Verifica di Matematica n. 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Verifica di Matematica n. 2"

Transcript

1 A.S. 0- Clsse I Verific di Mtemtic. ) Dto il trigolo equiltero ABC, si prolughi il lto AB di u segmeto BD cogruete l lto del trigolo. Si cogiug C co D e si dimostri che il trigolo ACD è rettgolo. ) Si cosideri il trigolo isoscele ABC di bse BC. Dl vertice A si prolughio i due lti cogrueti AC e AB rispettivmete di due segmeti cogrueti (miori del lto) AD e AE. Si cogiug B co D e C co E e si prolughio BD e CE fio l loro puto di itersezioe O. Si dimostri che i trigoli BEC e BDC soo cogrueti e che AO è l bisettrice di DAE. ) ( ) ( ) ( ) ( ) ³² ² ² 8 7 ² ² ) ( ) ( ) ² ² ) ( )( ) ( ) ³² ³² ³² ) ( )( )( ) ( ) ( ) ² ² ²² ² ² 7) ( )( ) b b 8) ( ) ( ) [ ] ( ) [ ] ²

2 A.S. 0- Clsse I RECUPERO N. ) Si cosideri il trigolo isoscele ABC di bse BC i cui AC BC. Si trccio le medie dei lti cogrueti BD e CE e si F il loro puto di itersezioe. Dimostrre che ) i trigoli ABD e AEC soo cogrueti b) I trigoli BEC e BCD soo isosceli c) Il trigolo BFC è isoscele. ) ( ) ² ³ 9 ² ² ) ( ) ( ) [ ] ( ) ( ) ( ) ³ 8 ²² ³ ³ ² ² ) ( ) ( ) ² ² ) ( ) ( ) ( ) ²

3 A.S. 0- Clsse I Verific di Mtemtic. ) Nel trigolo ABC, si AD l bisettrice dell golo A. Dl puto D si coduc l prllel l lto AB che icotri i E il lto AC, e d E si coduc l prllel d AD che icotri i F il lto BC. Dimostrre che il trigolo ADE è isoscele e che EF è bisettrice dell golo CED. ) Nel trigolo ABC si prolughi il lto AB di u segmeto AE cogruete d AB ed il lto AC di u segmeto AD cogruete d AC. Dimostrre che ED è cogruete e prllelo BC. ) Si ABC u trigolo isoscele di bse BC. Dl puto B si coduc l perpedicolre ll bse che icotri il prolugmeto di AC el puto D. Si dimostri che ABD è isoscele e che l su medi AE è prllel ll bse BC. ) ² ² ( ³ ) 8 ( 0 ) ) b b ² b² b b ² ² ) b b 7) 8) 9 Ricooscere i biomi di cui i segueti triomi soo i qudrti (sempre che sio qudrti ) 9) b b ²b² 0) 9 ² b b² ) ² b² b

4 A.S. 0- Clsse I Verific di Mtemtic. ) Si cosideri u golo ottuso di vertice A e si trcci l su bisettrice. Su di ess si cosideri u puto C e d C si trccio le due prllele i lti dell golo che icotrio i lti ei puti B e D. Si dimostri che AB, BC, CD e AD soo cogrueti. ) Si ABC u trigolo rettgolo e isoscele di bse AB. Dopo ver clcolto l mpiezz dei due goli cuti A e B, sull bisettrice dell golo B si cosideri u puto D i modo che AD si cogruete d AB, e si dimostri che AC e AD soo perpedicolri. ) ( ) ( ) = ) ( ) ² = ) = 0 ) ( ) = ² 7 9 ² 7) ( ) = ² 7 8) ( ) ( ) = ³ ²

5 A.S. 0- Clsse I Mtemtic - RECUPERO Problemi di Geometri ) Si cosideri il trigolo ABC isoscele e rettgolo i A. Dl vertice A si coduc u rett che o ttrversi il trigolo e, d B e C le due perpedicolri d ess BD e CE. Dimostrre che i trigoli BAD e CAE soo cogrueti ) Si ABC u trigolo quluque. Si prolughi il lto AB di u segmeto AD cogruete d AC. Si coduc l bisettrice AE dell golo CAB e si dimostri che AE è prllelo CD. Equzioi ) = ) = ) = Espressioi d semplificre ² b b ) ( ) b 7) ( ) ( ) ( ² ) ( ² ) ² ² b²

