa procedura i campioni incogniti preoccupandosi di filtrare, se richiesto, la soluzione (acque di scarico o superficiali). Elaborazione dati Costruire le rette di calibrazione per ciascun ione, riportando i singoli punti; per ciascuna retta riportare i parametri richiesti (cfr. dispense statistica). Determinare il contenuto di ogni ione nel campione per interpolazione sulla retta di calibrazione. Riportare i valori finali con il loro intervallo di confidenza. Nella relazione inserire come esempio almeno un cromatogramma del campione e uno delle soluzioni standard. Condurre dei test statistici di confronto tra ciascun valore trovato e quello tabulato (se disponibile) o riportato in etichetta. 12

13 Determinazione di cationi inorganici in acque potabili tramite cromatografia ionica e rivelazione conduttimetrica soppressa Questa esperienza vuole introdurre lo studente alla cromatografia ionica (IC). Questa tecnica riveste oggi un ruolo estremamente importante, grazie sia all odierna tecnologia delle resine a scambio ionico, che alla possibilità di utilizzare la tecnica conduttimetrica per la rivelazione degli analiti. Quest ultima circostanza dipende dalla possibilità di sopprimere la conducibilità di fondo dovuta all eluente utilizzato, ma non quella degli analiti, il cui segnale viene anzi aumentato. In questa esperienza la IC viene usata per la quantificazione dei cationi inorganici presenti nell acqua potabile (o in un acqua oligominerale o in un acqua di scarico, in quest ultimo caso previa filtrazione ed eventuale diluizione) ed in particolare di Ca 2+, Mg 2+, Na + e K + (NH + 4 dovrebbe essere assente) per mezzo di una calibrazione esterna. Procedimento sperimentale Strumentazione e attrezzatura cromatografo ionico (inerte) dotato di rivelatore conduttimetrico colonna analitica cationica DINEX CS12A 250x4 mm con precolonna CG12A 50x4 mm soppressore cationico a micromembrana DINEX CMMS III 4 mm, o CSRS ULTRA 4 mm 2 spatoline 2 vetrini da orologio 4 imbuti 2 propipette 1 matraccio tarato da 1000 ml per l idrossido di tetrabutilammonio per il soppressore, se necessario (con CMMS III) 1 matraccio tarato da 1000 ml per l eluente 4 matracci tarati da 100 ml 5 matracci tarati da 25 ml 4 pipette graduate da 1 ml 4 pipette graduate da 2 ml oppure micropipette a volume variabile e relativi puntali 13

14 Reagenti, frasi di rischio e di sicurezza acido metansolfonico (C, R34, S26, S36, S45) o acido solforico (C, R35, S26, S30, S45) idrossido di tetrabutilammonio (C, R34; S26, S36/37/39, S45)) cloruro di sodio (-) cloruro di potassio (S22, S24/25) cloruro di calcio (Xi, R36, S22, S24) cloruro di magnesio (S22, S24/25) cloruro di ammonio (Xn, R22; R36, S22)) Procedimento 1. Se non disponibile, preparare la soluzione eluente costituita da acido metansolfonico 20 mm (o, in alternativa, H 2 S 4 11 mm) in acqua milliq, per una colonna CS12A. 2. Se il soppressore non è di tipo elettrochimico, preparare una soluzione idrossido di tetrabutilammonio 100 mm per la rigenerazione della membrana di soppressione (ICS900). 3. Utilizzando i matracci tarati da 100 ml preparare quattro soluzioni madre contenenti 1000 ppm (mg/l di ione, non di sale!) di ciascun catione, ottenute da NaCl, KCl, CaCl 2, MgCl 2 (NH 4 Cl) per analisi, essiccati in stufa (oppure soluzioni standard commerciali), in acqua milliq. 4. In 5 matracci tarati da 25 ml preparare le soluzioni standard miste contenenti tutti i cationi, aventi la concentrazione data in tabella, e portando a volume con acqua milliq. Na + (ppm) K + (ppm) Mg 2+ (ppm) Ca 2+ (ppm) soluzione soluzione soluzione soluzione soluzione Accendere il cromatografo e tutti i suoi moduli, innescare la pompa (PRIME/PURGE); impostare una velocità di flusso di 1.2 ml/min ed azionare la pompa stessa; 6. subito dopo avviare la rigenerazione del soppressore impostando un valore di corrente di 50 ma per il soppressore elettrochimico (strumento a DX); 7. Fare stabilizzare il segnale di fondo, lasciando fluire l eluente per almeno una decina di minuti (conducibilità di fondo minore di 1-2 S). 14

15 8. Accendere il computer e caricare il software di gestione dei dati (Chromeleon a SX e PeakNet a DX); creare una propria cartella (per esempio gruppo_1) nella directory opportuna. 9. Avvinare 3 volte la siringa di iniezione con la soluzione da iniettare. Si inizi con il bianco (acqua milliq) e si proceda con la soluzione standard più diluita. 10. Introdotta la siringa nell apposito alloggiamento dell iniettore si riempia il «loop» (inserire almeno 3 volte il suo volume) assicurandosi di essere nella posizione LAD. 11. ICS900 (a SX): scegliere o costruire un metodo con le condizioni cromatografiche, un metodo di quantificazione e preparare una sequenza di iniezioni; 12. far partire la corsa e attivare l acquisizione, premendo il tasto BATCH/START 13. Software PeakNet (a DX): aprire e caricare il metodo CATINI_2010_2011 e premere RUN/START; nominare il campione o lo standard in modo riconoscibile e progressivo, anche nella seconda riga dove compare la directory (ad esempio std1a) e premere K; 14. in entrambi i casi la valvola verrà commutata automaticamente. 15. Lasciare eluire i picchi e poi ripetere l iniezione dello stesso standard per altre 2 volte. 16. Costruire una tabella riportando le aree dei picchi di ogni ione per i diversi livelli di concentrazione. 17. Analizzare con la stessa procedura i campioni incogniti preoccupandosi di filtrare, se richiesto, la soluzione (acque di scarico o superficiali). Elaborazione dati Costruire le rette di calibrazione per ciascun ione, riportando i singoli punti; per ciascuna retta riportare i parametri richiesti (cfr. dispense statistica). Determinare il contenuto di ogni ione nel campione per interpolazione sulla retta di calibrazione. Riportare i valori finali con il loro intervallo di confidenza. Nella relazione inserire come esempio almeno un cromatogramma del campione e uno delle soluzioni standard. Condurre dei test statistici di confronto tra ciascun valore trovato e quello tabulato (se disponibile) o riportato in etichetta. 15

16 METD UFFICIALE DI DSAGGI DEL FSFAT SLUBILE NELLE ACQUE D-011 marzo 1981 Il fosforo nelle acque naturali e di scarico è presente quasi esclusivamente come fosfato, in particolare ortofosfato, fosfato condensato (piro-, meta-, polifosfato) e fosfato legato a composti organici. Queste specie possono trovarsi in forma solubile o non solubile. Non si può comunque escludere la presenza di composti del fosforo con più basso numero di ossidazione. Nella determinazione del fosforo totale è necessario trasformarlo tutto in ortofosfato. Ciò viene effettuato con un attacco ossidante per i composti organici e per quelli in cui il fosforo è presente con numero di ossidazione inferiore a +5, e con idrolisi acida per i polifosfati. Il metodo spettrofotometrico al blu di molibdeno descritto di seguito viene utilizzato per la determinazione dell'ortofosfato solubile e del fosforo totale. Determinazione dell'ortofosfato solubile Principio del metodo 3 Il metodo prevede la reazione degli ioni P 4 con il molibdato di ammonio ((NH 4 ) 6 Mo H 2 ) e il tartrato di ossido di antimonio e potassio (K(Sb)C 4 H 4 6 1/2 H 2 ) in ambiente acido per formare un etero poliacido che viene ridotto a blu di molibdeno con acido ascorbico. Il metodo è applicabile alle acque naturali (anche di mare) e può essere impiegato in un intervallo di concentrazioni compreso tra 0.03 e 0.3 mg/l di fosforo (come P). Interferenze Il Cu(II) e il Fe(III) non interferiscono se presenti in quantità rispettivamente inferiori a 10 e 50 ppm (mg/l). Gli arseniati interferiscono in quanto danno la stessa reazione dei fosfati. Il Cr(VI) e i nitriti danno interferenza negativa dell'ordine del 3 % se presenti in concentrazione superiore a 1 mg/l. Solfuri e composti del silicio non interferiscono se presenti in concentrazioni inferiori a 1.0 e 10.0 ppm (rispettivamente mg/l di S e Si 2 ). 16

