4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];"

Transcript

1 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta può strisciare su un piano inclinato di un angolo θ 1. I coefficienti di attrito statico dei piani vale µ S e quello di attrito dinamico vale µ D. Il blocco ha dimensioni trascurabili ed è descrivibile come un punto materiale. La ruota è schematizzabile come un anello di raggio, dato che la massa delle razze della ruota è trascurabile. Si osserva che la ruota sale e il blocco scende. m M θ 1 θ 2 NB: I punti da 1. a 5. sono preliminari in quanto riguardano nozioni estremamente basilari. Se le risposte ai punti da 1. a 5. non risulteranno corrette, i restanti punti non verranno considerati. 1. Quale delle seguenti affermazioni riguardanti il blocco m è corretta? (riscrivere la risposta per esteso e solo sul foglio protocollo, non qui sotto): [2 punti] (a) su m agisce una forza di attrito f att di modulo µ D mg sin θ 1 lungo il piano; (b) su m agisce una forza di attrito f att di modulo µ S mg cos θ 1 lungo il piano; (c) su m agisce una forza di attrito f att di modulo µ D mg cos θ 1 lungo il piano; (d) su m agisce una forza di attrito f att di modulo mg sin θ 1 lungo il piano; 2. Quale delle seguenti affermazioni riguardanti l anello M è corretta? (riscrivere la risposta per esteso e solo sul foglio protocollo, non qui sotto): [2 punti] (a) su M agisce una forza di attrito F att di modulo µ D Mg sin θ 2 lungo il piano; (b) su M agisce una forza di attrito F att lungo il piano; (c) su M non agisce alcuna forza di attrito F att lungo il piano perché il moto dell anello è di puro rotolamento; (d) su M agisce una forza di attrito F att di modulo µ S Mg cos θ 2 lungo il piano; 3. Disegnare le forze che agiscono sul blocco m e scrivere la legge che determina il suo moto lungo il piano di sinistra [2 punti]; 4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 5. Scrivere la legge che determina il moto rotatorio dell anello attorno al centro di massa [2 punti]; 6. isolvere le equazioni ottenute nei punti 3, 4, 5, e determinare (in forma simbolica) l accelerazione a del sistema e la forza di attrito F att che agisce sull anello, in funzione dei parametri m, M, θ 1, θ 2 e µ D [3 punti];

2 2 7. Determinare il valore esplicito di a nel caso particolare in cui m = 3 Kg, M = 1.5 Kg e θ 1 = π/4, θ 2 = π/8 e µ D = 0.2 [1 punto]; 8. Sia L (t 1 ) il momento angolare dell anello rispetto al suo centro di massa ad un certo istante t 1. Determinare (in forma simbolica) la variazione L = L (t 1 + t) L (t 1 ) in un intervallo di tempo t, in funzione dei parametri m, M, θ 1, θ 2, µ D e del raggio dell anello. [4 punti]; (momento d inerzia dell anello rispetto all asse passante per il centro vale I A = M 2 )

3 3 SOLUZIONE 1. Siccome il blocco è un punto materiale che si muove lungo la rampa strisciando, la forza di attrito che il piano esercita su di esso è di tipo dinamico, ed è pari a f att = µ D F p1, = µ D mg cos θ 1 (1) dove F p1, è la componente normale al piano della forza peso. Siccome dal testo sappiamo che il blocco scende, la forza di attrito f att si oppone al moto ed è diretta lungo il piano verso l alto. Pertanto la risposta corretta è c) su m agisce una forza di attrito f att di modulo µ D mg cos θ 1 lungo il piano 2. Sull anello viene esercitata una forza di attrito, altrimenti non rotolerebbe. Inoltre, siccome l anello rotola senza strisciare, il punto di contatto anello-rampa è istantaneamente fermo e dunque la forza di attrito F att che la rampa esercita sull anello è di tipo statico. Il suo valore è un incognita del problema. L unica cosa che possiamo dire è che, essendo il punto di contatto fermo, tale forza incognita non supera la soglia massima, ossia vale che F att µ S Mg cos θ 2, e non possiamo affermare che F att = µ S Mg cos θ 2, che rappresenta solo il valore massimo. Pertanto la risposta corretta è b) su M agisce una forza di attrito F att lungo il piano Osserviamo anzitutto che, siccome il filo è inestensibile, il sistema anello+blocco si muove solidalmente, e la velocità e l accelerazione traslatorie (nelle rispettive direzioni) sono le stesse per l anello e per il blocco. Fissiamo un verso convenzionale per l accelerazione del sistema (il testo suggerisce quello di salita lungo il piano per l anello, e dunque di discesa lungo il piano per il bloco, come mostrato in figura 1). 3. Consideriamo le forze che agiscono sul blocco m. Anzitutto scomponiamo la forza peso nelle componenti parallela al piano e ortogonale al piano: { Fp1, = m g sin θ 1 F p1, = m g cos θ 1 (2) dove la componente normale F p1, è bilanciata dalla reazione vincolare del piano e non ha effetto. Lungo il piano agiscono inoltre su m anche la tensione T del filo (diretta verso l alto) e la forza f att di attrito dinamico (diretta verso l alto perché sappiamo che il blocco scende). L equazione della dinamica per m, lungo il piano, è la seguente mg sin θ 1 T µ D mg cos θ 1 = ma (moto traslatorio di m) (3)