6 A.S Clsse i Verific di Mtemtic. Problemi di geometri. Si ABC u trigolo rettgolo i A e co l golo B doppio di C. Si costruisc sul lto BC, estermete l trigolo, u trigolo equiltero BCD. Dimostrre che il qudriltero ABCD è u trpezio rettgolo. Nel prllelogrmmo ABCD, l digole AC è cogruete l lto AB. Si cogiug il vertice A col puto medio M di BC e si prolughi AM di u segmeto ME cogruete d AM. Dimostrre che AM e BC soo perpedicolri Il puto E è sul prolugmeto di DC Il puto C è il puto medio di DE Che figur geometric è il qudriltero ABEC? Scomposizioe dei poliomi. ² ²³. ²z ².. 7. z ² 0z 8. ( )²b b( ) b 9. ³ 9² ² ³ 0. ³. ² b² b² ² ² b². ². ² ³.

7 A.S Clsse i Verific di Mtemtic. Problem di geometri. Si ABCD u prllelogrmmo. Prolugre il lto AD di u segmeto DP cogruete CD e il lto AB di u segmeto BS cogruete BC. Dimostrre che i puti P, C e S soo llieti. Frzioi lgebriche ³ ² ² ² 8. ( ) ( ).. ² ³ ² b b b² b b ² b ³ b² ² b b b² ². ² ² Problem itelligete. (dire quli risposte soo giuste spiegdo perchè) Se si sommo tre umeri dispri cosecutivi si ottiee sempre ) u umero pri b) u multiplo di c) il triplo di uo dei tre umeri d) 87

8 A.S Clsse i Verific di Mtemtic. 7 Problemi di geometri. I u circoferez si cosiderio due dimetri AB e DE perpedicolri tr loro. Sul miore dei due rchi AD si pred u puto C e si dimostri che CE è l bisettrice di ACB.. D u puto P estero d u circoferez si coduco le due tgeti AP e BP. Sul miore degli rchi AB si cosideri u puto E e d esso si coduc l tgete che icotri le ltre due i C e D. Si dimostri che l golo COD è l metà dell golo AOB. Equzioi letterli e frtte. = 0 ². = ². ²( ) ( ) = ( ). ( ² ) = ² 7. = ² Problem itelligete 8. 0, 0, 0, 0 7. Sez usre l clcoltrice spieg qule di queste poteze si vvici di più il umero 70, spedo che 0 = 0

9 A.S Clsse i Verific di Mtemtic. 8 Problemi di geometri 7. Si AB u dimetro di u circoferez di cetro O; per il puto A codurre u cord quluque AC. Codurre poi le tgeti i C e i B idicdo co D il loro puto di itersezioe. Dimostrre che OD è prllelo d AC Algebr. = =. = =. z = z = z = 7.. =0 ² 7. = 0 8. = 0 Problem itelligete 9. U brccile di perlie è composto d N pllie e M cubetti. Spedo che l prim e l ultim perli del brccile soo pllie e che i tutto ci soo perlie, dire qule relzioe è ver tetdo di spiegre, i Itlio, il perché. M = N N = M N = M N = M

10 A.S Clsse i Recupero. Problemi di geometri. I u trigolo isoscele ABC, d bse BC, si BD l bisettrice di ABC. L perpedicolre BD codott d D icotri l bse del trigolo, o il suo prolugmeto, el puto E. Si F il puto medio di BE. Si dimostri che DF è prllelo AB e che DF è cogruete DC. Algebr Scomporre i segueti poliomi Risolvere le segueti equzioi 7 ². = 0 ( ). = 0 Problem itelligete 7. Il risultto di è ugule

11 A.S Clsse i Recupero. Problemi di geometri. L rett t è perpedicolre lle due rette prllele r e s. Sio A e B i puti di itersezioe rispettivmete tr r e t e tr s e t. Si M il puto medio di AB. D M si coduc u rett che itersechi r i C e s i D. Si, ifie w l rett perpedicolre CD che itersechi r i E e s i F. Dimostrre che M è il puto medio di CD Il qudriltero EDFC è u prllelogrmmo Algebr Scomporre i segueti poliomi 7. b Risolvere le segueti equzioi / sistemi. = 7 =. = 7. ( ) = (² ) Problem itelligete 7. L metà di 0 è. 0 b. c. d. 9

