M.C.D.(3522, 321) = 3 = ( 36) (395) 321

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "M.C.D.(3522, 321) = 3 = ( 36) (395) 321"

Transcript

1 Capitolo 1 Congruenze Lineari 1.1 Prerequisiti Identita di Bezout: M.C.D.(a, b) = αa + βb con α e β opportuni interi. In altre parole il M.C.D.(a, b) é combinazione lineare di a e b. Quando la combinazione lineare esiste essa non é unica. Esempio Per cui α = 36 e β = 395 M.C.D.(3522, 321) = 3 = ( 36) (395) 321 Coppia Preliminarmente introduciamo la nozione di coppia (x, y) e le operazione su questa entitá Somma (x, y) + (t, u) = (x + t, y + u) Esempio (2, 5) + (4, 9) = (6, 14) Prodotto t(x, y) = (tx, ty) Esempio 4(5, 6) = (20, 24) Esempio di calcolo: Si deniscano i parametri α e β per il M.C.D.(3522, 321). posto αa + βb = (α, β) per cui a = 1 a + 0 b = (1, 0) e b = 0 a + 1 b = (0, 1) Seguendo l'algoritmo di Euclide si ha: 3522 = 321(10)

2 321 = 312(1) = 9(34) = 6(1) = 3(2) + 0 e quindi M.C.D.(3522, 321) = 3, esprimendo i resti si ha: r 1 = 312 = a + b( 10) r 2 = 9 = b + 312( 1) r 3 = 6 = ( 34) r 4 = 3 = 9 + 6( 1) Scrivendo con le notazioni di coppia otteniamo 312 = a + b( 10) = (1, 0) + (0, 1)( 10) = (1, 10) 9 = b + 312( 1) = (0, 1) + (1, 10)( 1) = ( 1, 11) 6 = ( 34) = (1 10) + ( 1, 11)( 34) = (35, 384) 3 = 9 + 6( 1) = ( 1, 11) + (35, 384)( 1) = ( 36, 395) Quindi l'identitá di Bezout cercata è la seguente 3 = ( 36) (395) Equazioni lineari diofantee L'equazione ax + by = c con a, b, c Z e non nulli, viene detta equazione lineare diofantea, e possiede una sola soluzione intera (x, y) se e solo se il massimo comun divisore di a e b divide c 1.3 Congruenze lineari Denizione Sia n un intero positivo ssato, si dice relazione di congruenza modulo n la realzione denita in Z nel modo seguente: a b (mod n) Se e solo se a b = nh per un certo intero h, ovvero a b (mod n) se e solo se n (a b) L'insieme dei numeri congrui ad a modulo n é detta classe di equivalenza di a e é indicata con [a] oppure ā, in tale classe vi sono tutti e soli gli interi che hanno 2

3 lo stesso resto di a nella divisione con n. [a] = {x/x = a + kn, k Z} 1.4 Risoluzione di congruenze lineari Si vogliono trovare tutti i numeri interi x che soddisfano una relazione di congruenza del tipo ax b (mod n) dove a, b, m sono numeri interi. Tale congruenza viene detta congruenza lineare. La seguente proposizione ci dice tutto sulla risoluzione di tale congruenza. Proposizione La congruenza ax b (mod n) ammette soluzioni se e solo se d = MCD(a, n) divide b. La proposizione che segue permette di stabilire il numero di soluzioni. Proposizione Sia ax b (mod n) una congruenza tale che sia d b dove d = MCD(a, n). Indicata con x 0 una soluzione, tutte e sole le soluzioni sono del tipo x 0 + hm con h Z, dove m = n/d tra queste, le soluzioni x 0, x 0 + n, x 0 + 2n,..., x 0 + (d 1)n sono tutte non congruenti fra loro e ogni altra é congruente ad una di queste. Quindi la congruenza ammette esattamente d soluzioni non congruenti modulo n. Esercizio 1.Risolvere la seguente congruenza lineare: 6x 3 (mod 15) É una congruenza lineare con a = 6, b = 3, n = 15. Sia d = MCD(a, n) = MCD(6, 15) = 3. d b pertanto la congruenza ha soluzioni e ne ha esattamente d = 3 non equivalenti (ossia non congruenti modulo 15). Cerco una soluzione x 0 nel modo seguente: x 0 deve soddisfare l'equazione diofantea 6x y = 3, per un certo y Z. Dividendo per d = 3 ottengo 2x 0 + 5y = 1 e posso trovare una coppia di interi che soddisno tale equazione con l'algoritmo di Euclide: 5 = = Pertanto 1 = , ossia x 0 = 2, y = 1 /'e una soluzione di 2x 0 +5y = 1. Quindi una soluzione della congruenza é x 0 = 2 13 (mod15). Le altre soluzioni sono x 1 = x 0 + n d x 2 = x n d = = = = 18 3 (mod 15) = = 23 8 (mod 15) 3