4 4 4. Il centro di massa dell anello si muove con un moto dettato dalla sommatoria di tutte le forze che agiscono sul corpo, come applicate al centro di massa stesso. Consideriamo dunque le forze che agiscono su M. Scomponiamo la forza peso nelle componenti parallela al piano e ortogonale al piano: { Fp2, = M g sin θ 2 (4) F p2, = M g cos θ 2 dove la componenti normale è bilanciata dalla reazione vincolare del piano e non ha effetto. Inoltre, agisce la tensione T del filo (diretta in maniera opposta a quella su M), ed infine sull anello agisce anche la forza di attrito (dato che l anello rotola) che si oppone al moto. Quindi l equazione che determina il moto del centro di massa è Fp1, T f att F p1, T F p2, F p2, F att θ 1 θ 2 Figure 1: Mg sin θ 2 + T F att = Ma (moto traslatorio di m) (5) 5. moto rotatorio dell anello attorno al centro di massa; Si tratta della equazione del moto rotatorio M = d L dt (6) dove M e L sono il momento delle forze e il momento angolare rispetto al sistema di riferimento (peraltro non inerziale) del centro di massa dell anello. Qui osserviamo che per come sono dirette le forze, M e L sono diretti lungo l asse perpendicolare al foglio (verso uscente), attorno a cui avviene la rotazione. Proiettando l equazione vettoriale lungo questa direzione abbiamo M = dl dt (7) L unica forza che applica un momento è quella di attrito (le altre hanno braccio nullo) M = F att (8)

5 5 Il momento angolare lungo l asse ortogonale al piano dell anello (un asse principale) si scrive L = I A ω dl dt = I Aα (9) dove I A è il momento d inerzia dell anello, e α è l accelerazione angolare; siccome il moto dell anello è di puro rotolamento, il punto di contatto è istantaneamente fermo, e dunque vale la relazione α = a (condiz. moto di puro rotolamento) (10) In conclusione, dalle equazioni (7), (8), (9) e (10) ricaviamo che F att = I A a (moto rotatorio di M) (11) 6. Abbiamo dunque ottenuto le seguenti equazioni [(3) (5), e (11)] mg sin θ 1 T µ D mg cos θ 1 = ma Mg sin θ 2 + T F att = Ma F att = I A a che costituisce un sistema di tre equazioni per le tre incognite a, F att e T. isolviamo il sistema di equazioni; portiamo in evidenza T nella prima equazione e dividiamo la terza equazione per, e T = m(g sin θ 1 a µ D g cos θ 1 ) Mg sin θ 2 + T F att = Ma (13) F att = a I A 2 Sostituendo la prima e la terza equazione nella seconda otteniamo (12) Mg sin θ 2 + m(g sin θ 1 a µ D g cos θ 1 ) a I A 2 = Ma g (m sin θ 1 M sin θ 2 µ D m cos θ 1 ) = (m + M + I A 2 )a a = g m sin θ 1 M sin θ 2 µ D m cos θ 1 m + M + I A 2 icordando ora che il momento d inerzia di un anello vale (14) I A = M 2 (15) otteniamo che a = g m sin θ 1 M sin θ 2 µ D m cos θ 1 m + 2M (16)

