Sistemi di telecomunicazione. Andrea Petreri

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi di telecomunicazione. Andrea Petreri"

Transcript

1 Sistemi di telecomunicazione Andrea Petreri

2

3 Indice 1 Richiami di teoria dei segnali Reppresentazione dei numeri complessi Proprietà e formule notevoli Rappresentazione nel dominio della frequenza Serie di Fourier Trasformata di Fourier Ortogonalità di funzioni Trasformata di Hilbert Segnale analitico Inviluppo complesso Teoria della probabilità Richiami di teoria dei segnali 11.1 Numeri complessi e formule di Eulero Proprietà e formule notevoli Rappresentazione nel dominio della frequenza Serie di Fourier Trasformata di Fourier Principio di dualità Ortogonalità di funzioni Teorema di Wiener per segnali di energia Teorema di Wiener per segnali di potenza Trasformata di Hilbert Segnale analitico Inviluppo complesso Modulazioni analogiche Introduzione Modulazione di ampiezza iii

4 iv Indice 3..1 Modulazione a Banda Laterale Doppia - BLD Modulazione a Banda Laterale Unica - BLU Demodulazione sincrona (o coerente, o omodina) Demodulazione eterodina (o supereterodina) Demodulazione di inviluppo (o incoerente) Modulazione di frequenza e di fase Demodulazione di frequenza Demodulatore a discriminatore Banda di un segnale in modulazione di frequenza Prestazioni Prestazioni della modulazione di frequenza Prestazioni della modulazione di ampiezza BLD-PS BLD-PI Teoria della stima Introduzione Modellazione dei problemi di ricezione ottima Procedura di Bayes Verifica di ipotesi binaria Ricevitore a correlazione Ricevitore a correlazione con forme d onda antipodali Modulazioni numeriche Interferenza intersimbolica Diagramma ad occhio Prestazioni del ricevitore Modulazione QAM Modulazione PSK GSM Introduzione Suddivisione del territorio in celle Carrier to interference ratio e fattori di riduzione Tecnica di accesso Architettura del sistema GSM Stazione Mobile (MS, Mobile Station) Stazione Base (BS, Base Station) Sottosistema di Rete (NS, Network Subsystem)

5 Indice v Gateway MSC (GMSC) Equipment Identity Register (EIR) Comunicazione ed interfaccia radio Handover Canali logici Canali di traffico Canali di controllo Transito dei segnali nei circuiti Bipoli Potenza assorbita da un bipolo Connessione tra generatore e carico Condizione di massimo trasferimento di potenza Potenza disponibile Formule matematiche Formule algebriche Potenze e logaritmi Prodotti notevoli Identità trigonometriche Forumle di addizione e sottrazione - Formule di duplicazione Formule parametriche Formule di Werner Formule di Prostaferesi Derivate fondamentali e regole di derivazione Integrali indefiniti immediati

6

7 Capitolo 1 Richiami di teoria dei segnali 1.1 Reppresentazione dei numeri complessi Sia dato un numero complesso nella sua forma algebrica: z = a + jb Il suo modulo risulta: ρ = a + b Da cui: cos γ = a ρ = a sin γ = b a + b ρ = b a + b L argomento del numero complesso z risulta quindi: ( ) b Arg(z) = arctan = γ a tan γ = sin γ cos γ = b a Ne deriva dunque: z = a + jb = ρ cos γ + jρsin γ Per passare alla forma esponenziale ci avvaliamo delle formule di Eulero: e jγ =cosγ + j sin γ e jγ =cosγ j sin γ Queste possono essere scritte alternativamente come segue: cos γ = ejγ + e jγ Abbiamo dunque che: ( e jγ + e jγ a + jb = ρ cos γ + jρsin γ = ρ 1 sin γ = ejγ e jγ j ) + ρ ( e jγ e jγ ) = ρ e jγ

8 Capitolo 1 1. Proprietà e formule notevoli Valor medio di un segnale ΔT lim x(t)dt (1.1) ΔT ΔT Integrale assoluto ΔT lim x(t) dt (1.) ΔT ΔT Se l integrale assoluto di un segnale assume valore finito, il segnale si dice impulsivo o assolutamente sommabile. Energia di un segnale ΔT ΔT E x = lim x(t) dt = lim x(t) x (t)dt (1.3) ΔT ΔT ΔT ΔT Dove x (t) è il coniugato 1 di x(t). L energia di un segnale è una quantità sempre positiva (al più nulla se x(t) = 0 per ogni istante t). Se in particolare risulta che E x è una quantità finita non nulla, x(t) viene detto segnale di energia. Potenza di un segnale P x = lim ΔT ΔT 1 x(t) dt = ΔT ΔT lim ΔT E x ΔT (1.4) La potenza di un segnale è una quantità sempre positiva (al più nulla se x(t) =0 per ogni istante t). Se in particolare risulta che P x è una quantità finita non nulla, x(t) viene detto segnale di potenza. I segnali di energia hanno sempre potenza nulla dunque non sono anche segnali di potenza. Inoltre i segnali di potenza hanno sempre energia infinita, dunque non sono segnali di energia. I segnali di potenza non sono in generale impulsivi. I segnali limitati nel tempo ed in ampiezza (rect, tri) sono impulsivi e di energia, tuttavia se un segnale è impulsivo non è detto che sia di energia e viceversa. I segnali periodici sono sempre segnali di potenza a meno che non abbiano dei punti di discontinuità, cioè punti per i quali x(t) non converge. Integrale di convoluzione y(t) =x(t) h(t) = + x(τ) h(t τ)dτ (1.5) Dove il segnale y(t) ha un occupazione temporale pari alla somma delle occupazioni temporali dei segnali x(t) edh(t). Valgono inoltre le seguenti proprietà: 1 Si ricorda che il complesso coniugato di x = a + jb è x = a jb