4 Esercizio Risolvere le seguenti congruenze lineari: 1.5 Risultati 6x 5 (mod 9) 4x 16 (mod 10) 3x 2 (mod 11) Proposizione Se ac bc (mod n) e se c é relativamente primo con n allora a b (mod n). Proposizione Se ac bc (mod n) posto d = MCD(c, n) e m = n/d allora a b (mod m). Proposizione Se a b (mod n) e d n allora a b (mod d). Proposizione Se a b (mod n) e a b (mod d) allora a b (mod mcm(n, m). Proposizione Se a é relativamente primo con n allora la congruenza ax b (mod n) ammette un'unica soluzione. Proposizione Per ogni numero primo p e ogni x e y in Z vale la seguente congruenza (x + y) p x p + y p (mod p) Teorema (Piccolo teorema di Fermat) se a é un intero e p un primo allora Corollario Se MCD(a, p) = 1 allora a p a (mod p) a p 1 1 (mod p) Teorema di Wilson Se p é un intero e p un primo allora (p 1)! 1 (mod p) Teorema inverso Se (n 1)! 1 (mod n) allora n é primo. Funzione di Eulero Per ogni n si indica ϕ(n) il numero degli interi positivi minori di n e primi con n Teorema: Per ogni p primo accade che ϕ(p) = p 1 Teorema: Per ogni p primo accade che ϕ(p h ) = p h p h 1 Teorema: La funzione di Eulero è moltiplicativa cioè ϕ(ab) = ϕ(a)ϕ(b) 4

5 Esempi: ϕ(7) = 7 1 = 6 ϕ(2 5 ) = ϕ( ) = ϕ(2 6 )ϕ(3 5 ) =... Teorema di Eulero: Per ogni n e a tale che MCD(a, n) = 1 accade che a ϕ(n) 1 (mod n) Si noti che il teorema di Eulero é una generalizzazione del teorema di Fermat. 1.6 L'algoritmo RSA L'algoritmo RSA é stato descritto nel 1977 da Ron Rivest, Adi Shamir e Len Adleman al MIT; le lettere RSA vengono proprio dalle iniziali dei cognomi. Nel 1983 l'algoritmo fu brevettato negli Stati Uniti dal MIT (brevetto ). Il brevetto é scaduto il 21 settembre Fatto abbastanza rilevante è che RSA é computazionalmente impegnativo, soprattutto per quanto riguarda una eventuale realizzazione hardware. Di conseguenza un attuale buon utilizzo é quello di sfruttare RSA per codicare un unico messaggio contentene una chiave segreta, tale chiave verrá poi utilizzata per scambiarsi messaggi tramite un algoritmo di cifratura a chiave segreta (ad esempio DES). RSA é basato sulla fattorizzazione in numeri primi. Il suo funzionamento é il seguente: 1. Si scelgono a caso due numeri primi p e q, l'uno indipendentemente dall'altro 2. Si calcola il loro prodotto N = pq, chiamato modulo (dato che tutta l'aritmetica seguente é modulo n) 3. Si sceglie poi un numero e (chiamato esponente pubblico) coprimo con b = ϕ(n), cioé MCD(e, ϕ(n)) = 1 4. Si calcola il numero d (chiamato esponente privato) tale che de 1 mod ϕ(n), l'inverso di e modulo ϕ(n) 5. La chiave pubblica é (N, e), mentre la chiave privata é (N, d). Codica del mittente a cui é nota la chave pubblica (N, e): il numero m da inviare diviene c m e mod N quindi invia c al destinatario. Decodica del destinatario a cui é nota la chiave privata (N, d) e c ricevuto dal mittente m c d mod N ESEMPIO p = 5, q = 11 N = pq = 55 5