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Scietifico di Treiscce Esercizi per le vcze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri turli Primi ogi pgi del cpitolo Cpitolo Numeri turli Primi ogi pgi del cpitolo Per gli llievi promossi co

Dettagli

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche

Liceo Scientifico di Trebisacce Classe Seconda - MATEMATICA. a ab. Prof. Mimmo Corrado. Scomposizioni. Frazioni algebriche Liceo Scietifico di Treiscce Clsse Secod - MATEMATICA Esercizi per le vcze estive Prof. Mimmo Corrdo. Esegui le segueti scomposizioi i fttori Scomposizioi z z m m m c m m m m. Clcol M.C.D. e m.c.m. dei

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO

LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO LICEO SCIENTIFICO CLASSICO SCIENZE UMANE MARCONI DELPINO RECUPERO ESTIVO PER LE CLASSI ^D- E SCIENTIFICO Argomenti d rivedere: I QUADRIMESTRE: ) Equzioni di secondo grdo e relzioni tr coefficienti e rdici

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA

COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA COMPITI PER LE VACANZE ESTIVE DALLA SECONDA ALLA TERZA PROBLEMI DI APPLICAZIONE DELL'ALGEBRA ALLA GEOMETRIA ) Inscrivere in un semicirconferenz di dimetro r un rettngolo ABCD vente il lto AB sul dimetro

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA

ESAME DI STATO DI LICEO SCIENTIFICO a.s. 2002/2003 CORSO SPERIMENTALE PNI e Progetto Brocca SESSIONE SUPPLETIVA ESAME DI STATO DI LICEO SCIENTIFICO.s. / CORSO SPERIMENTALE PNI e Progetto Brocc SESSIONE SUPPLETIVA Il cdidto risolv uo dei due problemi e 5 dei quesiti i cui si rticol il questiorio. PROBLEMA. I u pio,

Dettagli

Proprietà dei triangoli e criteri di congruenza

Proprietà dei triangoli e criteri di congruenza www.matematicamente.it Proprietà dei triangoli 1 Proprietà dei triangoli e criteri di congruenza Nome: classe: data: 1. Relativamente al triangolo ABC in figura, quali affermazioni sono vere? A. AH è altezza

Dettagli

Progetto Matematica in Rete - I radicali - I radicali 2 = 4

Progetto Matematica in Rete - I radicali - I radicali 2 = 4 Progetto Mtemtic i Rete - I rdicli - I rdicli I) Cosiderimo l operzioe che ssoci d u umero il suo qudrto x x Per esempio: 9 ( ) ( ) ( ) ( ) 9 Possimo defiire l operzioe ivers? È possibile, dto u umero,

Dettagli

Polinomi, disuguaglianze e induzione.

Polinomi, disuguaglianze e induzione. Allemeti Disid Mtemtic Geio 03 Poliomi, disuguglize e iduzioe. Qul è l mssim re di u rettgolo vete perimetro ugule 576? [Suggerimeto: utilizzre le medie e le loro disuguglize.] Svolgimeto. Predimo i cosiderzioe

Dettagli

I PARALLELOGRAMMI E I TRAPEZI

I PARALLELOGRAMMI E I TRAPEZI I PARALLELOGRAMMI E I TRAPEZI 1. Il parallelogramma ESERCIZI 1 A Disegna un parallelogramma ABCD, la diagonale BD e i segmenti AK e CH, perpendicolari a BD. Dimostra che il quadrilatero AHCK è un parallelogramma.

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

I TRIANGOLI ESERCIZI. compreso tra.. e...

I TRIANGOLI ESERCIZI. compreso tra.. e... I TRIANGOLI ESERCIZI 1. Considerazioni generali sui triangoli Osserva la figura e poi completa le frasi a lato. 1 A Il punto. è il vertice opposto al lato AC, mentre il punto C è il vertice. al lato AB.