9 Richiami di teoria dei segnali 3 Proprietà Formula Commutativa x(t) h(t) =h(t) x(t) Associativa [x(t) h 1 (t)] h (t) =x(t) [h 1 (t) h (t)] Distributiva x(t) [h 1 +h ]=x(t) h 1 (t)+x(t) h (t) Elemento neutro x(t) μ 0 (t) =x(t) Traslazione nel tempo x(t) μ 0 (t τ) =x(t τ) Integrale di correlazione (o intercorrelazione, o crosscorrelazione) e xy (t) = p xy (t) = ΔT lim ΔT ΔT lim ΔT 1 ΔT ΔT ΔT x (τ) y(t + τ)dτ per segnali di energia (1.6) x (τ) y(t + τ)dτ per segnali di potenza (1.7) Qualora risulti x(t) = y(t) siparladiintegrale di autocorrelazione. presente che: e xx (0) = E x Inoltre: p xx (0) = P x e xy (t) e yx Si tenga sempre La correlazione tra due segnali x(t) edy(t) può essere espressa opportunamente come una convoluzione: x ( t) y(t) 1.3 Rappresentazione nel dominio della frequenza Serie di Fourier Ogni segnale periodico x(t), che sia continuo in [ T/; T/] ed assolutamente integrabile (dunque impulsivo) in tale intervallo, può essere espresso mediante uno sviluppo in serie di Fourier: x(t) = + n= X n e jπfnt (1.8) Dove f n = n/t è un multiplo della frequenza fondamentale 1/T. In generale il coefficiente X n dello sviluppo in serie di Fourier del segnale x(t) è un numero complesso: X n = 1 T T T x(t) e jπfnt dt (1.9)

10 4 Capitolo Trasformata di Fourier In molte applicazioni i segnali non sono periodici, non possono essere pertanto studiati mediante lo sviluppo in serie di Fourier. Per i segnali impulsivi esiste tuttavia una rappresentazione analoga allo sviluppo in serie di Fourier: la trasformata di Fourier. Datoun segnale impulsivo x(t), la sua trasformata di Fourier viene definita come segue: X(f) =F{x(t)} = + x(t) e jπft dt (1.10) A partire dalla trasformata di Fourier di un segnale impulsivo x(t) si può ricostruire la funzione x(t) stessa. L antitrasformata di Fourier di un segnale X(f) viene definita come segue: + x(t) =F 1 {X(f)} = X(f) e jπft df (1.11) Vengono di seguito riportate alcune trasformate notevoli: Operazione Segnale Trasformata di Fourier Linearità a 1 w 1 (t)+a w (t) a 1 W 1 ( (f)+a ) W (f) 1 Cambiamento di scala w(at) a W f a Traslazione nel tempo w(t t 0 ) W (f) e jωt 0 Traslazione in frequenza w(t) e jπf 0t W (f f 0 ) Convoluzione nel tempo w 1 (t) w (t) W 1 (f) W (f) Convoluzione in frequenza w 1 (t) w (t) W 1 (f) W (f) d Derivazione nel tempo dt w(t) jπf W (f) d Derivazione in frequenza jπt w(t) dt W (f) t Integrazione nel tempo w(λ)dλ 1 jπf W (f) 1 Integrazione in frequenza jπt w(t) f W (λ)dλ Coniugazione nel tempo w (t) W ( f) Coniugazione in frequenza w ( t) W (f) Qualora x(t) sia un segnale reale vale inoltre la proprietà di simmetria coniugata (o hermitiana), in base alla quale: X(f) =X ( f) (1.1) 1.4 Ortogonalità di funzioni Le funzioni ϕ n (t) e ϕ m (t) sono ortogonali sull intervallo a < t < b se soddisfano la condizione: <ϕ n (t),ϕ m (t) >= b a { } ϕ n (t) ϕ 0 se n m m(t) dt = = K n δ n,m se n = m K n

11 Richiami di teoria dei segnali 5 Dove: { 0 se n m δ n,m = 1 se n = m è chiamata delta di Kronecker. Se in particolare K n = 1, le funzioni ϕ n (t) eϕ m (t) si dicono ortonormali. Si tenga presente che: <ϕ n (t),ϕ m (t) >= (<ϕ m (t),ϕ n (t) >) L insieme delle funzioni esponenziali complesse {e jnπf0t } è un insieme di funzioni ortogonali sull intervallo a<t<b,taleche: K n = b a Ciò significa che se a = W e b = W, allora K n =W. 1.5 Trasformata di Hilbert Dato un segnale x(t), si dice trasformata di Hilbert di x(t) il segnale: ˆx(t) =H{x(t)} ottenuto dal transito di x(t) in un filtro con funzione di trasferimento: j se f < 0 H H (f) = j sign(f) = 0 se f = 0 j se f > 0 (1.13) Alternativamente: H H (f) =j [μ 1 ( f) 1] Si tenga sempre presente che se x(t) è un segnale reale, allora anche la sua trasformata di Hilbert è un segnale reale, è infatti frutto della convoluzione tra due segnali reali, x(t) ed h H (t), essendo h H (t) = 1 πt dove h H (t) =0pert = 0. Vengono di seguito riportate alcune trasformate notevoli: Segnale Trasformata di Hilbert c 0 y(t) =x(t)+c ˆx(t)