17 Parte sperimentale Reagenti, frasi di rischio e di sicurezza eptamolibdato di esammonio tetraidrato ((NH 4 ) 6 Mo H 2 ) (Xi, R36/37/38, S26) acido solforico (C, R35, S26, S30, S45) acido ascorbico (C 6 H 8 6 ) (-) tartrato di ossido di antimonio e potassio (K(Sb)C 4 H 4 6 1/2 H 2 ) (Xn, N, R20/22, R51/53, S61) diidrogenofosfato di potassio anidro (KH 2 P 4, standard primario) seccato a 105 C (-) Attrezzatura spettrofotometro UV-Visibile cuvette di vetro da 1 cm bilancia analitica bilancia tecnica vetrini da orologio pinza e spatolina imbuto 1 bottiglia di polietilene da 500 ml 1 bottiglia di polietilene da 250 ml bottiglia da 500 ml bottiglia da 1 L bottiglia scura da 1 L (250 ml) pipetta tarata da 10.0 ml 9 matracci da 100 ml Di seguito sono riportate le istruzioni per preparare la quantità minima di reagenti necessari per entrambi i gruppi di laboratorio. Soluzione di molibdato d'ammonio Si sciolgono 3 g di eptamolibdato di esammonio tetraidrato in 100 ml di acqua MilliQ (la soluzione, conservata in bottiglie di polietilene al riparo dalla luce, è stabile per molti mesi). Soluzione di acido solforico Si versano cautamente sotto cappa 35 ml di H 2 S 4 concentrato in 220 ml di acqua MilliQ (per 1 L: 140 ml di H 2 S 4 conc. in 900 ml di acqua) in bottiglia di vetro. Soluzione di acido ascorbico 17

18 Si sciolgono 5.4 g di acido ascorbico in 100 ml di acqua MilliQ (la soluzione conservata in frigorifero in bottiglie di polietilene è stabile per molti mesi, mentre a temperatura ambiente si conserva per due o tre giorni). Soluzione di tartrato di ossido di antimonio e potassio Si sciolgono 67 mg di tartrato di ossido di antimonio e potassio in 50 ml di acqua MilliQ, scaldando se è necessario. Reagente misto Si mescolano: 100 ml della soluzione di molibdato d'ammonio 250 ml di soluzione di acido solforico 100 ml di soluzione di acido ascorbico 50 ml di soluzione di tartrato di antimonio e potassio in bottiglia di plastica. Il reagente misto, preparato al momento dell'uso, non può essere conservato per più di 6 ore, per cui va eliminato alla fine dell esperienza. Soluzione standard di fosforo Si sciolgono g di diidrogenofosfato di potassio anidro in acqua milliq e si diluisce a 250 ml in matraccio tarato (soluzione contenente 300 ppm (mg/l) di P 3 4 ). Annotare la quantità esatta pesata e calcolare la concentrazione esatta (Se si conserva la soluzione bisogna trasferirla in bottiglia scura). Si prepara una soluzione diluita prelevando 10.0 ml della soluzione concentrata e diluendo a 100 ml con acqua MilliQ in matraccio (concentrazione 30 ppm, cioè 30 mg/l di P 3 4 ). Procedimento 1. In 7 matracci da 100 ml si introducono con una pipetta o una micropipetta a volume variabile, rispettivamente 0.0 (per il bianco), 0.3, 0.5, 1.0, 1.5, 2.0, 3.0 ml di soluzione standard diluita di fosfato. Si aggiunge a ciascun matraccio acqua milliq e 10.0 ml del reagente misto, mescolando, e si porta a volume. Appena preparato il bianco, azzerare lo strumento. 2. Azzerare lo strumento ponendo il bianco in entrambe le celle. 3. Misurare l'assorbanza del bianco ad una fissa pari a 885 nm usando come riferimento acqua milliq. L'assorbanza del bianco non deve superare Se il valore fosse più alto si dovranno controllare i reattivi ed in particolare il molibdato di ammonio. 4. Misurare l'assorbanza di ogni soluzione ad una fissa pari a 885 nm (a 710 nm si ottengono valori di assorbanza del 20 % circa), usando come riferimento la soluzione del bianco. La 18

19 misura di assorbanza per ogni soluzione va fatta dopo i 10 e non oltre i 15 minuti successivi alla preparazione della soluzione stessa. 5. Effettuare in modo analogo la misura del campione (vedere pagina successiva). 6. Per seguire la cinetica di reazione, scegliere l opzione cinetica e, dopo aver impostato la di misura e aver azzerato l assorbanza col bianco, inserire una cuvetta contenente 3 ml di acqua milliq, 300 L di reagente misto e 30 L di soluzione standard di fosfato diluita, mescolare rapidamente in situ e registrare l assorbanza nel tempo fino a che rimane costante per qualche minuto. Elaborazione dati Si costruisce la retta di calibrazione ponendo in diagramma i valori di assorbanza letti in funzione della concentrazione delle soluzioni. Riportare i parametri richiesti per tale retta (cfr. dispense statistica). 19

20 DETERMINAZINE DELL'ACID FSFRIC NELLA CCA-CLA La determinazione dell acido fosforico nella Coca-Cola si può effettuare con lo stesso metodo utilizzato per la determinazione del fosfato nelle acque. In alternativa si può analizzare un campione incognito fornito dal docente. Procedimento 1. Degassare preventivamente il campione di Coca-Cola in bagnetto ad ultrasuoni (o, in alternativa lasciato all'aria per 24 ore). 2. Diluire 200 L di Coca-Cola a ml in matraccio tarato. 3. Introdurre in un matraccio da 100 ml 10.0 ml di reagente misto e portare a volume col campione degassato e diluito. Leggere l'assorbanza a 885 nm dopo i 10 e non oltre i 15 minuti successivi alla preparazione della soluzione stessa. 4. Preparare un bianco campione (soluzione preparata come al punto precedente, ma ponendo 10 ml di acqua anziché di reagente misto), leggere la sua assorbanza, e sottrarre questo valore a quello del campione. 5. Nel caso di un campione di acqua a contenuto incognito di fosfato, in matraccio da 100 ml, aggiungere direttamente 10 ml di ragente misto e portare a volume con acqua milliq. Leggere l'assorbanza a 885 nm dopo i 10 e non oltre i 15 minuti successivi alla preparazione della soluzione stessa. 6. Per verificare l effetto dell interferenza, preparare in un altro matraccio il campione con la stessa modalità vista sopra ma aggiungendo, prima di portare a volume, 2 ml di soluzione di NaN 2 alla concentrazione di 100 ppm (interferenza negativa) o 2 ml di soluzione di silice (come metasilicato, Na 2 Si 3 ) alla concentrazione di 3500 ppm (interferenza positiva). Elaborazione dati Il valore di concentrazione incognita di fosfato si ricava per interpolazione sulla retta di calibrazione precedentemente costruita, e successivo calcolo della eventuale diluizione effettuata. Fornire il dato finale con il suo intervallo di confidenza. Confrontare (t-test) la concentrazione ottenuta con quella teorica di acido fosforico nella Coca Cola (informazione reperibile in rete). Quantificare l effetto dell interferenza con un opportuno test statistico. 20

21 Determinazione dello zinco nei capelli mediante spettroscopia di assorbimento atomico in fiamma I capelli sono costituiti principalmente da cheratina, una proteina che contiene il 14% di zolfo. Inoltre, nei capelli sono presenti vari elementi in tracce (Mg, Al, Cl, Ca, Cr, Mn, Fe, Co, Cu, Zn, etc.). La quantità di questi elementi varia durante la crescita dei capelli e dipende dal tipo di alimentazione. Lo zinco è presente nel corpo umano in combinazione con enzimi e con diverse proteine. Il suo contenuto normale nei capelli, che è di circa ppm (g/g), dipende da diversi fattori quali età, sesso, colore, clima, lunghezza, zona del prelievo, uso di shampoo antiforfora ecc.. Lo zinco assunto con il cibo è normalmente sufficiente al fabbisogno dell organismo umano. Una sua concentrazione troppo bassa può causare disturbi quali ad esempio stanchezza e difficoltà di apprendimento. L esperienza ha come oggetto la determinazione della quantità di zinco nei capelli mediante misure di spettroscopia di assorbimento atomico in fiamma. A tale scopo, i capelli dovranno essere portati in soluzione con acido nitrico (HN 3 ) e acido perclorico (HCl 4 ) e la concentrazione di zinco verrà determinata mediante confronto con una retta di taratura e con il metodo delle aggiunte standard. L intervallo di linearità è compreso tra 0.05 e 1.5 ppm. Parte sperimentale Reagenti, frasi di rischio e di sicurezza acido nitrico al 65 % per spettrofotometria (C, R35, S23, S26, S36, S45) acido perclorico al 65 % per spettrofotometria (, C, R5, R8, R35, S23, S26, S36, S45) soluzione standard concentrata di Zn 2+ (circa 1000 ppm di ione - il valore esatto è riportato sull'etichetta) (Xi, R36/38, S26) Apparecchiature spettrofotometro per assorbimento atomico (AAS) lampada a catodo cavo per lo Zn capsula di porcellana pipetta tarata da 10 ml micropipetta da 1000 µl 21