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

C3. Rette parallele e perpendicolari - Esercizi

C3. Rette parallele e perpendicolari - Esercizi C3. Rette parallele e perpendicolari - Esercizi ESERCIZI CON COSTRUZIONI E GRAFICI 1) Disegna la retta passante per A perpendicolare alla retta r contando i quadretti. 2) Disegna la retta passante per

Dettagli

ALGEBRA. Dopo avere ripassato:

ALGEBRA. Dopo avere ripassato: ALGEBRA Dopo avere ripassato: la divisione tra polinomi, le tecniche di scomposizione, la procedura di somma di frazioni algebriche, la risoluzione di equazioni intere e fratte, svolgi i seguenti esercizi:

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n =

FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) n m n m. a a a. n m n m. a a a. a b a b. a a a b. a n = Poteze volte FORMULARIO ALGEBRA E ASSI CARTESIANI (RETTA) proprietà: ) 2) 3) 4) 5) m m m m m m b 0 per qulsisi Numeri iteri: umero co sego e vlore Somm lgebric: Segi cocordi + +b - - b ddizioe Prodotto

Dettagli

IL PROBLEMA DEI QUADRATI

IL PROBLEMA DEI QUADRATI IL PROBLEMA DEI QUADRATI MICHELE ROVIGATTI MARGHERITA MORETTI SIMONE MORETTI CATERINA COSTANZO GABRIELE ARGIRÒ 0. INTRODUZIONE. Il problem sce d u quesito di combitoric iserito el testo di u gr di mtemtic

Dettagli

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI

FATTI NUMERICI & PROPRIETÀ della SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE alle SUPERIORI FATTI NUMERICI & PROPRIETÀ dell SCUOLA SECONDARIA DI I GRADO CHE DOVRAI RICORDARE per SOPRAVVIVERE lle SUPERIORI QUADRATI & RADICI NOTEVOLI ² = = ² = 4 4 = ² = 9 9 = 4² = 6 6 = 4 5² = 5 5 = 5 6² = 6 6

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

MATHEU Identificazione, Motivazione e Supporto dei Talenti Matematici nelle Scuole Europee MANUALE. Volume 2

MATHEU Identificazione, Motivazione e Supporto dei Talenti Matematici nelle Scuole Europee MANUALE. Volume 2 MATHEU Idetificzioe, Motivzioe e Supporto dei Tleti Mtemtici elle Scuole Europee MANUALE Volume Editor Gregory Mkrides, INTERCOLLEGE, Cyprus Pubblicto d MATH.EU Project ISBN 996 64 MATHEU Idetificzioe,

Dettagli

ELLISSE STANDARD. 1. Il concetto

ELLISSE STANDARD. 1. Il concetto ELLIE TANDARD. Il cocetto L icertezz dell posizioe plimetric di u puto i u rete si deiisce ttrverso lo studio dell ellisse stdrd. Prim di pssre lle relzioi mtemtiche che govero questo rgometo è preeribile

Dettagli

C9. Teorema di Talete e similitudine - Esercizi

C9. Teorema di Talete e similitudine - Esercizi C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare

Dettagli

Nicola De Rosa, Liceo scientifico sperimentale PNI sessione ordinaria 2010, matematicamente.it

Nicola De Rosa, Liceo scientifico sperimentale PNI sessione ordinaria 2010, matematicamente.it Nicol De Ros, Liceo scietifico sperimetle PNI sessioe ordiri, mtemticmete.it PROBLEMA Nell figur che segue è riportto il grfico di g per 5 essedo g l derivt di u fuzioe f. Il grfico cosiste di tre 9 semicircofereze

Dettagli

Chi ha avuto la sospensione di giudizio, deve aggiungere:

Chi ha avuto la sospensione di giudizio, deve aggiungere: CLASSE 1A Gli esercizi sono sul quaderno di recupero allegato al libro di testo: Esercizi da 80 a 94 pagina 49 Esercizi da 101 a 105 pagina 52-53 Esercizi da 108 a 118 pagina 52-53 Esercizi da 37 a 61

Dettagli

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra:

Nel gergo delle disequazioni vi sono dei simboli che devono essere conosciuti leggendoli da sinistra a destra: Disequzioi Mrio Sdri DISEQUAZIONI Defiizioi U disequzioe è u disegugliz tr due espressioi che cotegoo icogite. Risolvere u disequzioe sigific trovre quell'isieme di vlori che, ttriuiti lle icogite, l redoo

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA

ARGOMENTI INTRODUTTIVI AI CORSI DI MATEMATICA DELLA FACOLTA DI INGEGNERIA SEDE DI MODENA GOMENTI INTODUTTIVI I COSI DI MTEMTIC DELL FCOLT DI INGEGNEI SEDE DI MODEN Espoimo i modo molto suito le deiizioi e le proprietà he verro riteute ote e utilizzte ei Corsi di Mtemti he seguiro Per u trttzioe

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. DEFINIZIONE DI APPLICAZIONE LINEARE. Sio V e W due spzi vettorili su u medesimo cmpo K. Si :V W u ppliczioe di V i W. Si dice che l è u ppliczioe liere di V i W se soo veriicte

Dettagli

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06

DISPENSE DI MATEMATICA GENERALE Versione 20/10/06 DISEQUAZIONI IRRAZIONALI ispri: DISPENSE DI MATEMATICA GENERALE Versioe 0/0/06 > [ [ 0, > b { 0 b < 0 { > b b 0, CLASSIFICAZIONE DELLE FUNZIONI Fuzioi lgebriche Fuzioe potez,

Dettagli

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa.