6 b = ϕ(n) = ϕ(55) = (5 1)(11 1) = 40 Scelgo e = 3 poiché MCD(3, 40) = 1 Scelgo d tale che 3d 1 mod 40, per cui d = 27 La chiave pubblica é (55, 3), mentre la chiave privata é (55, 27), solo la chiave pubblica verrá trasmessa ad un mittente. Codica del mittente a cui é nota la chave pubblica (55, 3): il numero 7 da tramette diviene c 7 3 mod 55 quindi invia c = 13 al destinatario. Decodica del destinatario a cui é nota la chiave privata (55, 27) e c = 13 ricevuto dal mittente m mod 55, per cui m = 7 La forza dell'algoritmo é che per calcolare p, q da N il costo computazionale é alto se si utilizzano p e q dell'ordine di 512 o 1024 bit. 6

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

Introduzione alla Crittografia

Introduzione alla Crittografia Liceo Scientifico N. Tron, 6 febbraio 2006 Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di elementi < n e coprimi con n. Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

EQUAZIONI MATRICIALI

EQUAZIONI MATRICIALI EQUAZIONI MATRICIALI a cura di Gioella Lorenzon, Edoardo Sech, Lorenzo Spina, Jing Jing Xu Realizzato nell'ambito del progetto Archimede con la supervisione del Prof. Fabio Breda I.S.I.S.S. M.Casagrande,

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Metodo dei minimi quadrati e matrice pseudoinversa

Metodo dei minimi quadrati e matrice pseudoinversa Scuola universitaria professionale della Svizzera italiana Dipartimento Tecnologie Innovative Metodo dei minimi quadrati e matrice pseudoinversa Algebra Lineare Semestre Estivo 2006 Metodo dei minimi quadrati

Dettagli

Equazioni di Primo grado

Equazioni di Primo grado Equazioni di Primo grado Definizioni Si dice equazione di primo grado un uguaglianza tra due espressioni algebriche verificata solo per un determinato valore della variabile x, detta incognita. Si chiama

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

1 Relazione di congruenza in Z

1 Relazione di congruenza in Z 1 Relazione di congruenza in Z Diamo ora un esempio importante di relazione di equivalenza: la relazione di congruenza modn in Z. Definizione 1 Sia X = Z, a,b Z ed n un intero n > 1. Si dice a congruo

Dettagli

Congruenze. Trovare la cifra dell unità dei seguenti numeri 2013 2013 [3] 2014 2014 [6] 2015 2015 [5]

Congruenze. Trovare la cifra dell unità dei seguenti numeri 2013 2013 [3] 2014 2014 [6] 2015 2015 [5] Congruenze Trovare la cifra dell unità dei seguenti numeri 2013 2013 [3] 2014 2014 [6] 2015 2015 [5] (basta fare una congruenza modulo 10) Trovare la cifra dell unità e la cifra delle decine dei seguenti

Dettagli

Cifratura a chiave pubblica Sicurezza nelle reti di TLC - Prof. Marco Listanti - A.A. 2008/2009

Cifratura a chiave pubblica Sicurezza nelle reti di TLC - Prof. Marco Listanti - A.A. 2008/2009 Cifratura a chiave pubblica Crittografia a chiave privata Chiave singola Crittografia simmetrica La stessa chiave è utilizzata sia per la cifratura che per la decifratura dei messaggi La chiave rappresenta

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2010/11 DOCENTE: ANDREA CARANTI Lezione 1. mercoledí 15 settembre 2010 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

Sistemi di equazioni lineari

Sistemi di equazioni lineari Sistemi di equazioni lineari A. Bertapelle 25 ottobre 212 Cos è un sistema lineare? Definizione Un sistema di m equazioni lineari (o brevemente sistema lineare) nelle n incognite x 1,..., x n, a coefficienti

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m

Esercizio. Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a. [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Sia a R non nullo e siano m, n numeri interi non nulli con m n. Allora a m /a n è uguale a [1] 1/a n m [2] 1/a m n [3] 1/a n m [4] a n m Vale la [1] perché per le proprietà delle potenze risulta a m a

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Matematica finanziaria

Matematica finanziaria Matematica finanziaria La matematica finanziaria studia le operazioni che riguardano scambi di somme di denaro nel tempo. Sono operazioni di questo tipo, ad esempio, l investimento di un capitale in un