6 6 Per quanto riguarda l attrito F att, dalla terza delle (13) otteniamo che Sostituendo la (16) si ottiene F att = a I A = Ma (17) 2 F att = Mg m sin θ 1 M sin θ 2 µ D m cos θ 1 m + 2M (18) 7. Sostituendo i valori numerici in (16) otteniamo a = g m sin θ 1 M sin θ 2 µ D m cos θ 1 = m + 2M = 9.81 m 3 Kg / sin π Kg / sin π Kg / cos π 4 s 2 3 Kg / Kg / = 1.84 m s 2 (19) 8. Il momento angolare L dell anello rispetto al suo CM è diretto perpendicolarmente al foglio (verso uscente dato che l anello sale), ed il suo modulo vale L (t) = I A ω(t) dove ω(t) è la velocità angolare istantanea, nel sistema del centro di massa. Il moto rotatorio dell anello attorno al suo centro di massa è un moto circolare uniformemente accelerato. Infatti nel caso che stiamo considerando l accelerazione angolare è costante nel tempo, come si può vedere dal fatto che α = dω dt = a (moto di puro rotolamento) con a costante nel tempo [vedi (16)]. Pertanto la velocità angolare evolve nel tempo come ω(t 1 + t) = ω(t 1 ) + α t = ω(t 1 ) + a t (20) Pertanto la variazione del momento angolare vale all istante t 1 + t è dato da ossia L = L (t 1 + t) L (t 1 ) = = I A (ω(t 1 + t) ω(t 1 )) = = M 2 a t = [uso la (16)] = M 2 g m sin θ 1 M sin θ 2 µ D m cos θ 1 2M + m L = M g m sin θ 1 M sin θ 2 µ D m cos θ 1 2M + m Il risultato può anche essere ottenuto, in maniera equivalente, dall integrazione dell equazione del momento dl dt = M = (21) (22)

7 7 Integriamo tale equazione da t 1 a t 1 + t t1 + t t 1 dl dt dt = L (t 1 + t) L (t 1 ) = t1 + t t 1 t1 + t t 1 M (t) dt M (t) dt Osserviamo che M (t) è in realtà costante nel tempo, dato che M = F att e F att è costante nel tempo [vedi (18)]. Dunque otteniamo che coincide con (22). L = L (t 1 + t) L (t 1 ) = = M t = = F att t = [uso (18)] = M g m sin θ 1 M sin θ 2 µ D m cos θ 1 2M + m t (23)

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti];

1. calcolare l accelerazione del sistema e stabilire se la ruota sale o scende [6 punti]; 1 Esercizio Una ruota di raggio R = 15 cm e di massa M = 8 Kg può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2 = 30 0, ed è collegato tramite un filo inestensibile ad un blocco di

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I 1. La tensione alla quale una lenza si spezza è comunemente detta resistenza della lenza. Si vuole calcolare la resistenza minima T min che deve

Dettagli

Alcuni esercizi di Dinamica

Alcuni esercizi di Dinamica Alcuni esercizi di Dinamica Questi esercizi saranno svolti in aula, pertanto è bene che lo studente provi a svolgerli preventivamente in maniera autonoma. Altri esercizi sono presenti alla fine del Cap.

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 TURNO 1 COMPITO A Un'automobile di massa m=1500 kg viaggia ad una velocità costante v 1 di 35 Km/h. Ad un certo punto inizia ad accelerare

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

FISICA. Serie 11: Dinamica del punto materiale V. Esercizio 1 Legge di Hooke. Esercizio 2 Legge di Hooke. I liceo

FISICA. Serie 11: Dinamica del punto materiale V. Esercizio 1 Legge di Hooke. Esercizio 2 Legge di Hooke. I liceo FISICA Serie : Dinamica del punto materiale V I liceo Esercizio Legge di Hooke Una molla è sottomessa ad una deformazione. I dati riportati nel grafico qui sotto mostrano l intensità della forza applicata

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Riassunto fisica. Introduzione: La seconda legge di Newton =m a

Riassunto fisica. Introduzione: La seconda legge di Newton =m a Statica Introduzione: La seconda legge di Newton =m a F =0 F =0 M ) fissare un riferimento (assi x e y) ) scoporre ogni forza in x e y 3) scegliere il punto in cui calcolare il Movimento (punto + complicato)

Dettagli

4 FORZE FONDAMENTALI

4 FORZE FONDAMENTALI FORZA 4! QUANTE FORZE? IN NATURA POSSONO ESSERE OSSERVATE TANTE TIPOLOGIE DI FORZE DIVERSE: GRAVITA' O PESO, LA FORZA CHE SI ESERCITA TRA DUE MAGNETI O TRA DUE CORPI CARICHI, LA FORZA DEL VENTO O DELL'ACQUA

Dettagli

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I 1 Esercizio Un automobile sfreccia alla velocità costante v A = 180 Km/h lungo una strada, passando per un punto di appostamento di una volante della polizia stradale. La volante, dopo un tempo tecnico

Dettagli

Esercizi sulle Disequazioni

Esercizi sulle Disequazioni Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale

Dettagli

PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) VERIFICA TECNICA

PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) VERIFICA TECNICA PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) COMMITTENTE: ELETTROIMPIANTI AUDEMA - CASTREZZATO (BS) OGGETTO: VERIFICA TECNICA PREMESSE Il sottoscritto

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004 ORSO DI LURE IN SIENZE IOLOGIHE Prova di FISI del 9 novembre 004 1) Una particella di massa m= 0.5 kg viene lanciata dalla base di un piano inclinato O con velocità iniziale v o = 4 m/s, parallela al piano.

Dettagli

Corso di Fisica Generale 1

Corso di Fisica Generale 1 Corso di Fisica Generale 1 corso di laurea in Ingegneria dell'automazione ed Ingegneria Informatica (A-C) 9 lezione (23 / 10 /2015) Dr. Laura VALORE Email : laura.valore@na.infn.it / laura.valore@unina.it

Dettagli

STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE. 2 Principio della Dinamica

STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE. 2 Principio della Dinamica STUDIO DEL MOTO DI UN CORPO SU CUI AGISCE UNA FORZA COSTANTE 2 Principio della Dinamica 1) Considerazione teoriche: il secondo principio della dinamica dice: se ad un corpo in assenza d attrito si applica

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Università degli Studi della Basilicata

Università degli Studi della Basilicata Università degli Studi della Basilicata Facoltà di Agraria - Precorso di Fisica Prof. Roberto Capone TEST DI AUTOVALUTAZIONE Dinamica del punto materiale 1. Un certo oggetto si sta muovendo a velocità

Dettagli

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone

MURI DI SOSTEGNO. a cura del professore. Francesco Occhicone MURI DI SOSTEGNO a cura del professore Francesco Occhicone anno 2014 MURI DI SOSTEGNO Per muro di sostegno si intende un opera d arte con la funzione principale di sostenere o contenere fronti di terreno

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

17. Elettromagnetismo

17. Elettromagnetismo 1 quaioni di Mawell 17. lettromagnetismo Nelle leioni precedenti abbiamo considerato i campi elettrico e magnetico statici, cioè abbiamo considerato fenomeni indipendenti dal tempo. I campi elettrico e

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA BILANCIO DEI VINCOLI ED ANALISI CINEMATICA ESERCIZIO 1 Data la struttura piana rappresentata in Figura 1, sono richieste: - la classificazione della struttura in base alla condizione di vincolo; - la classificazione

Dettagli

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o A A 2 0 11-2 0 1 2 U N I V E R S I TA D E G L I S T U D I D I R O M A T O R V E R G ATA FA C O LTA D I M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E

Dettagli

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo

bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo Momento di una forza Nella figura 1 è illustrato come forze uguali e contrarie possono non produrre equilibrio, bensì una tendenza a ruotare quando vengono applicate in punti diversi di un corpo esteso.

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Corso di Laurea in FARMACIA

Corso di Laurea in FARMACIA Corso di Laurea in FARMACIA 2015 simulazione 1 FISICA Cognome nome matricola a.a. immatric. firma N Evidenziare le risposte esatte Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo.

Dettagli

LA PRIMA LEGGE DI OHM

LA PRIMA LEGGE DI OHM Applichiamo le conoscenze 1. Osserva la seguente tabella relativa alla corrente che attraversa un circuito. V (V) 15 3 45 6 I (A),1,2,3,4 a) Il rapporto tra la differenza di potenziale e intensità di corrente

Dettagli

1 La Geometria delle Masse

1 La Geometria delle Masse 1 La eometria delle Masse 1.1 Baricentri e Momenti Statici Due siste di forze vengono detti equivalenti quando generano la stessa risultante e lo stesso momento risultante rispetto ad un polo qualsiasi.

Dettagli

Appunti di fisica per le 1 classi

Appunti di fisica per le 1 classi I.P.I.A. A. Leone Nola - (NA) Appunti di fisica per le 1 classi Modulo n 2 L equilibrio dei corpi Le macchine semplici - Tel. 081/5222888 E-mail pasgiard@tin.it - Prof. Giardiello 1 INTRODUZIONE La ricerca

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

Il Principio dei lavori virtuali

Il Principio dei lavori virtuali Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Equazioni parametriche di primo grado fratte - Esercizi svolti -

Equazioni parametriche di primo grado fratte - Esercizi svolti - Equazioni parametriche di primo grado fratte - Esercizi svolti - Carlo Alberini 15 novembre 2010 In queste poche pagine verranno risolti tre esercizi tratti dal libro di testo in adozione riguardanti alcune

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste

Dettagli

Soluzione dei sistemi lineari con metodo grafico classe 2H

Soluzione dei sistemi lineari con metodo grafico classe 2H Soluzione dei sistemi lineari con metodo grafico classe H (con esempi di utilizzo del software open source multipiattaforma Geogebra e calcolatrice grafica Texas Instruments TI-89) Metodo grafico Il metodo

Dettagli

FISICA Corso di laurea in Informatica e Informatica applicata

FISICA Corso di laurea in Informatica e Informatica applicata FISICA Corso di laurea in Informatica e Informatica applicata I semestre AA 2004-2005 G. Carapella Generalita Programma di massima Testi di riferimento Halliday Resnick Walker CEA Resnick Halliday Krane

Dettagli

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori :

NOTA 3. VETTORI LIBERI e VETTORI APPLICATI. Negli esempi visti sono stati considerati due tipi di vettori : NOTA 1 VETTOI LIBEI e VETTOI APPLICATI Negli esempi visti sono stati considerati due tipi di vettori : 1) Vettori liberi, quando non è specificato il punto di applicazione. Di conseguenza ad uno stesso

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Fisica con gli smartphone. Lezioni d'autore di Claudio Cigognetti

Fisica con gli smartphone. Lezioni d'autore di Claudio Cigognetti Fisica con gli smartphone Lezioni d'autore di Claudio Cigognetti VIDEO I SENSORI IN UNO SMARTPHONE Oggi la miniaturizzazione dei sensori indicati con l acronimo inglese MEMS (sistemi microelettronici e

Dettagli

CALCOLO DELLA RESISTENZA DI UN PROFILO

CALCOLO DELLA RESISTENZA DI UN PROFILO CACOO DEA RESISTENZA DI UN PROFIO A cura di: Andrea Fogante Davide Gambarara Emanuel Gomez Antonio Grande Ivan Josipovic Anwar Koshakji allievi aerospaziali del anno, corso di Fluidodinamica I 1 Prefazione

Dettagli

SUPERFICI CONICHE. Rappresentazione di coni e cilindri

SUPERFICI CONICHE. Rappresentazione di coni e cilindri SUPERFICI CONICHE Rappresentazione di coni e cilindri Si definisce CONO la superficie che si ottiene proiettando tutti i punti di una curva, detta DIRETTRICE, da un punto proprio, non appartenente al piano

Dettagli

PARALLELO DI DUE TRASFORMATORI

PARALLELO DI DUE TRASFORMATORI l trasformatore PARALLELO D DUE TRASFORMATOR l funzionamento in parallelo di due trasformatori, di uguale o differente potenza nominale, si verifica quando sono in parallelo sia i circuiti primari sia

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI 1) Che cos è la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Lezione 3: Il problema del consumatore: Il

Lezione 3: Il problema del consumatore: Il Corso di Economica Politica prof. Stefano Papa Lezione 3: Il problema del consumatore: Il vincolo di bilancio Facoltà di Economia Università di Roma La Sapienza Il problema del consumatore 2 Applichiamo

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1

Dettagli

I sistemi di equazioni di primo grado

I sistemi di equazioni di primo grado I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

Corso di Fisica Generale Esercitazioni

Corso di Fisica Generale Esercitazioni Corso di Fisica Generale Esercitazioni A cura di B. Preite 1 1. Richiami sui vettori Def.: Un vettore è una classe di segmenti orientati equipollenti. Un vettore caratterizza delle grandezze fisiche identificabili

Dettagli

nota la cinematica: rapporto di trasmissione, numeri di denti, angolo di pressione e angolo d elica,

nota la cinematica: rapporto di trasmissione, numeri di denti, angolo di pressione e angolo d elica, Tipologia 2 1 Progettazione nota la cinematica: rapporto di trasmissione, numeri di denti, angolo di pressione e angolo d elica, Il dimensionamento si effettua determinando il modulo normale m; la larghezza

Dettagli

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013

Fisica Generale I (primo modulo) A.A. 2013-2014, 19 Novembre 2013 Fisica Generale I (primo modulo) A.A. 203-204, 9 Novembre 203 Esercizio I. m m 2 α α Due corpi, di massa m = kg ed m 2 =.5 kg, sono poggiati su un cuneo di massa M m 2 e sono connessi mediante una carrucola

Dettagli

F 2 F 1. r R F A. fig.1. fig.2

F 2 F 1. r R F A. fig.1. fig.2 N.1 Un cilindro di raggio R = 10 cm e massa M = 5 kg è posto su un piano orizzontale scabro (fig.1). In corrispondenza del centro del cilindro è scavata una sottilissima fenditura in modo tale da ridurre

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

L attrito dinamico. k d

L attrito dinamico. k d L attrito dinamico Abbiamo studiato la forza d attrito statico che si manifesta tra le superfici dei corpi che sono a contatto analizzando l equilibrio di un corpo appoggiato su un piano. Abbiamo constatato

Dettagli

ED. Equazioni cardinali della dinamica

ED. Equazioni cardinali della dinamica ED. Equazioni cardinali della dinamica Dinamica dei sistemi La dinamica dei sistemi di punti materiali si può trattare, rispetto ad un osservatore inerziale, scrivendo l equazione fondamentale della dinamica

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Formule per il calcolo degli elementi geometrici dentature esterne

Formule per il calcolo degli elementi geometrici dentature esterne Formule per il calcolo degli elementi geometrici dentature esterne Contenuto: Definizione di evolvente Spessore di base in funzione di uno spessore qualunque e viceversa. Ingranaggi cilindrici a denti

Dettagli

ESERCIZI PER LE VACANZE ESTIVE

ESERCIZI PER LE VACANZE ESTIVE Opera Monte Grappa ESERCIZI PER LE VACANZE ESTIVE Claudio Zanella 14 2 ESERCIZI: Calcolo della resistenza di un conduttore filiforme. 1. Calcola la resistenza di un filo di rame lungo 100m e della sezione

Dettagli

I concetti fondamentali

I concetti fondamentali I concetti fondamentali Completa le seguenti frasi 1. Una grandezza è una quantità che può essere con uno. 2. Misurare una grandezza significa dire quante volte è nella grandezza. 3. Il Sistema Internazionale

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

ESPERIENZE CON GLI SPECCHI PIANI

ESPERIENZE CON GLI SPECCHI PIANI 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro

Dettagli

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:...

ESAME DI STATO. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza. Prova 3. Anno Scolastico 20. - 20. Classe:... Data:... Prova Nazionale di Matematica: Simulazioni - a cura di M. Zarattini Prova ESAME DI STATO Anno Scolastico 0. - 0. SIMULAZIONE PROVA NAZIONALE Scuola Secondaria di I grado Classe Terza Classe:... Data:...

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

SCOMPOSIZIONE IN FATTORI PRIMI:

SCOMPOSIZIONE IN FATTORI PRIMI: SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Dettagli

FISICA (modulo 1) PROVA SCRITTA 10/02/2014

FISICA (modulo 1) PROVA SCRITTA 10/02/2014 FISICA (modulo 1) PROVA SCRITTA 10/02/2014 ESERCIZI E1. Un proiettile del peso di m = 10 g viene sparato orizzontalmente con velocità v i contro un blocco di legno di massa M = 0.5 Kg, fermo su una superficie

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Prodotto Multimediale

Prodotto Multimediale Prodotto Multimediale Relativo al Laboratorio 2: "Multimedialità e Didattica" Autore: Zumbo Francesco Breve presentazione del Moto Rettilineo Uniforme e Uniformemente Accelerato I moti, a seconda della

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due

Dettagli