12 6 Capitolo Segnale analitico Dato un segnale reale x(t) sidicesegnale analitico ad esso associato il segnale x + (t) ottenuto dal transito di x(t) in un filtro analitico, filtro individuato da una funzione di trasferimento del tipo: 1 se f > 0 H a (f) = 1 se f = 0 0 se f < 0 Alternativamente: H a (f) = 1 [1 + j H H(f)] Da cui: h a (t) = 1 [μ 0(t)+j h H (t)] Si osservi come l effetto di un filtro analitico sia quello di isolare la parte positiva del segnale X(f). Ciò non preclude la conoscenza completa del segnale, poiché per segnali reali vale la proprietà di simmetria coniugata (.1). Conoscendo X(f) perf > 0si conosce di fatto l intero segnale. Si consideri ora la relazione: x + (t) = x(t) h a (t) = 1 [ ] x(t) μ 0 (t) = 1 [x(t)+j ˆx(t)] + j [ ] x(t) h H (t) Conoscendo x + (t), si può risalire ad x(t) se quest ultimo è un segnale reale. Infatti, dalla formula x + (t) = 1 x(t)+j ˆx(t) (1.14) si ha che, essendo x(t) eˆx(t) due quantità reali, il primo addendo al secondo membro dell espressione.16 è la parte reale di x + (t), mentre il secondo addendo è la sua parte immaginaria. Possiamo allora scrivere: x(t) = Re{x + (t)} (1.15) 1.7 Inviluppo complesso Consideriamo un segnale reale x(t). Si definisce inviluppo complesso di x(t) rispetto ad una frequenza f 0 il segnale: x(t) = x + (t) e jπf 0t (1.16)

13 Richiami di teoria dei segnali 7 Ne deriva che la trasformata di Fourier dell inviluppo complesso viene ricavata da quella del segnale analitico semplicemente moltiplicando l ampiezza per e traslandola a sinistra della quantità f 0 : X(f) = X + (f + f 0 ) Invertendo la relazione.18 si ha: x + (t) = 1 x(t) ejπf 0t Da cui, per la.17: x(t) =Re{x(t) e jπf 0t } (1.17) L inviluppo complesso è, in generale, un segnale complesso e quindi avrà una parte reale x c (t) ed un coefficiente della parte immaginaria x s (t). Questi due segnali, entrambi reali, prendono il nome di componenti analogiche di bassa frequenza del segnale x(t), rispettivamente in fase la x c (t) edin quadratura la x s (t). x(t) = x + (t) e jπf 0t [ ] 1 = [x(t)+j ˆx(t)] [cos (πf 0t) j sin (πf 0 t)] = [x(t)cos(πf 0 t)+ˆx(t)sin(πf 0 t)] + j [ˆx(t)cos(πf 0 t) x(t)sin(πf 0 t)] Questa espressione ci permette di scrivere: x c (t) =x(t)cos(πf 0 t)+ˆx(t)sin(πf 0 t) (1.18) x s (t) =ˆx(t)cos(πf 0 t) x(t)sin(πf 0 t) (1.19) Come si può notare, il segnale x(t) è moltiplicato per il coseno nella x c (t), e per il seno nella x s (t), da cui i due pedici c ed s delle componenti analogiche di bassa frequenza. Per ricavare la x(t) da tali componenti è sufficiente osservare che : x(t) = Re{x(t) e jπf0t } = Re{(x c (t)+jx s (t)) e jπf0t } = x c (t)cos(πf 0 t) x s (t)sin(πf 0 t) = ( ( )) xs x c(t)+x (t) s(t) cos πf 0 t +arctan x c (t) Quindi, nota la frequenza f 0 dalle componenti analogiche di bassa frequenza è possibile ricostruire il segnale x(t) originale. Ciò costituisce il cosiddetto sviluppo di x(t) in componenti analogiche di bassa frequenza. Si ricorda che R cos (x + θ) =A cos x B sin x essendo: R = Ô A + B θ =tan 1 (B/A) A = R cos θ B = R sin θ

14 8 Capitolo Teoria della probabilità Probabilità dell unione P (E 1 )+P (E )=P (E 1 E ) E 1,E /E 1 E = (1.0) Teorema della probabilità dell evento complementare P (Ẽ) =1 P (E) (1.1) Teorema delle probabilità totali n P (E) = P (E,A i ) (1.) Dove gli eventi A i sono incompatibili i 1,i [1,n]. Probabilità condizionata Supponiamo di considerare un evento B con probabilità di accadere non nulla (P (B) 0). Supponiamo inoltre che tale evento si verifichi. Consideriamo dunque un altro evento A. Si definisce probabilità condizionata la probabilità che si verifichi A una volta che si è verificato B e si indica come: P (A B) (1.3) i=1 Occorre tener resente che: P (A B) P (A B) A livello insiemistico sussiste la seguente relazione tra probabilità condizionata (P (A B)) e probabilità congiunta (P (A B) =P (A, B)), che prende il nome di teorema della probabilità condizionata: P (A, B) P (A B) = (1.4) P (B) Si osservi che, essendo: { P (A B) P (B) =P (A, B) P (B A) P (A) =P (A, B) Risulta: P (A B)P (B) =P (B A)P (A) (1.5) Se i due eventi A e B sono indipendenti, allora: P (A B) =P (A) Ne deriva che (corollario del teorema della probabilità condizionata): P (A, B) =P (A) P (B) (1.6)

15 Richiami di teoria dei segnali 9 Teorema di Bayes Questo teorema è diretta conseguenza del teorema della probabilità condizionata (1.4). Si consideri la relazione: Per la 1.5 e la 1. si ha che: P (A i B j )= P (A i,b j ) P (B j ) P (A i B j )= P (B j A i ) P (A i ) P (B j ) Da cui per il teorema della probabilità condizionata: = P (B j A i ) P (A i ) K P (B j,a K ) P (A i B j )= P (B j A i ) P (A i ) K P (B j A K ) P (A K ) (1.7) Variabili aleatorie Si definisce variabile aleatoria n-dimensionale una funzione: x :Ω R n (1.8) Che ad ogni evento contenuto nello spazio degli eventi Ω, associa un certo valore numerico, che sarà un valore reale per n = 1, un vettore di elementi reali per n>1.