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

La storia di due triangoli: i triangoli di Erone e le curve ellittiche

La storia di due triangoli: i triangoli di Erone e le curve ellittiche La storia di due triangoli: i triangoli di Erone e le curve ellittiche William Mc Callum 1 febbraio 01 Se due triangoli hanno la stessa area e lo stesso perimetro, sono necessariamente congruenti? La risposta

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica)

Sicurezza nelle applicazioni multimediali: lezione 4, crittografia asimmetrica. Crittografia asimmetrica (a chiave pubblica) Crittografia asimmetrica (a chiave pubblica) Problemi legati alla crittografia simmetrica Il principale problema della crittografia simmetrica sta nella necessità di disporre di un canale sicuro per la

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Disequazioni in una incognita. La rappresentazione delle soluzioni

Disequazioni in una incognita. La rappresentazione delle soluzioni Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

Rappresentazioni numeriche

Rappresentazioni numeriche Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato)

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) Se un quadrato ha l'area di 25 mq, qual è la misura del suo perimetro? E se l'area vale 30 mq? Table 1 Risoluzione 1 Poichè l'area

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive.

Lezione 6. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Lezione 6 Prerequisiti: L'insieme dei numeri interi. Lezione 5. Divisibilità e divisori. Teorema di divisione euclidea. Algoritmo delle divisioni successive. Questa è la prima lezione dedicata all'anello

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Anno 2. Risoluzione di sistemi di primo grado in due incognite

Anno 2. Risoluzione di sistemi di primo grado in due incognite Anno Risoluzione di sistemi di primo grado in due incognite Introduzione In questa lezione impareremo alcuni metodi per risolvere un sistema di due equazioni in due incognite. Al termine di questa lezione

Dettagli

La divisione esatta fra a e b è l operazione che dati i numeri a e b (con a multiplo di b) permette di trovare un terzo numero c tale che c b = a.

La divisione esatta fra a e b è l operazione che dati i numeri a e b (con a multiplo di b) permette di trovare un terzo numero c tale che c b = a. Significato Significato della divisione esatta La divisione esatta fra a e b è l operazione che dati i numeri a e b (con a multiplo di b) permette di trovare un terzo numero c tale che c b = a. Descrivendo

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

EQUAZIONI E PROBLEMI: GUIDA D'USO

EQUAZIONI E PROBLEMI: GUIDA D'USO P.1\5- EQUAZIONI E PROBLEMI: GUIDA D'USO - Prof. I.Savoia, Maggio 2011 EQUAZIONI E PROBLEMI: GUIDA D'USO EQUAZIONI LINEARI INTERE: PROCEDURA RISOLUTIVA Per risolvere le equazioni numeriche intere, si può

Dettagli

SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE

SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE Pagina 1 di 6 SISTEMI DI 1 GRADO CON DUE EQUAZIONI IN DUE INCOGNITE L insieme di due equazioni di primo grado in due incognite si dice SISTEMA DI 1 GRADO. La soluzione del sistema è ogni coppia di numeri

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

Seminario Sull Algoritmo R.S.A.

Seminario Sull Algoritmo R.S.A. Alessandrini Cristian Sicurezza 2003 Introduzione Seminario Sull Algoritmo R.S.A. L algoritmo R.S.A. fa parte degli algoritmi definiti a chiave pubblica oppure asimmetrici. Fu progettato nel 1976/77 da

Dettagli

B7. Problemi di primo grado

B7. Problemi di primo grado B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta

Dettagli

Appunti di informatica. Lezione 4 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 4 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 4 anno accademico 2015-2016 Mario Verdicchio Numeri primi Si definisce primo un numero intero maggiore di 1 che ha due soli divisori: se stesso e 1 Esempi di numeri primi:

Dettagli

1 Definizione di sistema lineare omogeneo.

1 Definizione di sistema lineare omogeneo. Geometria Lingotto. LeLing1: Sistemi lineari omogenei. Ārgomenti svolti: Definizione di sistema lineare omogeneo. La matrice associata. Concetto di soluzione. Sistemi equivalenti. Operazioni elementari

Dettagli

Equazioni lineari con due o più incognite

Equazioni lineari con due o più incognite Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci

Dettagli

SISTEMI LINEARI. Prof.ssa R. Schettino Classe II a.s. 10/ 10/ 1111

SISTEMI LINEARI. Prof.ssa R. Schettino Classe II a.s. 10/ 10/ 1111 SISTEMI LINEARI Prof.ssa R. Schettino Classe II a.s. 10/ 10/ 1111 EQUAZIONE LINEARE IN DUE INCOGNITE 3x+7y=21-12x+6y-36=0 x-y+2=0 9y-21x+9=0 Con x e y si indicano le incognite delle equazioni Quali sono

Dettagli

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza

Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Introduzione alla crittografia. Il crittosistema RSA e la sua sicurezza Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

Algebra di Boole Algebra di Boole

Algebra di Boole Algebra di Boole 1 L algebra dei calcolatori L algebra booleana è un particolare tipo di algebra in cui le variabili e le funzioni possono solo avere valori 0 e 1. Deriva il suo nome dal matematico inglese George Boole

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

LICEO STATALE ENRICO MEDI CON INDIRIZZI:

LICEO STATALE ENRICO MEDI CON INDIRIZZI: Verbale del primo incontro con gli studenti: Martedì 12 Novembre 2013, ore 13:45 16:45 Dopo una breve introduzione alle finalità del Progetto dal titolo Crittografia e crittanalisi, viene illustrato con

Dettagli

DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E mcm DEFINIZIONI. Multiplo di un numero

DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E mcm DEFINIZIONI. Multiplo di un numero DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E DEFINIZIONI Multiplo di un numero Scegliendo un numero e moltiplicandolo per la serie di tutti i numeri naturali ottengo i suoi multipli. Es i multipli

Dettagli

LeLing13: Polinomi e numeri complessi. Divisione di polinomi. L algoritmo di Euclide e le radici multiple. Ēsercizi consigliati: Geoling 15.

LeLing13: Polinomi e numeri complessi. Divisione di polinomi. L algoritmo di Euclide e le radici multiple. Ēsercizi consigliati: Geoling 15. LeLing13: Polinomi e numeri complessi. Ārgomenti svolti: Polinomi e non polinomi. Le radice della equazione x + 1 = 0: i numeri complessi. L inverso 1 e il coniugato. z Radici di polinomi. Radici coniugate.

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI

AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI AMBIENTE EXCEL CALCOLO DEL RESTO DELLA DIVISIONE FRA NATURALI Costruisci un foglio di lavoro che calcoli il resto r della divisione tra a e b (con a, b N e b 0) ed emetta uno dei seguenti messaggi : a

Dettagli

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A

Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A Facoltá di Scienze MM.FF.NN. Corso di Studi in Informatica- A.A. 5-6 Corso di CALCOLO NUMERICO / ANALISI NUMERICA : Esempi di esercizi svolti in aula 5//5 ) Dato un triangolo, siano a, b le lunghezze di

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

LEZIONE 10. S(C,ρ) Figura 10.1

LEZIONE 10. S(C,ρ) Figura 10.1 LEZIONE 10 10.1. Sfere nello spazio. In questa lezione studieremo alcuni oggetti geometrici non lineari, circonferenze e sfere nello spazio A 3. Poiché le proprietà delle circonferenze nel piano sono del

Dettagli

Allenamenti di matematica: Algebra e Teoria dei Numeri

Allenamenti di matematica: Algebra e Teoria dei Numeri Brescia, 18 novembre 2011 Allenamenti di matematica: Algebra e Teoria dei Numeri 1. (a) Risolvi l equazione x 3 12x 2 + 29x 18 = 0. (b) Risolvi l equazione precedente utilizzando il seguente metodo. Effettua

Dettagli

Aritmetica modulare. Aritmetica modulare. Benvenuto nel wikibook: Autore: Dr Zimbu

Aritmetica modulare. Aritmetica modulare. Benvenuto nel wikibook: Autore: Dr Zimbu Aritmetica modulare Benvenuto nel wikibook: Aritmetica modulare Autore: Dr Zimbu PDF generato attraverso il toolkit opensource ''mwlib''. Per maggiori informazioni, vedi [[http://code.pediapress.com/ http://code.pediapress.com/]].