Misurare una grandezza fisica significa stabilire quante unità di misura sono contenute nella grandezza stessa. L misur: Misurre u grdezz fisic sigific stilire qute uità di misur soo coteute ell grdezz stess. L misur di u grdezz si dice dirett qudo si effettu per cofroto co u grdezz d ess omogee scelt come cmpioe

Dettagli

Corso di ordinamento- Sessione ordinaria - a.s Soluzione di De Rosa Nicola

Corso di ordinamento- Sessione ordinaria - a.s Soluzione di De Rosa Nicola Corso di ordimeto- essioe ordiri - s 7- oluzioe di De Ros Nicol EAME DI TATO DI LICEO CIENTIFICO CORO DI ORDINAMENTO Tem di: MATEMATICA s 7- PROBLEMA Il trigolo rettgolo ABC h l ipoteus AB e l golo ˆ C

Dettagli

Problemi di geometria

Problemi di geometria equivalenza fra parallelogrammi 1 2 3 4 Dimostra che, fra tutti i rettangoli equivalenti, il quadrato è quello che ha perimetro minimo. Dimostra che ogni quadrato è equivalente alla metà del quadrato costruito

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Triangoli - I triangoli

Progetto Matematica in Rete - Geometria euclidea - Triangoli - I triangoli I triangoli Definizione: un triangolo è l insieme dei punti del piano costituiti da una poligonale chiusa di tre lati e dai suoi punti interni. A, B, C vertici del triangolo α, β, γ angoli interni AB,

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

C7. Circonferenza e cerchio - Esercizi

C7. Circonferenza e cerchio - Esercizi C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come

Dettagli

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte.

CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE. Saper calcolare semplici limiti, in particolare delle funzioni razionali intere e fratte. CALCOLO DI LIMITI PER LE FUNZIONI CONTINUE OBIETTIVI MINIMI: Sper idividure le fuzioi cotiue Sper pplicre i teorei sui iti Sper idividure le fore ideterite Sper clcolre seplici iti, i prticolre delle fuzioi

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Fcoltà di Igegeri - Lure Triele i Igegeri Meccic Corso di Clcolo Numerico Dott.ss M.C. De Bois Uiversità degli Studi dell Bsilict, Potez Fcoltà di Igegeri Corso di Lure i Igegeri Meccic Ao Accdemico 004/05

Dettagli

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k

Scuola delle Biotecnologie - ISTITUZIONI DI MATEMATICHE - a. a. 2006/2007 Prof. Margherita Fochi. Appunti precorso. k k Scuol delle Biotecologie - ISTITUZIONI DI MATEMATICHE -.. 006/007 Prof. Mrgherit Fochi Apputi precorso.- Poliomi.. - Geerlità Def..- Moomio ell vribile di grdo k è l espressioe : Def..- Poliomio ell vribile

Dettagli

Appunti sui RADICALI

Appunti sui RADICALI Imprimo d operre co i rdicli Apputi sui RADICALI sego di rdice, idice di rdice, rdicdo, espoete del rdicdo: cquisteri fmilirità co queste prole: simbolo di rdice, idice di rdice, rdicdo, espoete del rdicdo.

Dettagli

C2 Congruenza - Esercizi

C2 Congruenza - Esercizi C Congruenza - Esercizi COSTRUZIONI 1) Disegnare un segmento congruente al segmento dato contando i quadretti. ) Disegnare un segmento congruente al segmento dato utilizzando riga e compasso (costruzione

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati:

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati: Esercizio 1 Si suppoga di aver assegato ad ua popolazioe di N = 4 dattilografe u test e di aver otteuto i segueti risultati: Dattilografa N. Errori A 3 B C 1 D 4 La variabile, il umero di errori commessi

Dettagli

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate.