16

17 Capitolo Richiami di teoria dei segnali.1 Numeri complessi e formule di Eulero Sia dato un numero complesso nella sua forma algebrica: z = a + jb Il suo modulo risulta: ρ = a + b da cui: cos γ = a ρ = a sin γ = b a + b ρ = b a + b La fase del numero complesso z risulta quindi: γ =arctg ( ) b a tg γ = sin γ cos γ = b a Ne deriva dunque: z = a + jb = ρ cos γ + jρsin γ Per passare alla forma esponenziale ci avvaliamo delle formule di Eulero: e jγ =cosγ + j sin γ e jγ =cosγ j sin γ Queste possono essere scritte alternativamente come segue: cos γ = ejγ + e jγ Abbiamo dunque che: ( e jγ + e jγ a + jb = ρ cos γ + jρsin γ = ρ 11 sin γ = ejγ e jγ j ) + ρ ( e jγ e jγ ) = ρ e jγ

18 1 Capitolo. Proprietà e formule notevoli Valor medio di un segnale ΔT lim x(t) dt (.1) ΔT ΔT Integrale assoluto ΔT lim x(t) dt (.) ΔT ΔT Se l integrale assoluto di un segnale assume valore finito, il segnale si dice impulsivo o assolutamente sommabile. Energia di un segnale E x lim ΔT ΔT ΔT x(t) dt = ΔT lim ΔT ΔT x(t) x (t) dt (.3) Dove x (t) è il coniugato 1 di x(t). L energia di un segnale è una quantità sempre positiva (al più nulla se x(t) = 0 per ogni istante t). Se in particolare risulta che E x è una quantità finita non nulla, x(t) viene detto segnale di energia. Potenza di un segnale P x lim ΔT 1 ΔT ΔT ΔT x(t) dt = lim ΔT E x ΔT (.4) La potenza di un segnale è una quantità sempre positiva (al più nulla se x(t) =0 per ogni istante t). Se in particolare risulta che P x è una quantità finita non nulla, x(t) viene detto segnale di potenza. I segnali di energia hanno sempre potenza nulla dunque non sono anche segnali di potenza. Inoltre i segnali di potenza hanno sempre energia infinita, dunque non sono segnali di energia. I segnali di potenza non sono in generale impulsivi. I segnali limitati nel tempo ed in ampiezza (rect, tri) sono impulsivi e di energia, tuttavia se un segnale è impulsivo non è detto che sia di energia e viceversa. I segnali periodici sono sempre segnali di potenza a meno che non abbiano dei punti di discontinuità, cioè punti per i quali x(t) non converge. Integrale di convoluzione x(t) h(t) + x(τ) h(t τ) dτ (.5) Il segnale x(t) h(t) ha un occupazione temporale pari alla somma delle occupazioni temporali dei segnali x(t) edh(t). Valgono inoltre le seguenti proprietà: 1 Si ricorda che il complesso coniugato di x = a + jb è x = a jb

19 Richiami di teoria dei segnali 13 Proprietà Formula Commutativa x(t) h(t) =h(t) x(t) Associativa [x(t) h 1 (t)] h (t) =x(t) [h 1 (t) h (t)] Distributiva x(t) [h 1 +h ]=x(t) h 1 (t)+x(t) h (t) Elemento neutro x(t) μ 0 (t) =x(t) Traslazione nel tempo x(t) μ 0 (t τ) =x(t τ) Integrale di correlazione (o intercorrelazione, o crosscorrelazione) e xy (t) p xy (t) ΔT lim ΔT ΔT x (τ) y(t + τ) dτ per segnali di energia (.6) lim ΔT ΔT 1 x (τ) y(t + τ) dτ per segnali di potenza (.7) ΔT ΔT Qualora risulti x(t) = y(t) siparladiintegrale di autocorrelazione. presente che: Si tenga sempre e xx (0) = E x p xx (0) = P x Inoltre: e xy (t) e yx La correlazione tra due segnali x(t) edy(t) può essere espressa opportunamente come una convoluzione: x ( t) y(t).3 Rappresentazione nel dominio della frequenza.3.1 Serie di Fourier Ogni segnale periodico x(t), che sia continuo in [ T/; T/] ed assolutamente integrabile (dunque impulsivo) in tale intervallo, può essere espresso mediante uno sviluppo in serie di Fourier: x(t) = + n= X n e jπfnt (.8) Dove f n = n/t è un multiplo della frequenza fondamentale 1/T. In generale il coefficiente X n dello sviluppo in serie di Fourier del segnale x(t) è un numero complesso: X n = 1 T T T x(t) e jπfnt dt (.9)

20 14 Capitolo.3. Trasformata di Fourier In molte applicazioni i segnali non sono periodici, non possono essere pertanto studiati mediante lo sviluppo in serie di Fourier. Per i segnali impulsivi esiste tuttavia una rappresentazione analoga allo sviluppo in serie di Fourier: la trasformata di Fourier. Datoun segnale impulsivo x(t), la sua trasformata di Fourier viene definita come segue: X(f) =F{x(t)} = + x(t) e jπft dt (.10) A partire dalla trasformata di Fourier di un segnale impulsivo x(t) si può ricostruire la funzione x(t) stessa. L antitrasformata di Fourier di un segnale X(f) viene definita come segue: + x(t) =F 1 {X(f)} = X(f) e jπft df (.11) Vengono di seguito riportate alcune operazioni fondamentali: Operazione Segnale Trasformata di Fourier Linearità a 1 w 1 (t)+a w (t) a 1 W 1 ( (f)+a ) W (f) 1 Cambiamento di scala w(at) a W f a Traslazione nel tempo w(t t 0 ) W (f) e jωt 0 Traslazione in frequenza w(t) e jπf 0t W (f f 0 ) Convoluzione nel tempo w 1 (t) w (t) W 1 (f) W (f) Convoluzione in frequenza w 1 (t) w (t) W 1 (f) W (f) d Derivazione nel tempo dt w(t) jπf W (f) d Derivazione in frequenza jπt w(t) dt W (f) t Integrazione nel tempo w(λ) dλ 1 jπf W (f) 1 Integrazione in frequenza jπt w(t) W (λ) dλ f Coniugazione nel tempo w (t) W ( f) Coniugazione in frequenza w ( t) W (f) Qualora x(t) sia un segnale reale vale inoltre la proprietà di simmetria coniugata (o hermitiana), in base alla quale: X(f) =X ( f) (.1).3..1 Principio di dualità Sia dato un gnerico segnale impulsivo x(t). Valgono le seguenti relazioni: x(t) =F 1 {X(f)} = + X(f) e jπft df