22 1 matraccio tarato da 100 ml 6 matracci tarati da 25 ml filtro da siringa inerte siringa di plastica da 5 ml pipetta graduata da 2 ml o micropipetta a volume variabile Procedimento per la costruzione della retta di taratura 1. Preparare in matraccio da 25 ml una soluzione standard diluita da 25 ppm (mg/l) di ione Zn 2+ partendo dalla soluzione standard madre. 2. Preparare 5 soluzioni standard a concentrazione di 0.25, 0.50, 0.75, 1.00 e 1.50 ppm rispettivamente in 5 matracci tarati da 25 ml per diluizione con acqua distillata di volumi appropriati della soluzione a 25 ppm. 3. ttimizzare le condizioni strumentali alla lunghezza d onda di lavoro di nm secondo le specifiche riportate nelle apposite tabelle (allineamento della lampada ed eventualmente aggiustamento del flusso di soluzione in fiamma). 4. Azzerare lo strumento con acqua milliq prima di ogni misura. 5. Fare tre letture del valore di assorbanza per ogni soluzione (15 letture in totale). 6. Tracciare la retta di calibrazione esterna ricavata con il metodo dei minimi quadrati utilizzando tutte le quindici letture (riportare i dati richiesti - cfr. dispensa di statistica - per la retta di calibrazione). Trattamento del campione 1. Pesare circa 0.3 g di capelli puliti e tagliati alla radice e sminuzzarli. 2. Trasferire i capelli in una capsula di porcellana e, indossando guanti ed occhiali, aggiungere 10 ml di HN 3 concentrato, sotto cappa. 3. Scaldare blandamente in bagno a sabbia, fino a dimezzare all incirca il volume iniziale. 4. Lasciare raffreddare e aggiungere quindi 2 ml di HCl 4, sempre sotto cappa. 5. Scaldare fino a disgregazione completa dei capelli e fino ad ottenere un volume finale di circa 2 ml di soluzione. 6. Raffreddare e trasferire quantitativamente la soluzione in un matraccio tarato da 100 ml. Portare a volume con acqua milliq. 7. Filtrare con estrema cautela il campione con un filtro resistente agli acidi, appoggiando il filtro sulla bocca del matraccio ed indossando occhiali e guanti, data la possibilità di schizzi e dato che bisogna esercitare una certa forza sul pistone della siringa. 22

23 8. Azzerare lo strumento con acqua distillata e fare quindi tre letture del valore di assorbanza della soluzione. 9. Calcolare il valore medio e ricavare la concentrazione di zinco presente nei 100 ml di soluzione per estrapolazione dalla retta di calibrazione esterna. Se la concentrazione risulta fuori dell intervallo di concentrazione utilizzato per la calibrazione, procedere ad una adeguata diluizione. 10. Fornire il dato finale in termini di g di zinco per g di capelli, con il suo intervallo di confidenza. Metodo delle aggiunte standard 1. Trasferire in 5 matracci tarati da 25 ml, numerati da 1 a 5, 10 ml di soluzione del campione di capelli. 2. Aggiungere ai matracci 1, 2, 3, 4 e 5 rispettivamente 0, 0.25, 0.5, 0.75 e 1.00 ml di soluzione diluita di zinco (da 25 ppm). 3. Portare a volume con acqua milliq. 4. Dopo azzeramento con acqua milliq, effettuare tre misure di assorbanza per ogni campione. 5. Tracciare la retta assorbanza contro concentrazione di zinco aggiunta con il metodo dei minimi quadrati (riportare i dati richiesti - cfr. dispensa di statistica - per la retta di calibrazione). 6. Determinare la concentrazione di zinco presente nella soluzione proveniente dal trattamento dei capelli dalla retta di calibrazione per estrapolazione al valore di assorbanza nulla. 7. Calcolare il contenuto in zinco nel campione di capelli. 8. Fare un confronto statistico dei dati (pendenze delle rette e contenuto di zinco) ottenuti con i due metodi (calibrazione esterna e aggiunte standard), e fare le opportune considerazioni (F-test e t-test). 23

24 DETERMINAZINE DEL FLURUR NEI DENTIFRICI NEI CLLUTTRI CN ELETTRD IN-SELETTIV Il fluoruro viene aggiunto nei dentifrici tipicamente al livello dello 0.05 % (da 500 a 1500 g/g), anche se in alcune zone viene addizionato all acqua potabile (USA). Sono permesse tre diverse fonti di fluoruro (Food and Drug Administration): NaF, SnF 2 e Na 2 P 3 F (sodio monofluorofosfato). Nel caso di un colluttorio la quantità di fluoruro (NaF) mediamente è intorno ai 225 ppm (espressi come g/g di F ). Composizione tipica di un dentifricio: pirofosfato di calcio 39 % acqua 25 % sorbitolo (soluzione al 70 %) 20 % glicerina 10 % miscellanea di componenti 5 % pirofosfato stannoso 1 % fluoruro stannoso 0.4 % La parte minerale dei denti è costituita da idrossiapatite che reagendo con il fluoruro forma l apatite fluorinata e poi la fluoroapatite, molto meno solubile nell ambiente acido creato dai batteri della bocca in presenza di cibo, in particolare nella digestione dei carboidrati. Ca 10 (P 4 ) 6 (H) 2 + F Ca 10 (P 4 ) 6 (H)F + H Ca 10 (P 4 ) 6 (H)F + F Ca 10 (P 4 ) 6 F 2 + H La principale applicazione della misura dei fluoruri con elettrodo ionoselettivo è relativa alle acque potabili, e quindi di fiumi, di laghi, di sorgenti, di prelevamento dal sottosuolo, in acquedotti (U.S.EPA metodo 340.2). L importanza dei fluoruri è legata alla limitazione e prevenzione della carie dentale e quindi è importante conoscere la quantità di fluoruri contenuti in acque potabili o destinabili alla potabilizzazione. E bene che il contenuto di fluoruri sia misurabile ma inferiore a 2 ppm (2 mg/l). Acque con contenuto superiore a 2 ppm presentano invece un aspetto non più benefico, ma dannoso, perché l eccessiva ingestione di fluoruri nel periodo di formazione della corona dentale (fino agli 8 anni) provoca una malattia, la fluorosi, che comporta una mineralizzazione dei denti che li scurisce ed indebolisce e provoca l incurvatura della spina dorsale. 24

25 Del fluoruro ingerito il 60 % viene escreto con le normali funzioni mentre il rimanente 40 % si deposita sullo scheletro e sugli altri tessuti calcificati. La misura viene effettuata anche in acque minerali imbottigliate, dentifrici, colluttori, nonché in campo medico ossa, urina, plasma, ecc.. Altre applicazioni importanti sono la misura dei fluoruri nei minerali e nell industria del vetro, della ceramica, dell alluminio e nell industria alimentare. Presupposti teorici L equazione che descrive la risposta dell elettrodo in funzione dell attività dello ione per cui è selettivo è l equazione di Nikolskii-Eisenman, che tiene conto di eventuali interferenti: RT E K log ai k z F i ij a z i / z j j con i ione principale, j ione interferente, z i e z j cariche dei due ioni e k ij coefficiente di selettività che dipende dal tipo di elettrodo. a F con 1 F F F per soluzioni diluite (< 10 4 M). L elettrodo al fluoruro è a membrana solida, che consiste in un monocristallo di trifluoruro di lantanio (LaF 3 ) drogato con Eu 2+ per aumentare la conducibilità. All interno dell elettrodo è presente una soluzione contenente KCl (3 M) ed F (0.01 M), un filo metallico d'argento ed una pasta di AgCl depositata sopra. Questo componente elettrodico viene talvolta chiamato "riferimento interno". L'elettrodo a fluoruro è strutturalmente identico ad un elettrodo di vetro, e si differenzia da questo solo per la membrana esterna. Anche il meccanismo con cui l'elettrodo a fluoruro risponde agli ioni F è del tutto analogo a quello con cui un elettrodo di vetro risponde agli ioni H +. L unico ione interferente per questo tipo di membrana è l H (k F,H 0.01) per cui le determinazioni vanno effettuate a ph 7. Interferenze chimiche possono essere dovute invece ad equilibri che diminuiscono la quantità di fluoruro libero, come ad esempio: 25

26 H F = HF + H 2 HF + F = HF 2 Si HF = SiF 4 + H 2 Al F 3 = AlF 6 Di conseguenza è opportuno evitare di conservare soluzioni di fluoruro in recipienti di vetro, ed effettuare la determinazione del fluoruro in presenza di un complessante per i metalli interferenti (Al 3+, Fe 3+, fino a 3 ppm) come ad esempio citrato o CDTA. Se la concentrazione di fluoruro nel campione non supera i 10 ppm non si hanno perdite di fluoruro per associazione. Per evitare errori dovuti alla variazione di tra la fase della calibrazione e quella delle misure F incognite, tutte le misure vengono effettuate in un ambiente a forza ionica tamponata. Ciò viene realizzato aggiungendo il TISAB (Total Ionic Strength Adjustment Buffer) a tutte le soluzioni. Il TISAB ha ph 5.0 e forza ionica 1.75 M, ed è così composto: NaCl 1.0 M acido acetico 0.25 M acetato di sodio 0.75 M citrato di sodio M Campioni e soluzioni standard vanno diluiti 1:1 con il TISAB. Si può anche utilizzare il TISAB III (con CDTA), 8 volte più concentrato del precedente, 1 parte + 9 di campione, riducendo così la diluizione. Il metodo ha un intervallo di linearità tra 0.1 e 1000 ppm di F ( M). La misura con elettrodo ionoselettivo è una misura potenziometrica, dunque condotta in quasi totale assenza di corrente nel circuito, ed in presenza di un elettrodo di riferimento. Tale riferimento viene talvolta chiamato "esterno", per distinguerlo dal riferimento "interno" presente nell'elettrodo ionoselettivo. L accuratezza dell analisi dipende da molte variabili. Tra queste, oltre agli usuali errori nelle procedure analitiche (di pesata, volumetrici, purezza dei reagenti, ecc.) sono da prendere in considerazione gli errori dovuti all uso di un elettrodo ionoselettivo. Questi coinvolgono l elettrodo di misura, l elettrodo di riferimento, il potenziale di giunto liquido, il potenziometro, la temperatura e l equazione di Nernst. Derivando l equazione di Nernst rispetto alla concentrazione si ottiene: de dc C mv a 25 C 26