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 14 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 14 L equivalenza di figure piane Due figure piane si dicono equivalenti (o equiestese) se hanno la stessa estensione nel piano. L area

Dettagli

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte

Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008. Dott.ssa G. Bellomonte Equazioni differenziali Corso di Laurea in Scienze Biologiche Istituzioni di Matematiche A.A. 2007-2008 Dott.ssa G. Bellomonte Indice 1 Introduzione 2 2 Equazioni differenziali lineari del primo ordine

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

GRIGLIA DI CORREZIONE 2013-2014 Matematica Classe II Scuola Primaria FASCICOLO 1

GRIGLIA DI CORREZIONE 2013-2014 Matematica Classe II Scuola Primaria FASCICOLO 1 GRIGLIA DI CORREZIONE 2013-2014 Matematica Classe II Scuola Primaria FASCICOLO 1 Domanda Risposta corretta Eventuali annotazioni D1 C D2_a1 V La risposta si considera corretta con 3 risposte corrette fornite

Dettagli

Per estendere questa definizione ad altri contesti algebrici occorrono un

Per estendere questa definizione ad altri contesti algebrici occorrono un LA DIVISIBILITÀ Dati a, b N, si dice che a divide b (o che b è multiplo di a) e esiste q N tale che b = aq. Si usa scrivere a b. Esempio. L'unità 1 di N divide ogni altro numero naturale, mentre lo zero

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f

LEZIONE 23. ax 2 + bxy + cy 2 + dx + ey + f LEZIONE 23 23.1. Riduzione delle coniche a forma canonica. Fissiamo nel piano un sistema di riferimento Oxy e consideriamo un polinomio di grado 2 in x, y a meno di costanti moltiplicative non nulle, diciamo

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In

Dettagli

La codifica. dell informazione

La codifica. dell informazione La codifica dell informazione (continua) Codifica dei numeri Il codice ASCII consente di codificare le cifre decimali da 0 a 9 fornendo in questo modo un metodo per la rappresentazione dei numeri Il numero

Dettagli

Matematica Discreta per Informatica. Alberto Albano Marco Burzio

Matematica Discreta per Informatica. Alberto Albano Marco Burzio Matematica Discreta per Informatica Alberto Albano Marco Burzio Dipartimento di Matematica, Università di Torino, Via Carlo Alberto 10, 10123 Torino, ITALY E-mail address: alberto.albano@unito.it URL:

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2015/16 DOCENTE: ANDREA CARANTI Nota. L eventuale descrizione di lezioni non ancora svolte si deve intendere come una previsione/pianificazione. Lezione 1. martedí 15 settembre

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

MATEMATICA LA PARABOLA GSCATULLO

MATEMATICA LA PARABOLA GSCATULLO MATEMATICA LA PARABOLA GSCATULLO La Parabola Introduzione e definizione Prima di affrontare la parabola e la sua analisi matematica, appare opportuno definirla nelle sue caratteristiche essenziali. Anzitutto

Dettagli

Appunti di Matematica Discreta (19 novembre 2009)

Appunti di Matematica Discreta (19 novembre 2009) Appunti di Matematica Discreta (19 novembre 2009) 1 1 I numeri interi Indichiamo con Z l insieme dei numeri interi, cioè Z = {..., 3, 2, 1, 0, 1, 2, 3,...}. Se parliamo di interi positivi indichiamo l

Dettagli

DISEQUAZIONI ALGEBRICHE

DISEQUAZIONI ALGEBRICHE DISEQUAZIONI ALGEBICHE Classe II a.s. 00/0 prof.ssa ita Schettino INTEVALLI DI Impariamo cosa sono gli intervalli di numeri reali Sono sottoinsiemi continui di numeri reali e possono essere limitati o

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Cifrari simmetrici Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci canale

Dettagli

Ripasso tramiti esempi - Applicazioni lineari e matrici

Ripasso tramiti esempi - Applicazioni lineari e matrici Ripasso tramiti esempi - Applicazioni lineari e matrici Applicazioni lineari associata ad una matrice Avete imparato che data una matrice A K m,n esiste una applicazione lineare associata ad A. Ma come

Dettagli

Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM )

Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) Esercizi sulla retta. Gruppo 1 (4A TSS SER, 4B TSS SER, 4A AM ) 1. Scrivere l'equazione della retta passante per i punti P1(-3,1), P2(2,-2). Dobbiamo applicare l'equazione di una retta passante per due

Dettagli

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica  A.A. Matematica e-learning - Gli Insiemi Prof. Erasmo Modica http://www.galois.it erasmo@galois.it A.A. 2009/2010 1 Simboli Matematici Poiché in queste pagine verranno utilizzati differenti simboli matematici,

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2013/14 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 16 settembre 2013 (2 ore) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 142857,

Dettagli