21 Richiami di teoria dei segnali 15 X(f) =F{x(t)} = + x(t) e jπft dt Ci chiediamo dunque se sia possibile scrivere che F{X(t)} = x(f), dove X(t) èunsegnale che ha il medesiamo andamento di X(f) ma nel dominio del tempo, mentre x(f) ha il medesimo andamento di x(t) ma nel dominio della frequenza. Procediamo valutando l espressione di X(t). Lo facciamo effettuando un cambiamento di variabile nell espressione proposta per X(f); in pratica ogni occorrenza di f viene sostituita con t e viceversa: X(t) = Ne deriva che: + x(f) e jπft df X( t) = + x(f) e jπft df x(t) X( t) X(t) F F F X(f) x(f) x( f) La relazione F{X(t)} = x(f) nonè dunque valida in generale, ma solo per funzioni pari, per le quali X( t) =X(t)..4 Ortogonalità di funzioni Le funzioni ϕ n (t) e ϕ m (t) sono ortogonali sull intervallo a < t < b se soddisfano la condizione: <ϕ n (t),ϕ m (t) >= b a ϕ n (t) ϕ m (t) dt = { } 0 se n m = K n δ n,m se n = m K n Dove: { δ n,m = 0 se n m 1 se n = m è chiamata delta di Kronecker. Se in particolare K n = 1, le funzioni ϕ n (t) eϕ m (t) si dicono ortonormali. Si tenga presente che: <ϕ n (t),ϕ m (t) >= (<ϕ m (t),ϕ n (t) >) L insieme delle funzioni esponenziali complesse {e jnπf0t } è un insieme di funzioni ortogonali sull intervallo a<t<b,taleche: K n = b a Ciò significa che se a = W e b = W, allora K n =W.

22 16 Capitolo.5 Teorema di Wiener per segnali di energia Dato un segnale di energia x(t), il suo spettro di densità dienergiae x (f) è uguale alla trasformata di Fourier della sua funzione di autocorrelazione: E x (f) =F{e xx (t)} = X(f) (.13) ne deriva che: E x = x(t) dt = E x (f) dt = X(f) df.6 Teorema di Wiener per segnali di potenza Dato un segnale di potenza x(t), il suo spettro di densità di potenza P x (f) è uguale alla trasformata di Fourier della sua funzione di autocorrelazione: P x (f) =F{p xx (t)} (.14) ne deriva che: P x = lim ΔT 1 ΔT/ x(t) dt = ΔT ΔT/ + P x (f) df.7 Trasformata di Hilbert Dato un segnale x(t), si dice trasformata di Hilbert di x(t) il segnale: ˆx(t) =H{x(t)} ottenuto dal transito di x(t) in un filtro con funzione di trasferimento: j se f < 0 H H (f) = j sign (f) = 0 se f = 0 j se f > 0 (.15) Alternativamente: H H (f) =j [ μ 1 ( f) 1] Si tenga sempre presente che se x(t) è un segnale reale, allora anche la sua trasformata di Hilbert è un segnale reale, è infatti frutto della convoluzione tra due segnali reali, x(t) ed h H (t), essendo dove h H (t) =0pert =0. h H (t) = 1 πt

23 Richiami di teoria dei segnali 17.8 Segnale analitico Dato un segnale reale x(t) sidicesegnale analitico ad esso associato il segnale x + (t) ottenuto dal transito di x(t) in un filtro analitico, filtro individuato da una funzione di trasferimento del tipo: 1 se f > 0 H a (f) = 1 se f = 0 0 se f < 0 Alternativamente: H a (f) = 1 [1 + jh H(f)] Da cui: h a (t) = 1 [μ 0(t)+jh H (t)] Si osservi come l effetto di un filtro analitico sia quello di isolare la parte positiva del segnale X(f). Ciò non preclude la conoscenza completa del segnale, poiché per segnali reali vale la proprietà di simmetria coniugata (.1). Conoscendo X(f) perf > 0si conosce di fatto l intero segnale. Si consideri ora la relazione: x + (t) = x(t) h a (t) = 1 [ ] x(t) μ 0 (t) + j = 1 [x(t)+j ˆx(t)] [ ] x(t) h H (t) Conoscendo x + (t), si può risalire ad x(t) se quest ultimo è un segnale reale. Infatti, dalla formula x + (t) = 1 x(t)+j ˆx(t) (.16) si ha che, essendo x(t) eˆx(t) due quantità reali, il primo addendo al secondo membro dell espressione.16 è la parte reale di x + (t), mentre il secondo addendo è la sua parte immaginaria. Possiamo allora scrivere: x(t) =Re{x + (t)} (.17).9 Inviluppo complesso Consideriamo un segnale reale x(t). Si definisce inviluppo complesso di x(t) rispetto ad una frequenza f 0 il segnale: x(t) =x + (t) e jπf 0t (.18)