27 per cui un errore di 1 mv nella lettura del potenziale comporta un errore sulla concentrazione del 4 %. Se il millivoltmetro ha un accuratezza di 0.1 mv, l errore è dell ordine di alcuni decimi di millivolt, e quindi l'errore sulla concentrazione è apprezzabilmente inferiore al 4 %, purché gli elettrodi di misura e di riferimento siano di buona qualità e la temperatura sia controllata al grado centigrado. Parte sperimentale Reagenti, frasi di rischio e di sicurezza Cloruro di sodio (-) acido acetico (C, R10, R35, S23, S26, S45) acetato di sodio (S22, S23, S24/25) citrato di sodio (-) fluoruro di sodio essiccato in stufa per 2 ore a 110 C (T, R25, R32, R36/38, S22, S36, S45) Vetreria spruzzetta vetrini da orologio pinzetta e spatolina imbuto per buretta e imbuto per matraccio matracci da 100 ml in plastica 27

28 matraccio in vetro da 250 ml matraccio in plastica da 500 ml matraccio in plastica da 250 ml cilindro da 250 ml bicchieri in plastica alti e stretti da 100, 150 o 250 ml bicchiere in vetro da 250 ml pipette tarate da 5, 25 e 50 ml micropipette e relativi puntali buretta da 25 ml Apparecchiature elettrodo ionoselettivo al fluoruro elettrodo di riferimento millivoltmetro agitatore con ancoretta magnetica Procedimento 1. Preparare 500 ml di TISAB con NaCl, acido acetico, acetato di sodio e citrato di sodio in modo da realizzare le seguenti concentrazioni: NaCl 1.0 M, acido acetico 0.25 M, acetato di sodio 0.75 M e citrato di sodio M. 2. Preparare una soluzione standard da 1000 ppm (mg/l di F, non di sale!) con NaF (100 ml). Preparare poi due soluzioni diluite da 1 e 10 ppm (100 ml) e una da 50 ppm (500 ml); conservare in recipienti di plastica (dove sono stabili per diversi mesi). 3. Preparazione del campione di colluttorio. A causa della presenza di tensioattivi, per evitare la formazione di eccessiva schiuma è opportuno diluire il campione nel seguente modo. Porre 125 ml di TISAB in un matraccio di plastica da 250 ml. Aggiungere acqua MilliQ fin quasi a portare a volume, lasciando lo spazio per il colluttorio. Calcolare la quantità di colluttorio da aggiungere (ad esempio 2.5 ml se la concentrazione dichiarata è 225 ppm di F ; se la concentrazione fosse diversa, modificare opportunamente la quantità di colluttorio prelevato). Aggiungere il colluttorio, portare a volume e mescolare. Nel frattempo procedere alla calibrazione dell elettrodo. 28

29 3bis. In alternativa Preparazione del campione di dentifricio. Pesare con bilancia analitica 500 mg di dentifricio direttamente in bicchiere di plastica da 250 ml. Aggiungere 125 ml di TISAB, disperdere bene con una bacchetta di vetro in modo da facilitare la dissoluzione del fluoruro, trasferire quantitativamente in bicchiere di vetro, e bollire per 2 min. Lasciar raffreddare, trasferire quantitativamente in un matraccio da 250 ml e diluire portando a volume con acqua MilliQ. Nel frattempo procedere alla calibrazione dell elettrodo. 4. Taratura dell elettrodo per 2 punti. Trasferire 25 ml di TISAB e 25 ml di soluzione di F da 1 ppm in un bicchiere da 100 ml e aggiungere un ancoretta magnetica. Inserire gli elettrodi puliti in modo che siano sufficientemente immersi e collegarli al millivoltmetro. Dopo che l elettrodo si è stabilizzato (1 3 min.) leggere la f.e.m. e prenderne nota. Ripetere la procedura con la soluzione da 10 ppm di F, dopo aver sciacquato e asciugato gli elettrodi. 5. Procedere con la taratura su più punti (retta di calibrazione esterna dell elettrodo). Trasferire 25 ml di TISAB in un bicchiere da 150 o 250 ml (alto e stretto) aggiungere 25 ml di acqua MilliQ e un ancoretta magnetica. Inserire gli elettrodi puliti in modo che siano sufficientemente immersi e collegarli al millivoltmetro. Costruire una retta di taratura per l elettrodo con almeno 5 punti, aggiungendo con una buretta successive aliquote crescenti di soluzione standard di fluoruro da 50 ppm alla soluzione iniziale (per esempio aggiungere 0.5, 1.0, 2.0, 6.0 ed infine altri 12.0 ml totali). Dopo ogni aggiunta attendere che l elettrodo si sia stabilizzato e leggere la f.e.m.. Ripetere la taratura per altre due volte, rinnovando ogni volta la soluzione iniziale. Dopo ogni taratura, gli elettrodi devono essere risciacquati con acqua MilliQ e asciugati con la carta, senza strofinare. 6. Analisi dei campioni. Trasferire 50 ml di campione in un bicchiere di plastica alto e stretto da 150 o 250 ml, immergere gli elettrodi e l ancoretta magnetica; collegare gli elettrodi al millivoltmetro. Dopo che l elettrodo si è stabilizzato leggere e registrare il valore di f.e.m. (misura diretta della f.e.m.). Procedere poi con le aggiunte standard di soluzione da 50 ppm di NaF, leggendo la f.e.m. dopo stabilizzazione del segnale. Effettuare almeno 3 aggiunte di 1.0 ml ciascuna, verificando che l incremento complessivo del potenziale sia di almeno 20 mv (altrimenti aumentare l'entità delle aggiunte). Ripetere il procedimento per 2 altre aliquote di campione (misura iniziale e aggiunte standard). 29

ISTITUTO TECNICO AGRARIO Carlo Gallini

ISTITUTO TECNICO AGRARIO Carlo Gallini DETERMINAZIONE DEL FOSDORO ASSIMILABILE COME P2O5 METODO OLSEN PRINCIPIO Il fosforo viene estratto con una soluzione di NaHCO 3 0.5 N (ph 8.5). Sull estratto il fosforo viene dosato per via spettrofotometrica

Dettagli

Dissociazione elettrolitica

Dissociazione elettrolitica Dissociazione elettrolitica Le sostanze ioniche si solubilizzano liberando ioni in soluzione. La dissociazione elettrolitica è il processo con cui un solvente separa ioni di carica opposta e si lega ad

Dettagli

ESPERIENZE DI LABORATORIO

ESPERIENZE DI LABORATORIO ESPERIENZE DI LABORATORIO Determinazione dello zinco nei capelli..1 Determinazione di anioni inorganici presenti in acque potabili 4 Determinazione degli acidi grassi in lipidi di origine naturale..6 Determinazione

Dettagli

Analisi di Controllo di un Acqua Minerale Naturale

Analisi di Controllo di un Acqua Minerale Naturale Analisi di Controllo di un Acqua Minerale aturale ITODUZIOE Le acque potabili possono essere in diverse tipologie: si definiscono acque destinate al consumo umano, quelle acque rese potabili dopo aver

Dettagli

4001 Trans-esterificazione dell olio di ricino a estere metilico dell acido ricinoleico

4001 Trans-esterificazione dell olio di ricino a estere metilico dell acido ricinoleico 4001 Trans-esterificazione dell olio di ricino a estere metilico dell acido ricinoleico lio di ricino + MeH NaMe H Me CH 4 (32.0) C 19 H 36 3 (312.5) Classificazione Tipo di reazione e classi di sostanze

Dettagli

Metodo III.1. Determinazione dell umidità. 1. Determinazione dell umidità nei fertilizzanti che non contengono sostanze volatili diverse dall acqua

Metodo III.1. Determinazione dell umidità. 1. Determinazione dell umidità nei fertilizzanti che non contengono sostanze volatili diverse dall acqua METODI III METODI DI DETERMINAZIONE DELL UMIDITA, GRANULOMETRIA, ph e SALINITA Metodo III.1 Determinazione dell umidità 1. Determinazione dell umidità nei fertilizzanti che non contengono sostanze volatili

Dettagli

ANALISI CHIMICO FARMACEUTICA I

ANALISI CHIMICO FARMACEUTICA I Prof. Gianluca Sbardella : 089 962650 : gsbardella@unisa.it NORME GENERALI SUL COMPORTAMENTO IN LABORATORIO Ordine e concentrazione Conoscenza del procedimento analitico Uso corretto dell attrezzatura

Dettagli

Analisi della FU XII Ed. SAGGIO LIMITE PER I SOLFATI

Analisi della FU XII Ed. SAGGIO LIMITE PER I SOLFATI 2.4.13. SOLFATI Analisi della FU XII Ed. SAGGIO LIMITE PER I SOLFATI Tutte le soluzioni usate in questo saggio devono essere preparate con acqua distillata R. Aggiungere 3 ml di una soluzione (250 g/l)

Dettagli

DETERMINAZIONE DEL TENORE DI MATERIA SECCA (% p/p)

DETERMINAZIONE DEL TENORE DI MATERIA SECCA (% p/p) DETERMINAZIONE DEL TENORE DI MATERIA SECCA (% p/p) Il contenuto della materia secca varia in base al tipo di latte; quello vaccino é compreso tra 11 e 13 % p/p. Apparecchiature: Bilancia analitica (0,1

Dettagli

4029 Sintesi del dodecil fenil etere da bromododecano e fenolo

4029 Sintesi del dodecil fenil etere da bromododecano e fenolo 4029 Sintesi del dodecil fenil etere da bromododecano e fenolo OH C 12 H 25 Br (249.2) Br + NaOH (40.0) Adogen 464 C 25 H 54 ClN (404.2) C 6 H 6 O (94.1) C 18 H 30 O (262.4) O + NaBr (102.9) Classificazione

Dettagli

Si definisce potabile un'acqua limpida, inodore, insapore, incolore e innocua, priva di microrganismi patogeni e sostanze chimiche nocive per l'uomo".