Contenuti di matematica classe prima liceo scientifico di ordinamento e delle scienze applicate. Contenuti di mtemtic clsse prim liceo scientifico di ordinmento e delle scienze pplicte. SAPERE Sper definire, rppresentre e operre con gli insiemi. Conoscere gli insiemi numerici N, Z, Q e sperci operre

Dettagli

soluzione in 7 step Es n 221

soluzione in 7 step Es n 221 soluzione in 7 soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm 2 soluzione in 7 AC 5 AD 2 DC 2 5 4 2 2 5 2304 4096 5 00 5 0 cm

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3

3. Si determini l area del segmento parabolico di base AB e si verifichi che essa è 3 MINIERO DELL'IRUZIONE,DELL'UNIERIÀ E DELLA RICERCA CUOLE IALIANE ALL EERO EAMI DI AO DI LICEO CIENIFICO essioe Ordiri s 00/005 ECONDA PROA CRIA em di Mtemtic Il cdidto risolv uo dei due problemi e quesiti

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

Integrazione numerica.

Integrazione numerica. Itegrzioe umeric Autore: prof. RUGGIERO Domeico Itegrzioe umeric. Qui di seguito ci occupimo di metodi umerici volti l clcolo pprossimto di u itegrle defiito perveedo formule ce costituiscoo degli lgoritmi,

Dettagli

Unità 8 Esercizi per il recupero

Unità 8 Esercizi per il recupero LA GEOMETRIA DEL PIANO E LE TRASFORMAZIONI VOLUME Unità 8 Esercizi per il recupero ARGOMENTO: I quadrilateri. Teorema di Talete CONTENUTI: Il trapezio isoscele I parallelogrammi Il piccolo teorema di Talete

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

Gli Elementi di Euclide

Gli Elementi di Euclide Gli Elementi di Euclide Muro Sit e-mil: murosit@tisclinet.it Versione provvisori. Novembre 2011. 1 Indice 1 L struttu degli Elementi. 1 2 Le prime proposizioni 3 3 Il quinto postulto 4 Simplicio: Voi procedete

Dettagli

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela

Dettagli

A.A. 2003/2004 Esercizi di Reti Logiche A

A.A. 2003/2004 Esercizi di Reti Logiche A A.A. 2003/2004 Esercizi di Reti Logiche A A cura di F. Ferrandi, C. Silvano Ultimo aggiornamento, 11 novembre 2003 Questi appunti sono stati possibili anche per il lavoro fatto da alcuni studenti del corso

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a.

{ } 3 [ ] [ ] [ ] [ ] Esercizi per il precorso ( )( ) Prof. Margherita Fochi. 1.- Esercizi sui polinomi. + x. x R. ( )( ) + R. ( )( )( ) a. Prof. Mrgherit Fochi Esercizi per il precorso.- Esercizi sui polinomi Semplificre le seguenti espressioni utilizzndo i prodotti notevoli:. ) ) ) ) ) 8 [ ] 8. ) ) ) ) ] [. ) ) ) [ ] { } y y y y y [ ] 8

Dettagli

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi

Sdl ELEMENTI DI BASE: Potenze. Radicali. Logaritmi ELEMENTI DI BASE: Poteze Rdicli Logritmi POTENZE L potez co bse ed espoete, o potez - esim di, si idic co ed è il prodotto di fttori tutti uguli d. =... ( volte) 0 = 1 PROPRIETÀ DELLE POTENZE m = +m :

Dettagli

NECESSITÀ DEI LOGARITMI

NECESSITÀ DEI LOGARITMI NECESSITÀ DEI LOGARITMI Nelle equzioi espoezili he imo risolto sior er sempre possiile ridursi equzioi i ui si vev l stess se, l equzioe divetv lgeri sempliemete uguglido gli espoeti. M o tutte le equzioi

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe terza. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse terz Suol..........................................................................................................................................

Dettagli

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni

ELEMENTI DI CALCOLO COMBINATORIO. Disposizioni ELEMENTI DI CALCOLO COMBINATORIO Il clcolo comitorio h come oggetto il clcolo del umero dei modi co i quli possoo essere ssociti, secodo regole stilite, gli elemeti di due o più isiemi o di uo stesso isieme.