24 18 Capitolo Ne deriva che la trasformata di Fourier dell inviluppo complesso viene ricavata da quella del segnale analitico semplicemente moltiplicando l ampiezza per e traslandola a sinistra della quantità f 0 : X(f) =X + (f + f 0 ) Invertendo la relazione.18 si ha: x + (t) = 1 x(t) ejπf 0t Da cui, per la.17: x(t) =Re{x(t) e jπf 0t } (.19) L inviluppo complesso è, in generale, un segnale complesso e quindi avrà una parte reale x c (t) ed un coefficiente della parte immaginaria x s (t). Questi due segnali, entrambi reali, prendono il nome di componenti analogiche di bassa frequenza del segnale x(t), rispettivamente in fase la x c (t) edin quadratura la x s (t). x(t) = x + (t) e jπf 0t [ ] 1 = [x(t)+j ˆx(t)] [cos (πf 0t) j sin (πf 0 t)] = [x(t)cos(πf 0 t)+ˆx(t)sin(πf 0 t)] + j [ˆx(t)cos(πf 0 t) x(t)sin(πf 0 t)] Questa espressione ci permette di scrivere: x c (t) =x(t)cos(πf 0 t)+ˆx(t)sin(πf 0 t) (.0) x s (t) =ˆx(t)cos(πf 0 t) x(t)sin(πf 0 t) (.1) Come si può notare, il segnale x(t) è moltiplicato per il coseno nella x c (t), e per il seno nella x s (t), da cui i due pedici c ed s delle componenti analogiche di bassa frequenza. Per ricavare la x(t) da tali componenti è sufficiente osservare che : x(t) = Re{x(t) e jπf0t } = Re{(x c (t)+jx s (t)) e jπf0t } = x c (t)cos(πf 0 t) x s (t)sin(πf 0 t) = ( ( )) xs x c(t)+x (t) s(t) cos πf 0 t +arctan x c (t) Quindi, nota la frequenza f 0 dalle componenti analogiche di bassa frequenza è possibile ricostruire il segnale x(t) originale. Ciò costituisce il cosiddetto sviluppo di x(t) in componenti analogiche di bassa frequenza. Si ricorda che R cos (x + θ) =A cos x B sin x essendo: R = Ô A + B θ =tan 1 (B/A) A = R cos θ B = R sin θ

25 Capitolo 3 Modulazioni analogiche 3.1 Introduzione La modulazione è la tecnica maggiormente utilizzata per la trasmissione di un segnale analogico attraverso un canale. Essa consiste nel variare (modulare) alcuni parametri di un particolare segnale dipendente dal sistema, definito portante, in funzione del segnale da trasmettere, definito segnale modulante. Ilsegnalex(t) effettivamente trasmesso risulta in effetti un ibrido fra la portante p(t) ed il segnale modulante m(t) e viene definito segnale modulato. Lo scopo primario della modulazione è quello di modificare l allocazione in banda del segnale modulante m(t), dunque di traslare M(f) attorno ad una certa frequenza. In questo modo può essere utilizzato lo stesso canale per la trasmissione contemporanea di più segnali. Impiegando bande separate per i singoli segnali da trasmettere, in ricezione ogni messaggio risulta estraibile da quello complessivo inviato. Come già detto la tecnica della modulazione prevede l utilizzo di un segnale portante p(t). La portante generalmente utilizzata è un armonica del tipo: p(t) =a p cos (πf p t + ϕ p ) Il segnale modulato effettivamente trasmesso risulta esprimibile nella forma: x(t) =[a p + a(t)] cos (πf p t + ϕ p + α(t)) Tenendo presente l espressione di x(t) è possibile definire due tipi di modulazione, in cui possono eventualmente risultare nulli a p e/o ϕ p modulazione di ampiezza - AM m(t) viene trasportato da a(t) modulazione angolare - FM e PM m(t) viene trasportato da α(t). nella modulazione di fase: α(t) =K α m(t) In particolare 19

26 0 Capitolo 3 Nella modulazione di frequenza invece: t α(t) =πk f 3. Modulazione di ampiezza m(τ) dτ 3..1 Modulazione a Banda Laterale Doppia - BLD Essendo m(t) (messaggio da trasmettere) un segnale reale a valor medio nullo e limitato in banda [ W, +W ], il segnale modulato x(t) viene espresso come: x(t) =[a p + K a m(t)] cos (πf p t) (3.1) Dunque x c (t) risulta proporzionale al messaggio da trasmettere m(t): x c (t) =[a p + K a m(t)] x s (t) =0 Graficamente: Figura 3.1: BLD - tempo. Nel dominio della frequenza si ha invece: X(f) = [a p μ 0 (f)+k a M(f)] F{cos (πf p t)} = [a p μ 0 (f)+k a M(f)] 1 [μ 0(f f p )+μ 0 (f + f p )] Come si può vedere in figura 3. il segnale modulato x(t) occupa una banda di frequenze di ampiezza W centrata intorno a f p (analogamente per f p ). Si parla di banda laterale doppia (BLD), poichè sono presenti sia la banda laterale superiore [f p,f p + W ]chela banda laterale inferiore [f p W, f p ].

27 Modulazioni analogiche 1 Figura 3.: BLD - frequenza. A seconda dell ampiezza a p della portante, la modulazione di ampiezza BLD si può classificare come: BLD-PI cioè a portante intera. In tal caso risulta: a p + K a m(t) 0 Da cui: a p >K a max( m(t) ) Ne deriva che l ampiezza del segnale modulato x(t) è sempre positiva. In frequenza vengono mantenuti entrambi gli impulsi di cui ècompostap (f). Ciò offrelapossibilità di utilizzare uno schema di demodulazione (recupero del segnale modulante) piuttosto semplice. BLD-PS cioè a portante soppressa. In tal caso risulta: a p =0

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di rasmissione Numerica docente: Prof. Vito Pascazio 18 a Lezione: 13/1/4 19 a Lezione: 14/1/4 Sommario rasmissione di segnali PM numerici su

Dettagli

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005

Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Corso di Fondamenti di Segnali e Trasmissione - Appello del 07 Settembre 2005 Gli esercizi devono essere risolti solo sui fogli dei colori indicati Per esiti e soluzioni si veda il sito web del corso:

Dettagli

Segnali passa-banda ed equivalenti passa-basso

Segnali passa-banda ed equivalenti passa-basso Appendice C Segnali passa-banda ed equivalenti passa-basso C.1 Segnali deterministici Un segnale deterministico u(t) con trasformata di Fourier U(f) è un segnale passa-banda se f 0, W, con 0 < W < f 0,

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di

Il Campionameto dei segnali e la loro rappresentazione. 1 e prende il nome frequenza di Il Campionameto dei segnali e la loro rappresentazione Il campionamento consente, partendo da un segnale a tempo continuo ovvero che fluisce con continuità nel tempo, di ottenere un segnale a tempo discreto,

Dettagli

IL FILTRAGGIO DEL SEGNALE

IL FILTRAGGIO DEL SEGNALE CAPITOLO 4 IL FILTRAGGIO DEL SEGNALE 4.1 - SISTEMA LINEARE NON DISTORCENTE E un sistema lineare che restituisce in uscita una replica indistorta del segnale di entrata, intendendo x(t) y(t) = Ax(t-t 0

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/2005

COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/2005 COMUNICAZIONI ELETTRICHE + TRASMISSIONE NUMERICA COMPITO 13/7/005 1. Gli esercizi devono essere risolti su fogli separati: uno per la prima parte del compito (esercizi 1/4), uno per la seconda parte (esercizi

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI

CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI CAMPIONAMENTO E RICOSTRUZIONE DI SEGNALI 1 Fondamenti di segnali Fondamenti e trasmissione TLC Segnali in formato numerico Nei moderni sistemi di memorizzazione e trasmissione i segnali in ingresso sono

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Studio dei segnali nel dominio della frequenza. G. Traversi

Studio dei segnali nel dominio della frequenza. G. Traversi Studio dei segnali nel dominio della frequenza G. Traversi Segnali periodici e serie di Fourier Una funzione periodica f(t) di periodo T (purché integrabile) è esprimibile con una serie del tipo: f (t)

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006

Corso di Laurea in Ingegneria Biomedica Corso di Trasmissione Numerica (6 crediti) Prova scritta 16.02.2006 Prova scritta 16.02.2006 D. 1 Si derivi l espressione dei legami ingresso-uscita, nel dominio del tempo per le funzioni di correlazione nel caso di sistemi LTI e di segnali d ingresso SSL. Si utilizzi

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

C(f) : funzione di trasferimento del canale. Essa limita la banda del segnale trasmesso e quindi rappresenta un modello più realistico

C(f) : funzione di trasferimento del canale. Essa limita la banda del segnale trasmesso e quindi rappresenta un modello più realistico MODELLO DEL CANALE Modello gaussiano additivo a banda illimitata (considerato finora): s(t) + n(t) r(t) = s(t) + n(t) s(t) Canale C(f) + r(t) n(t) C(f) : funzione di trasferimento del canale. Essa limita

Dettagli

Introduzione al Campionamento e

Introduzione al Campionamento e Introduzione al Campionamento e all analisi analisi in frequenza Presentazione basata sul Cap.V di Introduction of Engineering Experimentation, A.J.Wheeler, A.R.Ganj, Prentice Hall Campionamento L'utilizzo

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

Elementi di teoria dei segnali /b

Elementi di teoria dei segnali /b Elementi di teoria dei segnali /b VERSIONE 29.4.01 Filtri e larghezza di banda dei canali Digitalizzazione e teorema del campionamento Capacità di canale e larghezza di banda Multiplexing e modulazioni

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

Lezione 28 Maggio I Parte

Lezione 28 Maggio I Parte Lezione 28 Maggio I Parte La volta scorsa abbiamo fatto un analisi dei fenomeni di diafonia e avevamo trovato che per la diafonia vicina il valore medio del quadrato del segnale indotto dalla diafonia

Dettagli

Corso di Fondamenti di Telecomunicazioni

Corso di Fondamenti di Telecomunicazioni Corso di Fondamenti di Telecomunicazioni 5 - EGALI DIGITALI E A IMPULI I BADA BAE Prof. Mario Barbera [parte ] Codifica La fase di codifica prevede che venga fatta una associazione tra il livello del segnale

Dettagli

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro

Segnali e Sistemi. Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici. Gianni Borghesan e Giovanni Marro Segnali e Sistemi Dispensa integrativa per l insegnamento di Elementi di Controlli Automatici Gianni Borghesan e Giovanni Marro Indice Introduzione 2. Notazione............................. 2 2 Classificazione

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1)

Come visto precedentemente l equazione integro differenziale rappresentativa dell equilibrio elettrico di un circuito RLC è la seguente: 1 = (1) Transitori Analisi nel dominio del tempo Ricordiamo che si definisce transitorio il periodo di tempo che intercorre nel passaggio, di un sistema, da uno stato energetico ad un altro, non è comunque sempre

Dettagli

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004

COMPITO DI SEGNALI E SISTEMI 18 Dicembre 2004 COMPIO DI SEGNALI E SISEMI 8 Dicembre 4 Esercizio Si consideri il modello di stato a tempo discreto descritto dalle seguenti equazioni: x(k + = Ax(k + Bu(k = x(k + u(k, v(k = Cx(k = [ ] x(k, k Z + i Si

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Introduzione all analisi dei segnali digitali.