Si definisce potabile un'acqua limpida, inodore, insapore, incolore e innocua, priva di microrganismi patogeni e sostanze chimiche nocive per l'uomo. LE ACQUE POTABILI Si definisce potabile un'acqua limpida, inodore, insapore, incolore e innocua, priva di microrganismi patogeni e sostanze chimiche nocive per l'uomo". I dati più significanti per la valutazione

Dettagli

TECNICHE DI BASE PER LA SEPARAZIONE DEI COMPONENTI DI UNA MISCELA

TECNICHE DI BASE PER LA SEPARAZIONE DEI COMPONENTI DI UNA MISCELA TECNICHE DI BASE PER LA SEPARAZIONE DEI COMPONENTI DI UNA MISCELA CENTRIFUGAZIONE La centrifugazione è un processo che permette di separare una fase solida immiscibile da una fase liquida o due liquidi

Dettagli

Trigliceride (e 3 molecole d'acqua)

Trigliceride (e 3 molecole d'acqua) Universit egli Studi di Parma - Scienze e Tecnologie himiche 1 DETEMINAZINE DEI GASSI IN LI ALIMENTAI I trigliceridi I grassi (o meglio i lipidi) sono costituenti essenziali di moltissimi alimenti. In

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

La percentuale massa/volume (%m/v) indica la quantità di soluto espressa in grammi presente in 100 ml di soluzione.

La percentuale massa/volume (%m/v) indica la quantità di soluto espressa in grammi presente in 100 ml di soluzione. La concentrazione delle soluzioni Le soluzioni sono costituite da quantità molto variabili dei loro componenti: se vogliamo fornire una indicazione precisa circa la loro composizione, è importante conoscere

Dettagli

DETERMINAZIONE DEL GRADO DI ACIDITÀ DI UN ACETO COMMERCIALE

DETERMINAZIONE DEL GRADO DI ACIDITÀ DI UN ACETO COMMERCIALE DETERMINAZIONE DEL GRADO DI ACIDITÀ DI UN ACETO COMMERCIALE L esperienza consiste nel misurare il grado di acidità di un aceto, acquistando i concetti di titolazione acido-base, punto di equivalenza, indicatore

Dettagli

LA CHIMICA DEGLI ALIMENTI

LA CHIMICA DEGLI ALIMENTI Sommario LA CHIMICA DEGLI ALIMENTI LA CHIMICA DEGLI ALIMENTI... 1 RICERCA DELLA VITAMINA C... 2 Metodo Qualitativo... 2 Metodo Quantitativo... 2 RICERCA DEGLI ZUCCHERI... 5 Metodo Qualitativo... 5 Metodo

Dettagli

DETERMINAZIONE DEL GRADO DI ACIDITÀ DI UN ACETO COMMERCIALE

DETERMINAZIONE DEL GRADO DI ACIDITÀ DI UN ACETO COMMERCIALE DETERMINAZIONE DEL GRADO DI ACIDITÀ DI UN ACETO COMMERCIALE L esperienza consiste nel misurare il grado di acidità di un aceto, acquistando i concetti di titolazione acido-base, punto di equivalenza, indicatore

Dettagli

Esperienza A: idrofilicità e idrofobicità

Esperienza A: idrofilicità e idrofobicità Esperienza A: idrofilicità e idrofobicità Obiettivo: Fare osservare che alcune sostanze, mescolate all'acqua, danno luogo a soluzioni omogenee mentre altre danno miscele eterogenee. Dalla descrizione delle

Dettagli

ATTREZZATURA DI LABORATORIO

ATTREZZATURA DI LABORATORIO ATTREZZATURA DI LABORATORIO IN GENERALE RICORDIAMO CHE 1) il vetro pyrex non reagisce chimicamente con altre sostanze tranne che con l acido fluoridrico se riscaldato non si spacca 2) gli strumenti in

Dettagli

Piano Lauree Scientifiche 2010 2012 Area Chimica Università di Bologna Facoltà di Chimica Industriale. Laboratori didattici dei Corsi di Laurea

Piano Lauree Scientifiche 2010 2012 Area Chimica Università di Bologna Facoltà di Chimica Industriale. Laboratori didattici dei Corsi di Laurea Chimica Industriale Bologna Faenza Rimini BOLOGNA La Chimica nella vita di tutti i giorni è scienza per il futuro Dr. ELENA STROCCHI elena.strocchi@unibo.it Tel. 051 2093645 FAENZA La Chimica e i Materiali:

Dettagli

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica)

Acidi e basi. HCl H + + Cl - (acido cloridrico) NaOH Na + + OH - (idrossido di sodio; soda caustica) Acidi e basi Per capire che cosa sono un acido e una base dal punto di vista chimico, bisogna riferirsi ad alcune proprietà chimiche dell'acqua. L'acqua, sia solida (ghiaccio), liquida o gassosa (vapore

Dettagli

DETERMINAZIONE DEL PUNTO DI FINE TITOLAZIONE MEDIANTE METODI CHIMICO-FISICI

DETERMINAZIONE DEL PUNTO DI FINE TITOLAZIONE MEDIANTE METODI CHIMICO-FISICI DETERMINAZIONE DEL PUNTO DI FINE TITOLAZIONE MEDIANTE METODI CHIMICO-FISICI - si sfrutta una proprietà chimico-fisica o fisica che varia nel corso della titolazione - tale proprietà è in genere proporzionale

Dettagli

2.13 TITOLAZIONI POTENZIOMETRICHE CON IL METODO DI GRAN

2.13 TITOLAZIONI POTENZIOMETRICHE CON IL METODO DI GRAN 2 Analisi chimica strumentale 47 Lo stesso accade per le titolazioni conduttimetriche. 48 Queste misure, fra l altro, risultano anche più veloci di quelle effettuate vicino al punto di equivalenza perché

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Esame di Chimica Analitica e Complementi di Chimica Modulo di Chimica Analitica 8 Novembre 2012

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Esame di Chimica Analitica e Complementi di Chimica Modulo di Chimica Analitica 8 Novembre 2012 Modulo di Chimica Analitica 8 Novembre 2012 1. Una soluzione viene preparata sciogliendo1210 mg di K 3 Fe(CN) 6 in 775 ml di acqua. Calcolare: a) la concentrazione analitica di K 3 Fe(CN) 6 b) la concentrazione

Dettagli

DISTILLAZIONE e ANALISI MERCEOLOGICHE

DISTILLAZIONE e ANALISI MERCEOLOGICHE DISTILLAZIONE e ANALISI MERCEOLOGICHE ANNA M. DI MARIA Determinazione del grado alcolico del vino (distillazione semplice) pallone di ebollizione da 250 ml tubo adduttore con bolla di sicurezza refrigerante

Dettagli

ITIS Castelli - Dipartimento di Chimica - a.s. 2010/11

ITIS Castelli - Dipartimento di Chimica - a.s. 2010/11 1 Nei laboratori di Chimica dell I.T.I.S. Castelli di Brescia sono stati eseguiti dei test miranti a determinare il residuo di calcinazione (cenere) sui campioni di lolla di riso puri o addizionati con

Dettagli

Metodo per la determinazione di Ibuprofene in acque superficiali, sotterranee e di scarico.

Metodo per la determinazione di Ibuprofene in acque superficiali, sotterranee e di scarico. COPIA AD USO ESCLUSIVO DI. Progetto EMAS di Distretto finalizzato all Attestato APO (Ambiti Produttivi Omogenei) e al supporto delle singole organizzazioni dei comparti chimico farmaceutico operanti nel

Dettagli

4025 Sintesi del 2-iodopropano dal 2-propanolo

4025 Sintesi del 2-iodopropano dal 2-propanolo 4025 Sintesi del 2-iodopropano dal 2-propanolo OH I + 1/2 I 2 + 1/3 P x + 1/3 P(OH) 3 C 3 H 8 O (60.1) (253.8) (31.0) C 3 H 7 I (170.0) (82.0) Classificazione Tipo di reazione e classi di sostanze Sostituzione

Dettagli

ESTRAZIONE ED IDENTIFICAZIONE DI UN OLIO DA UN PRODOTTO ALIMENTARE

ESTRAZIONE ED IDENTIFICAZIONE DI UN OLIO DA UN PRODOTTO ALIMENTARE ESTRAZIONE ED IDENTIICAZIONE DI UN OLIO DA UN PRODOTTO ALIMENTARE I trigliceridi I grassi (o meglio i lipidi) sono costituenti essenziali di moltissimi alimenti. In alcuni di essi (olio, burro, margarina)

Dettagli

RISOLUZIONE OIV-OENO 487-2013 REVISIONE DELLA MONOGRAFIA SULLA MISURA DELL ATTIVITÀ DELLA CINNAMIL ESTERASI NEI PREPARATI ENZIMATICI (OIV-OENO 6-2007)

RISOLUZIONE OIV-OENO 487-2013 REVISIONE DELLA MONOGRAFIA SULLA MISURA DELL ATTIVITÀ DELLA CINNAMIL ESTERASI NEI PREPARATI ENZIMATICI (OIV-OENO 6-2007) RISOLUZIONE OIV-OENO 487-2013 REVISIONE DELLA MONOGRAFIA SULLA MISURA DELL ATTIVITÀ DELLA CINNAMIL ESTERASI NEI PREPARATI ENZIMATICI (OIV-OENO 6-2007) L ASSEMBLEA GENERALE, Visto l articolo 2, paragrafo

Dettagli

LE SOLUZIONI 1.molarità

LE SOLUZIONI 1.molarità LE SOLUZIONI 1.molarità Per mole (n) si intende una quantità espressa in grammi di sostanza che contiene N particelle, N atomi di un elemento o N molecole di un composto dove N corrisponde al numero di

Dettagli

BROMURO, CLORITO, CLORURO, FLUORURO, FOSFATO, IODURO, NITRATO, NITRITO, SOLFATO: METODO PER CROMATOGRAFIA IONICA ISS.CBB.037.REV00

BROMURO, CLORITO, CLORURO, FLUORURO, FOSFATO, IODURO, NITRATO, NITRITO, SOLFATO: METODO PER CROMATOGRAFIA IONICA ISS.CBB.037.REV00 BROMURO, CLORITO, CLORURO, FLUORURO, FOSFATO, IODURO, NITRATO, NITRITO, SOLFATO: METODO PER CROMATOGRAFIA IONICA ISS.CBB.037.REV00 0. Generalità e definizioni Gli anioni bromuro, clorito, cloruro, fluoruro,

Dettagli

LABORATORIO PLS CHIMICA DEI MATERIALI SINTESI DI NANOGOLD

LABORATORIO PLS CHIMICA DEI MATERIALI SINTESI DI NANOGOLD PIANO NAZIONALE LAUREE SCIENTIFICHE (PNLS1) la scienza per una migliore qualità della vita LABORATORIO PLS CHIMICA DEI MATERIALI SINTESI DI NANOGOLD Relazione LAB PLS Chimica dei Materiali 01-07-2011 pag.

Dettagli

DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto:

DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto: Richiami di Chimica DENSITA La densità è una grandezza fisica che indica la massa, di una sostanza o di un corpo, contenuta nell unità di volume; è data dal rapporto: d = massa / volume unità di misura

Dettagli

Filtrazione semplice con imbuto.

Filtrazione semplice con imbuto. Filtrazione semplice con imbuto. Se si dispone di carta da filtro in fogli quadrati di 60 cm di lato, occorre tagliarli in 16 parti. Prendere una quadrato di carta da filtro di 15 cm di lato e piegarlo

Dettagli

2) Calcolare la molarità di una soluzione di acido solforico al 17%,d = 1.12 g/ml

2) Calcolare la molarità di una soluzione di acido solforico al 17%,d = 1.12 g/ml Bari,11 gennaio 1999 Compito di analisi dei farmaci I 1) 1 ml di H 2 O 2 viene titolato con KMnO 4. Sono necessari 18.1 ml. La soluzione di KMnO 4 è 0.1023 N e la densità dell acqua ossigenata è 1.01 g/ml.

Dettagli

MICROELEMENTI CON TITOLO INFERIORE OD UGUALE AL 10% Metodo IX.1. Estrazione dei microelementi totali

MICROELEMENTI CON TITOLO INFERIORE OD UGUALE AL 10% Metodo IX.1. Estrazione dei microelementi totali METODI IX METODI DI DETERMINAZIONE DEI MICROELEMENTI E DEI METALLI PESANTI MICROELEMENTI CON TITOLO INFERIORE OD UGUALE AL 10% Metodo IX.1 Estrazione dei microelementi totali 1. Oggetto Il presente documento

Dettagli

REAZIONI ESOTERMICHE ED ENDOTERMICHE

REAZIONI ESOTERMICHE ED ENDOTERMICHE REAZIONI ESOTERMICHE ED ENDOTERMICHE Obiettivo di questo esperimento è confrontare l effetto termico di 0,1 moli di diverse sostanze ioniche solide quando vengono sciolte in una stessa quantità di acqua.

Dettagli

ACIDI E BASI IN CASA. Scheda studente n.1

ACIDI E BASI IN CASA. Scheda studente n.1 Scheda studente n.1 Come interagisce ciascun liquido con la polvere di marmo? Seguite le istruzioni, osservate con attenzione ciò che accade e completate la tabella. polvere di marmo e le seguenti sostanze:

Dettagli

Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni

Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni Corso di Laboratorio di Chimica Generale Esperienza 6: ph, sua misura e applicazioni Una delle più importanti proprietà di una soluzione acquosa è la sua concentrazione di ioni idrogeno. Lo ione H + o

Dettagli

La combustione. Docente: prof.ssa Lobello Carmela

La combustione. Docente: prof.ssa Lobello Carmela La combustione Percorso didattico realizzato dalla classe II D Istituto d Istruzione secondaria di I grado S Francesco d Assisi Francavilla Fontana (Br) Docente: prof.ssa Lobello Carmela Perché la combustione?

Dettagli

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI

TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI TAVOLA DI PROGRAMMAZIONE PER GRUPPI DIDATTICI MATERIA: CHIMICA CLASSI: PRIME I II QUADRIMESTRE Competenze Abilità/Capacità Conoscenze* Attività didattica Strumenti Tipologia verifiche Osservare, descrivere

Dettagli

Cod. EM6U4. Prove di stabilità dei Vini

Cod. EM6U4. Prove di stabilità dei Vini Cod. EM6U4 Prove di stabilità dei Vini Test di tenuta all aria Operazione: Prelevare 1 bicchiere di vino da testare; lasciare all aria per 12 24 ore; Vino limpido, quasi invariato, senza depositi; giudizio:

Dettagli

1 a e 2 esperienza di laboratorio: SEPARAZIONE DI UNA MISCELA A TRE COMPONENTI PER ESTRAZIONE

1 a e 2 esperienza di laboratorio: SEPARAZIONE DI UNA MISCELA A TRE COMPONENTI PER ESTRAZIONE 1 a e 2 esperienza di laboratorio: SEPARAZIONE DI UNA MISCELA A TRE COMPONENTI PER ESTRAZIONE 2014/2015 1 Prima di iniziare ESTRAZIONE: Tecnica utilizzata per separare il prodotto organico desiderato da

Dettagli

A) Preparazione di una soluzione di NaOH 0.05 M

A) Preparazione di una soluzione di NaOH 0.05 M UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II A.A. 2015/16 Laurea triennale in CHIMICA ANALITICA I E LABORATORIO CHIMICA INDUSTRIALE Preparazione e standardizzazione di una soluzione di Esercitazione n

Dettagli

CO 2 aq l anidride carbonica disciolta, reagendo con l'acqua, forma acido carbonico secondo la reazione:

CO 2 aq l anidride carbonica disciolta, reagendo con l'acqua, forma acido carbonico secondo la reazione: DUREZZA DELLE ACQUE. Quando si parla di durezza di un acqua ci si riferisce fondamentalmente alla quantità di ioni calcio e di ioni magnesio disciolti in un certo volume di tale acqua. Ad eccezione delle

Dettagli

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA

LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA LA MOLE : UN UNITA DI MISURA FONDAMENTALE PER LA CHIMICA Poiché è impossibile contare o pesare gli atomi o le molecole che formano una qualsiasi sostanza chimica, si ricorre alla grandezza detta quantità

Dettagli

SCALA DEI PESI ATOMICI RELATIVI E MEDI

SCALA DEI PESI ATOMICI RELATIVI E MEDI SCALA DEI PESI ATOMICI RELATIVI E MEDI La massa dei singoli atomi ha un ordine di grandezza compreso tra 10-22 e 10-24 g. Per evitare di utilizzare numeri così piccoli, essa è espressa relativamente a

Dettagli

Capitolo 7. Le soluzioni

Capitolo 7. Le soluzioni Capitolo 7 Le soluzioni Come visto prima, mescolando tra loro sostanze pure esse danno origine a miscele di sostanze o semplicemente miscele. Una miscela può essere omogenea ( detta anche soluzione) o

Dettagli

Laboratorio di Chimica Analitica II

Laboratorio di Chimica Analitica II Università degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale, anno accademico 2009/2010 Corso di Laurea in Chimica Laboratorio di Chimica Analitica II Prof.ssa Colombini Davide Ceratti

Dettagli

bicchieri di varia dimensione con un beccuccio per facilitare i travasi.

bicchieri di varia dimensione con un beccuccio per facilitare i travasi. Per contenere, prelevare e travasare liquidi e altre sostanze è indispensabile utilizzare strumenti di vetro che consentono un facile controllo visivo, si puliscono facilmente e non si corrodono. Per i

Dettagli

4009 Sintesi dell acido adipico dal cicloesene

4009 Sintesi dell acido adipico dal cicloesene NP 4009 Sintesi dell acido adipico dal cicloesene Na W 4 H + 4 H H H + 4 H Aliquat 336 C 6 H 10 Na W 4 H (39.9) C 6 H 10 4 (8.) (34.0) C 5 H 54 ClN (404.) (146.1) Classificazione Tipo di reazione e classi

Dettagli

Trasformazioni materia

Trasformazioni materia REAZIONI CHIMICHE Trasformazioni materia Trasformazioni fisiche (reversibili) Trasformazioni chimiche (irreversibili) È una trasformazione che non produce nuove sostanze È una trasformazione che produce

Dettagli

Ke = ] = Kw = 10 = 10-7 moli/litro, ed in base a quanto avevamo affermato in precedenza: [H + ] = [OH - ] = 10-7 moli/litro.

Ke = ] = Kw = 10 = 10-7 moli/litro, ed in base a quanto avevamo affermato in precedenza: [H + ] = [OH - ] = 10-7 moli/litro. Prodotto ionico dell acqua e ph Prodotto ionico dell acqua L acqua è un elettrolita debolissimo e si dissocia secondo la reazione: H 2 O H + + OH - La costante di equilibrio dell acqua è molto piccola

Dettagli

Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria

Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Corso di laurea in Ingegneria Meccanica Corso di Tecnologie di Chimica Applicata LA CORROSIONE Nei terreni

Dettagli

MISURE DI VOLUME. Per versare. Per contenere

MISURE DI VOLUME. Per versare. Per contenere MISURE DI VOLUME Unità di volume: LITRO (L) (IUPAC: dm 3 ) ml : 10-3 L = cm 3 = cc ml : 10-6 L Il volume dipende dalla TEMPERATURA. I contenitori in vetro hanno coefficienti di espansione molto piccoli;

Dettagli

ACETATO DI ISOBUTILE urinario in GC-FID Codice GC02010

ACETATO DI ISOBUTILE urinario in GC-FID Codice GC02010 ACETATO DI ISOBUTILE urinario in GC-FID Codice GC BIOCHIMICA L acetato di isobutile è comunemente usato come solvente, nelle lacche e nella nitrocellulosa. E un liquido molto infiammabile. Il metodo proposto

Dettagli

P ARAMETRI FISICI, CHIMICI E CHIMICO-FISICI

P ARAMETRI FISICI, CHIMICI E CHIMICO-FISICI 2100. Temperatura La misura della temperatura consente di controllare il problema dell inquinamento conseguente all immissione di energia termica nei corpi idrici. A differenza di altri parametri la normativa

Dettagli

Laura Beata Classe 4 B Concorso Sperimento Anch io Silvia Valesano Classe 4 B

Laura Beata Classe 4 B Concorso Sperimento Anch io Silvia Valesano Classe 4 B Laura Beata Classe 4 B Concorso Sperimento Anch io Silvia Valesano Classe 4 B RELAZINI DI LABRATRI (Italiano) Titolo: : Cosa mangiamo veramente? Scopo: 1. Scoprire in quali alimenti ci sono o non ci sono

Dettagli

Equilibri di precipitazione

Equilibri di precipitazione Equilibri di precipitazione Molte sostanze solide sono caratterizzate da una scarsa solubilità in acqua (ad es. tutti i carbonati e gli idrossidi degli elementi del II gruppo) AgCl (a differenza di NaCl)

Dettagli

Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05

Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05 Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05 Dall equazione di Henderson-Hasselbalch (H-H), ph = pka + log ([A - ]/[HA]) si ricava che

Dettagli

La formaldeide: considerazioni tecniche ed analitiche

La formaldeide: considerazioni tecniche ed analitiche Capitolati Tecnici del Pellame Esigenze del produttore ed utilizzatore a confronto La formaldeide: considerazioni tecniche ed analitiche Convegno AICC Toscana Venerdì 30 Maggio 2014 Domenico Castiello

Dettagli

Elettroforesi. Elettroforesi: processo per cui molecole cariche si separano in un campo elettrico a causa della loro diversa mobilita.

Elettroforesi. Elettroforesi: processo per cui molecole cariche si separano in un campo elettrico a causa della loro diversa mobilita. Elettroforesi Elettroforesi: processo per cui molecole cariche si separano in un campo elettrico a causa della loro diversa mobilita. A qualunque ph diverso dal pi le proteine hanno una carica netta quindi,

Dettagli

MODULO 3 - LA MATERIA: COMPOSIZIONE E TRASFORMAZIONI

MODULO 3 - LA MATERIA: COMPOSIZIONE E TRASFORMAZIONI MODULO 3 - LA MATERIA: COMPOSIZIONE E TRASFORMAZIONI La materia è tutto ciò che ha una massa, energia e occupa spazio, cioè ha un volume; essa si classifica in base alla sua composizione chimica ed in

Dettagli

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO

QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO QUALITÀ E TRATTAMENTO DELL ACQUA DEL CIRCUITO CHIUSO (PARTE 1) FOCUS TECNICO Gli impianti di riscaldamento sono spesso soggetti a inconvenienti quali depositi e incrostazioni, perdita di efficienza nello

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

MATERIA: tutto ciò che ha una MASSA, occupa un VOLUME e ha ENERGIA

MATERIA: tutto ciò che ha una MASSA, occupa un VOLUME e ha ENERGIA La materia La materia MATERIA: tutto ciò che ha una MASSA, occupa un VOLUME e ha ENERGIA Il mondo che ci circonda è costituito da materia. La chimica studia le proprietà della materia e i suoi cambiamenti.

Dettagli

Il test di cessione: modalità di esecuzione e criticità dei limiti

Il test di cessione: modalità di esecuzione e criticità dei limiti Il test di cessione: modalità di esecuzione e criticità dei limiti Nicola Mondini Convegno sul tema: La qualità degli aggregati riciclati: i controlli ambientali ed i controlli prestazionali Ferrara, 18

Dettagli

miscela di reazione miscela di reazione

miscela di reazione miscela di reazione Alla fine della reazione: miscela di reazione 1.Si tratta con acqua o acqua e ghiaccio 2.Si aggiunge un solvente organico immiscibile e si agita Si lava (estrae) con una base Si lava (estrae) con un acido

Dettagli

Progetto lauree scientifiche 2015. da una tazzina di caffè. Pavia 1-11 settembre 2015. di Riccardo Scarabello e Damiano Duminuco

Progetto lauree scientifiche 2015. da una tazzina di caffè. Pavia 1-11 settembre 2015. di Riccardo Scarabello e Damiano Duminuco Progetto lauree scientifiche 2015 da una tazzina di caffè di Riccardo Scarabello e Damiano Duminuco Pavia 1-11 settembre 2015 le nostre esperienze Estrazione della caffeina Estrazione dell olio dal caffè:

Dettagli

Campionamento ed analisi di composti volatili in matrici alimentari

Campionamento ed analisi di composti volatili in matrici alimentari Campionamento ed analisi di composti volatili in matrici alimentari Lo studio dei composti volatili di un alimento ha l obiettivo di fornirne la caratterizzazione del profilo aromatico, permettendo in

Dettagli

BILANCI DI ENERGIA. Capitolo 2 pag 70

BILANCI DI ENERGIA. Capitolo 2 pag 70 BILANCI DI ENERGIA Capitolo 2 pag 70 BILANCI DI ENERGIA Le energie in gioco sono di vario tipo: energia associata ai flussi entranti e uscenti (potenziale, cinetica, interna), Calore scambiato con l ambiente,

Dettagli

Esperienza 15: taratura. della termocoppia. Laboratorio di Fisica 1 (II Modulo) A. Baraldi, M. Riccò. Università di Parma. a.a.