Dettagli

COMPITI ESTIVI CLASSE PRIMA A.S PARTE SECONDA: FUNZIONI, STATISTICA, GEOMETRIA

COMPITI ESTIVI CLASSE PRIMA A.S PARTE SECONDA: FUNZIONI, STATISTICA, GEOMETRIA COMPITI ESTIVI CLASSE PRIMA A.S. 010-011 PARTE SECONDA: FUNZIONI, STATISTICA, GEOMETRIA A] FUNZIONI NUMERICHE A1) Per ogni funzione costruisci una tabella con dieci valori (positivi e negativi) e rappresentane

Dettagli

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili

Correzione Compito di matematica - Classe 1 SIRIO. I Quadrimestre a.s. 2006/07 Docente: Roberta Virili Apputi di tetic SIRIO Soluzioe Copito i clsse Correzioe Copito di tetic - Clsse SIRIO I Qudriestre.s. 00/07 Docete Robert Virili. Copletre le uguglize pplicdo le proprietà delle poteze. b. 9 0 9 0 d. (

Dettagli

FLATlandia. "Abbi pazienza, ché il mondo è vasto e largo" (Edwin A. Abbott) Flatlandia ottobre Commento alle soluzioni ricevute

FLATlandia. Abbi pazienza, ché il mondo è vasto e largo (Edwin A. Abbott) Flatlandia ottobre Commento alle soluzioni ricevute FLATlandia "Abbi pazienza, ché il mondo è vasto e largo" (Edwin A. Abbott) Flatlandia 12-26 ottobre 2015 - Commento alle soluzioni ricevute Il testo del problema Commento Sono giunte sette risposte, da

Dettagli

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo?

triangolo equilatero di lato 9 cm. Quanto misura il lato del rombo? GB00001 Il perimetro di un rombo è triplo di quello di un ) 24 cm. b) 21 cm. c) 26,5 cm. d) 20,25 cm. d tringolo equiltero di lto 9 cm. Qunto misur il lto del rombo? GB00002 Due segmenti AB e CD sono tli

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Rette perpendicolari

Rette perpendicolari Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare

Dettagli

Algebra» Appunti» Logaritmi

Algebra» Appunti» Logaritmi MATEMATICA & FISICA E DINTORNI Psqule Spiezi Algebr» Apputi» Logriti TEOREMA Sio e b ueri reli co R + {} e b R +. Esiste, ed è uico, u uero k R: k b Il uero k è detto rito di b i bse e viee idicto co l

Dettagli

Calcolo combinatorio. Definizione

Calcolo combinatorio. Definizione Clcolo comitorio Lortorio di Bioiformtic Corso A 5-6 Defiizioe Il Clcolo Comitorio è l isieme delle teciche che permettoo di cotre efficietemete il umero di possiili scelte, comizioi, lliemeti etc. di

Dettagli

FORMULARIO DI MATEMATICA

FORMULARIO DI MATEMATICA TEST UIVERSITARI FACILI - uitest.isswe.et FORMULARIO DI MATEMATICA Sommrio ALGEBRA... DISEQUAZIOI... 5 GEOMETRIA... 6 GEOMETRIA AALITICA... 7 FUZIOI ESPOEZIALI LOGARITMI... 9 TRIGOOMETRIA... CALCOLO COMBIATORIO...

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Lezione 3. Angoli al centro e angoli alla circonferenza

Lezione 3. Angoli al centro e angoli alla circonferenza Lezione 3. Angoli al centro e angoli alla circonferenza 1 Angoli in una circonferenza La proprietà illustrata dalle proposizioni 0, 1 e 3 del terzo libro degli Elementi si riferisce a una delle caratteristiche

Dettagli

FORMULARIO prof. Danilo Saccoccioni

FORMULARIO prof. Danilo Saccoccioni PROPRIETA' DELLE RADICI Vlgoo le segueti proprietà se i rdicdi soo positivi: FORMULARIO prof. Dilo Sccoccioi E' fodmetle ricordre le segueti equivleze, vlide per tre umeri qulsisi, b e c che le redo seste

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

a. Sulla base dei dati riportati nel grafico indica se ciascuna delle seguenti affermazioni è vera (V) o falsa (F).

a. Sulla base dei dati riportati nel grafico indica se ciascuna delle seguenti affermazioni è vera (V) o falsa (F). scicolo 3 D. Il polinomio x 3 8 è divisibile per A. x 2 B. x + 8 C. x 4 D. x + 4 D2. Osserv il grfico che riport lcuni dti rccolti dll stzione meteorologic di Udine.. Sull bse dei dti riportti nel grfico

Dettagli

LA GEOMETRIA DEL PIANO. TRIANGOLI

LA GEOMETRIA DEL PIANO. TRIANGOLI LA GEOMETRIA DEL PIANO. TRIANGOLI ESERCIZI Dati i seguenti enunciati, trasformali nella forma «Se, allora» e indicane l ipotesi e la tesi. 1 a) Un filo metallico attraversato da corrente elettrica si riscalda.