Introduzione all analisi dei segnali digitali. Introduzione all analisi dei segnali digitali. Lezioni per il corso di Laboratorio di Fisica IV Isidoro Ferrante A.A. 2001/2002 1 Segnali analogici Si dice segnale la variazione di una qualsiasi grandezza

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI

LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI LA TRASFORMATA DI FOURIER: PROPRIETA ED ESEMPI Fondamenti di segnali Fondamenti e trasmissione TLC Proprieta della () LINEARITA : la della combinazione lineare (somma pesata) di due segnali e uguale alla

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE SISTEMI M/G/1 e M/D/1 Sistemi M/G/1 Nei sistemi M/G/1: i clienti arrivano secondo un processo di Poisson con parametro λ i tempi di servizio hanno una distribuzione generale della

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

La trasformata Zeta. Marco Marcon

La trasformata Zeta. Marco Marcon La trasformata Zeta Marco Marcon ENS Trasformata zeta E l estensione nel caso discreto della trasformata di Laplace. Applicata all analisi dei sistemi LTI permette di scrivere in modo diretto la relazione

Dettagli

INTEGRATORE E DERIVATORE REALI

INTEGRATORE E DERIVATORE REALI INTEGRATORE E DERIVATORE REALI -Schemi elettrici: Integratore reale : C1 R2 vi (t) R1 vu (t) Derivatore reale : R2 vi (t) R1 C1 vu (t) Elenco componenti utilizzati : - 1 resistenza da 3,3kΩ - 1 resistenza

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

Teoria dei Segnali Covarianza, correlazione e densità spettrale di potenza; processi stocastici stazionari

Teoria dei Segnali Covarianza, correlazione e densità spettrale di potenza; processi stocastici stazionari Teoria dei Segnali Covarianza, correlazione e densità spettrale di potenza; processi stocastici stazionari Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2

Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza p. 2 Elettronica II Proprietà e applicazioni della trasformata di Fourier; impedenza complessa; risposta in frequenza Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Università di Napoli Parthenope Facoltà di Ingegneria Corso di Comunicazioni Elettriche docente: Prof. Vito Pascazio 1 a Lezione: 9/04/003 Sommario Caratterizzazione energetica di processi aleatori Processi

Dettagli

Elementi di Telelocalizzazione

Elementi di Telelocalizzazione Elementi di Telelocalizzazione Ing. Francesco Benedetto - Prof. Gaetano Giunta Laboratorio di Telecomunicazioni (COMLAB) Università degli Studi Roma Tre 1 Introduzione Proprietà della sequenza di spreading:

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Funzioni di trasferimento. Lezione 14 2

Funzioni di trasferimento. Lezione 14 2 Lezione 14 1 Funzioni di trasferimento Lezione 14 2 Introduzione Lezione 14 3 Cosa c è nell Unità 4 In questa sezione si affronteranno: Introduzione Uso dei decibel e delle scale logaritmiche Diagrammi

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.4 Serie in campo complesso 1.4.1 Serie di potenze Una serie di potenze è una serie del tipo a k (z z 0 ) k. Per le serie di potenze in campo complesso valgono teoremi analoghi

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

Amplificatori Audio di Potenza

Amplificatori Audio di Potenza Amplificatori Audio di Potenza Un amplificatore, semplificando al massimo, può essere visto come un oggetto in grado di aumentare il livello di un segnale. Ha quindi, generalmente, due porte: un ingresso

Dettagli

Dispensa sulle funzioni trigonometriche

Dispensa sulle funzioni trigonometriche Sapienza Universita di Roma Dipartimento di Scienze di Base e Applicate per l Ingegneria Sezione di Matematica Dispensa sulle funzioni trigonometriche Paola Loreti e Cristina Pocci A. A. 00-0 Dispensa

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso di Statistica medica e applicata Dott.ssa Donatella Cocca 1 a Lezione Cos'è la statistica? Come in tutta la ricerca scientifica sperimentale, anche nelle scienze mediche e biologiche è indispensabile

Dettagli

Formule trigonometriche

Formule trigonometriche Formule trigonometriche C. Enrico F. Bonaldi 1 Formule trigonometriche In trigonometria esistono delle formule fondamentali che permettono di calcolare le funzioni goniometriche della somma di due angoli

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE.

IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. IL RISCHIO D IMPRESA ED IL RISCHIO FINANZIARIO. LA RELAZIONE RISCHIO-RENDIMENTO ED IL COSTO DEL CAPITALE. Lezione 5 Castellanza, 17 Ottobre 2007 2 Summary Il costo del capitale La relazione rischio/rendimento

Dettagli

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di

Esercizi svolti. 1. Si consideri la funzione f(x) = 4 x 2. a) Verificare che la funzione F(x) = x 2 4 x2 + 2 arcsin x è una primitiva di Esercizi svolti. Si consideri la funzione f() 4. a) Verificare che la funzione F() 4 + arcsin è una primitiva di f() sull intervallo (, ). b) Verificare che la funzione G() 4 + arcsin π è la primitiva

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Descrizione del funzionamento di un Lock-in Amplifier

Descrizione del funzionamento di un Lock-in Amplifier Descrizione del funzionamento di un Lock-in Amplifier S.C. 0 luglio 004 1 Propositi di un amplificatore Lock-in Il Lock-in Amplifier é uno strumento che permette di misurare l ampiezza V 0 di una tensione

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Sistemi di Numerazione

Sistemi di Numerazione Fondamenti di Informatica per Meccanici Energetici - Biomedici 1 Sistemi di Numerazione Sistemi di Numerazione I sistemi di numerazione sono abitualmente posizionali. Gli elementi costitutivi di un sistema

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Trasformate di Laplace

Trasformate di Laplace TdL 1 TdL 2 Trasformate di Laplace La trasformata di Laplace e un OPERATORE funzionale Importanza dei modelli dinamici Risolvere equazioni differenziali (lineari a coefficienti costanti) Tempo t Dominio

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Analisi di scenario File Nr. 10

Analisi di scenario File Nr. 10 1 Analisi di scenario File Nr. 10 Giorgio Calcagnini Università di Urbino Dip. Economia, Società, Politica giorgio.calcagnini@uniurb.it http://www.econ.uniurb.it/calcagnini/ http://www.econ.uniurb.it/calcagnini/forecasting.html

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

2. SINCRONIZZAZIONE (CENNI)

2. SINCRONIZZAZIONE (CENNI) 2. SINCRONIZZAZIONE (CENNI) INTRODUZIONE AL PROBLEMA DELLA SINCRONIZZAZIONE SINCRONISMO DI BIT SCRAMBLING SINCRONISMO DI FRAME INTRODUZIONE Abbiamo visto diverse tecniche in grado di convertire e di trasmettere

Dettagli