Esperienza 15: taratura. della termocoppia. Laboratorio di Fisica 1 (II Modulo) A. Baraldi, M. Riccò. Università di Parma. a.a. Esperienza 15: taratura Università di Parma della termocoppia a.a. 2011/2012 Laboratorio di Fisica 1 (II Modulo) A. Baraldi, M. Riccò Copyright M.Solzi Obiettivi dell esperienza Scopo dell'esperienza è

Dettagli

Stage: Raggio di Sole Laboratorio analisi A.S. 2010-11

Stage: Raggio di Sole Laboratorio analisi A.S. 2010-11 Stage: Raggio di Sole Laboratorio analisi A.S. 2010-11 Loschi Martina Malvermi Raffaele Determinazione delle micotossine Le micotossine sono prodotte da funghi e parassiti presenti nei cereali. In alte

Dettagli

LABORATORIO DI CHIMICA GENERALE E INORGANICA

LABORATORIO DI CHIMICA GENERALE E INORGANICA UNIVERSITA DEGLI STUDI DI MILANO Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Chimica CORSO DI: LABORATORIO DI CHIMICA GENERALE E INORGANICA Docente: Dr. Alessandro Caselli

Dettagli

a cura di : Gaia,Giulia, Lorenzo e Simone 2^ B ( LA MIGLIORE)

a cura di : Gaia,Giulia, Lorenzo e Simone 2^ B ( LA MIGLIORE) a cura di : Gaia,Giulia, Lorenzo e Simone 2^ B ( LA MIGLIORE) I grassi nella piramide alimentare Forniscono molta ENERGIA!!! Danno gusto al cibo Trasportano alcune vitamine o LIPIDI Però se se ne mangiano

Dettagli

Estrazione del DNA. 1. Introduzione

Estrazione del DNA. 1. Introduzione Estrazione del DNA 1. Introduzione L obiettivo di questa esperienza è quello di osservare la molecola degli acidi nucleici, una volta separata dall involucro cellulare in cui è contenuta all interno della

Dettagli

-assicurare il fabbisogno plastico necessario alla riparazione protezione e ricambio dei tessuti.

-assicurare il fabbisogno plastico necessario alla riparazione protezione e ricambio dei tessuti. Il principali compiti derivanti dall assunzione periodica di cibo sono: -assicurare il giusto fabbisogno energetico necessario alla vita ed all attività muscolare (tenendo conto che entrate ed uscite devono

Dettagli

P.D 4 Acqua come solvente P.D 4A Miscugli e separazione di miscugli Schede esperimenti Scuola secondaria di primo grado

P.D 4 Acqua come solvente P.D 4A Miscugli e separazione di miscugli Schede esperimenti Scuola secondaria di primo grado P.D 4 Acqua come solvente P.D 4A Miscugli e separazione di miscugli Schede esperimenti Scuola secondaria di primo grado ESPERIENZA: LE SOLUZIONI 3 bicchierini di plastica trasparenti sale zucchero Riempiamo

Dettagli

ALCOL BUTILICO urinario in GC-FID Codice GC05510

ALCOL BUTILICO urinario in GC-FID Codice GC05510 ALCOL BUTILICO urinario in GC-FID Codice GC00 BIOCHIMICA Il butanolo (o alcol n-butilico) è un alcol che a temperatura ambiente si presenta come un liquido incolore dall'odore alcolico. È un composto infiammabile,

Dettagli

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta

Determinazione della composizione elementare dello ione molecolare. Metodo dell abbondanza isotopica. Misure di massa esatta Determinazione della composizione elementare dello ione molecolare Metodo dell abbondanza isotopica Misure di massa esatta PREMESSA: ISOTOPI PICCHI ISOTOPICI Il picco dello ione molecolare è spesso accompagnato

Dettagli

Analisi delle acque dell isola di Favignana

Analisi delle acque dell isola di Favignana Analisi delle acque dell isola di Favignana Durante le attività svolte al campo scuola nell ambito del progetto Un mare di.. risorse, il nostro gruppo si è occupato di analizzare le acque del mare in diversi

Dettagli

Tipi di reazioni. Reazioni chimiche. Di dissociazione. Di sintesi. Di semplice scambio. Di doppio scambio. Reazioni complesse

Tipi di reazioni. Reazioni chimiche. Di dissociazione. Di sintesi. Di semplice scambio. Di doppio scambio. Reazioni complesse Tipi di reazioni Le reazioni chimiche vengono tradizionalmente classificate a seconda del tipo di trasformazione subita dai reagenti: Reazioni chimiche possono essere Di dissociazione Una sostanza subisce

Dettagli

Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola.

Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola. Una formula molecolare è una formula chimica che dà l'esatto numero degli atomi di una molecola. La formula empirica e una formula in cui il rappporto tra gli atomi e il piu semplice possibil Acqua Ammoniaca

Dettagli

TETRACLOROETILENE Urinario in GC/MS spazio di testa Codice GC15010

TETRACLOROETILENE Urinario in GC/MS spazio di testa Codice GC15010 TETRACLOROETILENE Urinario in GC/MS spazio di testa Codice GC15010 BIOCHIMICA Il Tetracloroetilene, o percloroetilene, è un alogenuro organico. La sua struttura è assimilabile a quella di una molecola

Dettagli

La determinazione quantitativa in microbiologia

La determinazione quantitativa in microbiologia La determinazione quantitativa in microbiologia La determinazione quantitativa è una tecnica microbiologica che permette di verificare il numero di microrganismi presenti in un campione, per unità di peso

Dettagli

Sostanze metallo organiche: determinazioni qualitative

Sostanze metallo organiche: determinazioni qualitative Tartrato acido di Potassio (European Pharmacopoeia IV th ) Identificazione A. GENERICA (Carattere acido). Disciogliere 15 mg di sostanza in 5 ml di acqua, scaldare se necessario. Aggiungere 0,1 ml di rosso

Dettagli

ALCOL PROPILICO urinario in GC-FID Codice GC06510

ALCOL PROPILICO urinario in GC-FID Codice GC06510 ALCOL PROPILICO urinario in GC-FID Codice GC BIOCHIMICA L alcol propilico è un alcol, che a temperatura ambiente si presenta come un liquido incolore dall'odore alcolico. È un composto molto infiammabile,

Dettagli

TECNOLOGIE CHIMICHE INDUSTRIALI, PRINCIPI DI AUTOMAZIONE E DI ORGANIZZAZIONE INDUSTRIALE

TECNOLOGIE CHIMICHE INDUSTRIALI, PRINCIPI DI AUTOMAZIONE E DI ORGANIZZAZIONE INDUSTRIALE PROGRAMMAZIONE DI LABORATORIO DI: TECNOLOGIE CHIMICHE INDUSTRIALI, PRINCIPI DI AUTOMAZIONE E DI ORGANIZZAZIONE INDUSTRIALE allegato 1 Prove meccaniche presso il laboratorio di edilizia Esperienza: Determinazione

Dettagli

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura

Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Il risultato di un analisi chimica è un informazione costituita da: un numero un incertezza un unità di misura Conversione del risultato in informazione utile È necessario fare alcune considerazioni sul

Dettagli

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione)

Esercitazione #5 di Statistica. Test ed Intervalli di Confidenza (per una popolazione) Esercitazione #5 di Statistica Test ed Intervalli di Confidenza (per una popolazione) Dicembre 00 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore (in calorie per grammo) emesso

Dettagli

Esercizi di Chimica (2 a prova in itinere)

Esercizi di Chimica (2 a prova in itinere) Esercizi di Chimica (2 a prova in itinere) 3) Calcolare la normalità (N) di una soluzione ottenuta sciogliendo 3,5 g di H 3 PO 4 in 900 ml di acqua [0,119 N] 4) Quanti grammi di soluto sono contenuti in

Dettagli

STRUMENTI DELL ANALISI CHIMICA

STRUMENTI DELL ANALISI CHIMICA STRUMENTI DELL ANALISI CHIMICA UNITA DI VOLUME L unità fondamentale di volume è il litro (l). Il millilitro (ml) è la millesima parte di un litro ed è largamente usato in tutti i casi in cui il litro è

Dettagli

CENNI DI ELETTROCHIMICA

CENNI DI ELETTROCHIMICA CENNI DI ELETTROCHIMICA Gli elettrodi a membrana sono elettrodi che permettono la determinazione rapida e selettiva, per potenziometria diretta, di numerosi cationi ed anioni. Il meccanismo di formazione

Dettagli

1 a esperienza: il lievito produce anidride carbonica in presenza di zucchero

1 a esperienza: il lievito produce anidride carbonica in presenza di zucchero 1 a esperienza: il lievito produce anidride carbonica in presenza di zucchero DOMANDA DESTINATARI MATERIALE OCCORRENTE DESCRIZIONE DELL ESPERIMENTO La formazione di gas avviene in assenza di zucchero?

Dettagli

Globeseren@: rete di scuole per un futuro sostenibile

Globeseren@: rete di scuole per un futuro sostenibile Globeseren@: rete di scuole per un futuro sostenibile 1 passo:inquadriamo l argomento: ma cos è la terra? Definizione e caratteristiche del suolo Il suolo è lo strato più superficiale della crosta terrestre

Dettagli

IL SISTEMA INTERNAZIONALE DI MISURA

IL SISTEMA INTERNAZIONALE DI MISURA IL SISTEMA INTERNAZIONALE DI MISURA UNITÀ SI Il sistema di misura standard, adottato su scala mondiale, è conosciuto come Système International d Unités. Le unità fondamentali da cui derivano tutte le

Dettagli

MISCUGLI E TECNICHE DI SEPARAZIONE

MISCUGLI E TECNICHE DI SEPARAZIONE MISCUGLI E TECNICHE DI SEPARAZIONE Classe 1^A Grafico Questo documento è solo una presentazione e non deve ritenersi completo se non è accompagnato dalla lezione in classe. Prof. Zarini Marta CLASSIFICAZIONE

Dettagli