Dettagli

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE

POTENZA 2 5 =2*2*2*2*2 PROPRIETA PRODOTTO DI POTENZE DI UGUALE BASE 3 2 *3 7 =3 2+7 =3 9 ANGOLO ANGOLI CLASSIFICAZIONI. 2 è la BASE 5 è l ESPONENTE POTENZ 2 5 =2*2*2*2*2 2 è la SE 5 è l ESPONENTE PROPRIET PRODOTTO DI POTENZE DI UGULE SE 3 2 *3 7 =3 2+7 =3 9 QUOZIENTE DI POTENZE DI UGULE SE 3 12 :3 7 =3 12-7 =3 5 POTENZ DI POTENZ (3 2 ) 7 =3 2*7 =3

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21

I numeri naturali. Cosa sono i numeri naturali? Quali sono le caratteristiche di N? Le operazioni in N. addizione = 15. moltiplicazione 3 7 = 21 I ueri turli Cos soo i ueri turli? I ueri turli soo i ueri 0 1 4 5 6 7 8 9 10 11 1 L isiee dei ueri turli si idic co N. N { 0, 1,,, 4, 5, 6, 7, 8, 9, 10, 11, 1,..} Quli soo le crtteristiche di N? L isiee

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

M A T E M A T I C A I. Lezioni ed Esercizi. a.a Corso di laurea in Scienze Strategiche

M A T E M A T I C A I. Lezioni ed Esercizi. a.a Corso di laurea in Scienze Strategiche M A T E M A T I C A I Lezioi ed Esercizi.. 7-8 Corso di lure i Scieze Strtegiche Uiversità di Mode e Reggio Emili. Diprtimeto di Fisic, Iformtic, Mtemtic. Prefzioe Quest dispes rccoglie le lezioi del corso

Dettagli

Appunti di Matematica per le Scienze Sociali

Appunti di Matematica per le Scienze Sociali 2014 Apputi di Mtemtic per le Scieze Socili Quello che vete imprto scuol (o lmeo u prte) m che o vi ricordte. [Digitre qui il suto del documeto. Di orm è u breve sitesi del coteuto del documeto. [Digitre

Dettagli

Esercizi di Geometria Analitica

Esercizi di Geometria Analitica Esercizi di Geometria Analitica Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 10 settembre 2012 Capitolo 1 Esercizi di geometria analitica

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

VERIFICA DI GEOMETRIA A

VERIFICA DI GEOMETRIA A VERIFICA DI GEOMETRIA A n1 classe IV F data nome e cognome Tre punti allineati A,B,C in modo che AB=2BC Disegna un fascio proprio di rette Due angoli consecutivi e complementari Un poligono convesso Disegna

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

Integrali: non solo aree Unità Problemi di fisica Volumi Solidi geometrici: sezioni e volumi.

Integrali: non solo aree Unità Problemi di fisica Volumi Solidi geometrici: sezioni e volumi. Prerequisiti: - Clcolre limiti, derivte e semplici itegrli. - Studio di u fuzioe - Nozioi fodmetli di geometri pi e solid Quest uità o rigurd l Istituto Tecico, settore Ecoomico. Tutte le ltre scuole e

Dettagli

OPERAZIONI CON LE FRAZIONI ALGEBRICHE

OPERAZIONI CON LE FRAZIONI ALGEBRICHE OPERAZIONI CON LE FRAZIONI ALGEBRICHE A] SEMPLIFICAZIONE DI UNA FRAZIONE ALGEBRICA Sempliicre u rzioe lgeric sigiic dividere umertore e deomitore per uo stesso ttore diverso d zero. Procedur per sempliicre

Dettagli

equivalenti =. ABCD è un trapezio

equivalenti =. ABCD è un trapezio EQUISCOMPONIBILITÀ Problema P.367.41 Dato un trapezio ABCD, considera i due triangoli che hanno ciascuno per base uno dei due lati obliqui e per terzo vertice il punto medio del lato opposto. Dimostra

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli