Cinematica in due o più dimensioni

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cinematica in due o più dimensioni"

Transcript

1 Cinematica in due o più dimensioni Le grandezze cinematiche fondamentali: posizione, velocità, accelerazione, sono dei vettori nello spazio a due o tre dimensioni, dotati di modulo, direzione, verso. In realtà anche nel moto rettilineo tali grandezze sono dei vettori, ma... in una dimensione! Hanno un segno e un modulo ma la direzione è fissata. Il corpo percorre una traiettoria nello spazio

2 Posizione e spostamento Vettore posizione: r(t) = x(t)î + y(t)ĵ + z(t)ˆk Spostamento: r = r 2 r 1 = (x 2 x 1 )î + (y 2 y 1 )ĵ + (z 2 z 1 )ˆk

3 Velocità Velocità media: v = r t Velocità istantanea: v(t) = lim t 0 r t = d r dt La velocità istantanea: v(t) = v x (t)î + v y(t)ĵ + v z(t)ˆk = dx dt î + dy dt ĵ + dz dt ˆk è sempre tangente alla traiettoria

4 Accelerazione Accelerazione media: a = v t Accelerazione istantanea: a(t) = lim t 0 v t = d v dt = d2 r dt 2 In componenti cartesiane: a(t) = a x (t)î + a y(t)ĵ + a z(t)ˆk = dv x dt î + dv y dt ĵ + dv z dt ˆk = d2 x dt 2 î + d2 y dt 2 ĵ + d2 z dt 2 ˆk

5 Accelerazione (2) In generale, in un moto curvilineo, la velocità cambia sia in modulo che in direzione: l accelerazione può essere non nulla anche se il modulo della velocità non cambia. L accelerazione è un vettore nella direzione della variazione della velocità. Poiché la velocità cambia nella direzione in cui la traiettoria s incurva, l accelerazione è sempre diretta verso la concavità della traiettoria

6 Moto circolare e circolare uniforme Moto caratterizzato da v R, con R costante. Introduciamo la distanza percorsa lungo la circonferenza, s = Rθ: v = ds dt = Rdθ dt La grandezza ω = dθ è detta velocità dt angolare, si misura in radianti/s o in s 1. Moto circolare uniforme: caratterizzato da velocità angolare ω costante. Periodo: T = 2π, tempo necessario per fare un giro completo. ω Frequenza: ν = 1 T = ω, numero di giri per unità di tempo. 2π

7 Velocità angolare come vettore La velocità angolare può essere definita come un vettore di modulo ω, direzione perpendicolare al piano del moto, verso secondo la regola della mano destra. Con queste convenzioni: v = ω r

8 Velocità e accelerazione nel moto circolare uniforme Dal disegno sopra si vede che v = v f v i tende ad un vettore di modulo v θ = vω t = (v 2 /r) t, diretto verso il centro l accelerazione è quindi centripeta e di modulo a C = v2 r = ω2 r.

9 Esempio Determinare la velocità angolare della terra attorno al proprio asse. Attenzione: non è semplicemente ω = 2π/T, dove T = s è la lunghezza del giorno solare medio! Il periodo T di rotazione della terra, o giorno sidereo, vale T = s, perché la terra deve ancora ruotare di un angolo γ 1 affinchè il sole torni nella stessa posizione. Da qui: ω = 2π T = rad s 1. La differenza t = T T = 240 s può essere stimata come t = γ/ω. Usando γ 2π/360 rad si trova t = 239 s.

10 Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da ferma nello stesso istante in cui l altra è lanciata orizzontalmente verso destra con velocità v 0. Osservazioni sperimentali: gli spostamenti verticali delle due palline sono identici Il moto orizzontale e il moto verticale sono indipendenti

11 Analisi del moto dei proietti Il moto può essere analizzato separatamente nelle sue componenti: la componente orizzontale è descritta dalle relazioni cinematiche del moto rettilineo uniforme quella verticale dalle relazioni del moto uniformemente accelerato. Il moto avviene nel piano individuato da v 0 e g: scegliamo un sistema di riferimento cartesiano ortogonale orientando l asse x orizzontalmente e l asse y lungo la verticale.

12 Analisi del moto dei proietti Analizziamo separatamente il moto orizzontale: e il moto verticale: a x = 0, v x = v 0x = cost, x = x 0 + v 0x t a y = g, v y = v 0y gt, y = y 0 + v 0y t 1 2 gt2 v 0x = v 0 cos θ, v 0y = v 0 sin θ Determiniamo la traiettoria: il luogo geometrico dei punti occupati dal vettore posizione r(t) nel corso del tempo.

13 Equazione della traiettoria Eliminiamo t fra le equazioni del moto per x(t) e y(t): x(t) = x 0 + v 0x t t = x x 0 v 0x y(t) = y 0 + v 0y t 1 2 gt2 y y 0 = v 0y (x x 0 ) 1 v 0x 2 g(x x 0) 2 v0x 2 Ponendo v 0x = v 0 cos θ, v 0y = v 0 sin θ, x 0 = y 0 = 0, otteniamo: y = x tan θ g 2(v 0 cos θ) 2x2 Questa è l equazione di una parabola nel piano xy, con la curvatura rivolta verso il basso. La traiettoria è quindi parabolica.

14 Gittata Distanza orizzontale coperta dal proietto all istante in cui tocca il suolo: y = v 0 t sin θ 1 2 gt2 = 0 Soluzioni: t = 0, oppure t = 2v 0 sin θ g Sostituendo quest ultimo in x(t) = x 0 + v 0 (cos θ)t si trova la gittata R: x x 0 = 2v2 0 g sin θ cos θ = v2 0 g sin(2θ) R (in alternativa, si può usare l espressione della traiettoria prima ricavata, trovare il valore di x per cui y = 0)

15 Gittata 2 La gittata R: R = v2 0 g sin(2θ) è massima se θ = 45. L altezza massima h si raggiunge quando v y = v 0 sin θ gt = 0, ovvero per t = g v 0 sin θ, da cui h = v2 0 2g sin2 θ (in alternativa, si può usare l espressione della traiettoria prima ricavata, trovare il valore x max per cui dy/dx = 0, trovare poi y(x max ))

16 Esempio 1 Nel 1996 C. Lewis vinse la medaglia d oro nel salto in lungo con un salto di 8.50 m. Se l angolo con cui spiccò il salto fu θ = 23, calcolare, assumendo il moto parabolico, il modulo v 0 della velocità iniziale.

17 Esempio 1 Nel 1996 C. Lewis vinse la medaglia d oro nel salto in lungo con un salto di 8.50 m. Se l angolo con cui spiccò il salto fu θ = 23, calcolare, assumendo il moto parabolico, il modulo v 0 della velocità iniziale. R = v2 0 g sin(2θ) v 0 = Rg sin(2θ) = m/s = 10.8m/s 0.72 Vi sembra un valore ragionevole?

18 Esempi 2 e 3 Dal tetto di un edificio di altezza h viene lanciata una pallina con velocità v 0 = 10 m/s e inclinazione θ = 30 rispetto all orizzontale. Calcolare l altezza h dell edificio, sapendo che la pallina arriva al suolo ad una distanza d = 18 m dalla base dello stesso. Variante (un po più complicata): Dal tetto di un edificio di altezza h = 45 m viene lanciata una pallina con velocità v 0 = 20 m/s e inclinazione θ = 30 rispetto all orizzonte. Calcolare a che distanza dall edificio la pallina tocca il suolo.

19 Nota Bene E necessario specificare sempre in quale sistema di riferimento si descrive il moto: le componenti di r, di v e di a, l espressione analitica della traiettoria, dipendono dal sistema di riferimento. Le relazioni generali tra le grandezze cinematiche sono invece relazioni vettoriali e in quanto tali non dipendono (sono covarianti) dalla scelta del sistema di riferimento.

20 Soluzioni Soluzione del primo problema: (valida se x 0 = y 0 = 0!): usiamo l equazione della traiettoria y = x tan θ g 2(v 0 cos θ) 2x2 Vogliamo trovare la y corrispondente a x = d. Con i nostri dati y = d tan 30 g 2(v 0 cos 30 ) 2d2, h = y = 10.8m Soluzione della variante: dobbiamo trovare il valore di x f tale per cui la traiettoria passa per il punto (x f, y f ), con y f = 45 m. Quindi: y f = x f tan θ g 2(v 0 cos θ) 2x2 f

21 Dobbiamo risolvere un equazione di secondo grado per x f : dove Si trova a = ovvero x f = 73 m a 2 x2 f + bx f y f = 0 g v 2 0 cos2 θ = m 1, b = tan θ = x f = b ± b 2 2ay f a (la soluzione negativa x f = 37.7 m è spuria e corrisponde ad un ipotetica traiettoria prima dello sparo)

CINEMATICA DEL PUNTO: Caduta gravi

CINEMATICA DEL PUNTO: Caduta gravi CINEMATICA DEL PUNTO: Caduta gravi 1. Un proiettile viene sparato da un cannone a un angolo di 35 rispetto al piano orizzontale. Esso colpisce il suolo a 4 km dal cannone. Calcolare: (a) la velocità iniziale

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Esercizi sulla conversione tra unità di misura

Esercizi sulla conversione tra unità di misura Esercizi sulla conversione tra unità di misura Autore: Enrico Campanelli Prima stesura: Settembre 2013 Ultima revisione: Settembre 2013 Per segnalare errori o per osservazioni e suggerimenti di qualsiasi

Dettagli

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra.

Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 29 novembre 2010. d) la velocità con cui giunge a terra. Liceo Carducci Volterra - Classe 3 a B Scientifico - Prof. Francesco Daddi - 9 novembre 010 Esercizi sul moto di caduta libera Esercizio 1. Una pallina da tennis viene lasciata cadere dal punto più alto

Dettagli

Cinematica Angolare! FONDAMENTI DI BIOINGEGNERIA - ING.FRANCESCO SGRO!

Cinematica Angolare! FONDAMENTI DI BIOINGEGNERIA - ING.FRANCESCO SGRO! Cinematica Angolare! Movimento angolare! ü Si definisce movimento angolare qualsiasi movimento di rotazione che avviene rispetto ad un asse immaginario! ü In un movimento angolare tutto il corpo/soggetto

Dettagli

FISICA Corso di laurea in Informatica e Informatica applicata

FISICA Corso di laurea in Informatica e Informatica applicata FISICA Corso di laurea in Informatica e Informatica applicata I semestre AA 2004-2005 G. Carapella Generalita Programma di massima Testi di riferimento Halliday Resnick Walker CEA Resnick Halliday Krane

Dettagli

I ESERCITAZIONE. Soluzione

I ESERCITAZIONE. Soluzione I ESERCITAZIONE 1. Moto rettilineo uniforme Un bagnino B è sulla spiaggia a distanza d B = 50 m dalla riva e deve soccorrere un bagnante H che è in acqua a d H = 100 m dalla riva. La distanza tra il punto

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d

. Si determina quindi quale distanza viene percorsa lungo l asse y in questo intervallo di tempo: h = v 0y ( d Esercizio 1 Un automobile viaggia a velocità v 0 su una strada inclinata di un angolo θ rispetto alla superficie terrestre, e deve superare un burrone largo d (si veda la figura, in cui è indicato anche

Dettagli

Prodotto Multimediale

Prodotto Multimediale Prodotto Multimediale Relativo al Laboratorio 2: "Multimedialità e Didattica" Autore: Zumbo Francesco Breve presentazione del Moto Rettilineo Uniforme e Uniformemente Accelerato I moti, a seconda della

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I

Esercizio. Fabrizio Dolcini (http://staff.polito.it/fabrizio.dolcini/) Dipartimento di Fisica del Politecnico di Torino - Esercitazioni di Fisica I 1 Esercizio Un automobile sfreccia alla velocità costante v A = 180 Km/h lungo una strada, passando per un punto di appostamento di una volante della polizia stradale. La volante, dopo un tempo tecnico

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Le Coordinate Astronomiche

Le Coordinate Astronomiche Le Stelle vanno a scuola Le Coordinate Astronomiche Valentina Alberti Novembre 2003 1 2 INDICE Indice 1 Coordinate astronomiche 3 1.1 Sistema dell orizzonte o sistema altazimutale.......... 3 1.2 Sistema

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro.

LA CIRCONFERENZA La circonferenza è il luogo geometrico dei punti equidistanti da un punto C, detto centro. Geometria Analitica Le coniche Queste curve si chiamano coniche perché sono ottenute tramite l'intersezione di una superficie conica con un piano. Si possono definire tutte come luoghi geometrici e, di

Dettagli

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A

Definizione Dati due insiemi A e B, contenuti nel campo reale R, si definisce funzione reale di variabile reale una legge f : A Scopo centrale, sia della teoria statistica che della economica, è proprio quello di esprimere ed analizzare le relazioni, esistenti tra le variabili statistiche ed economiche, che, in linguaggio matematico,

Dettagli

Riassunto fisica. Introduzione: La seconda legge di Newton =m a

Riassunto fisica. Introduzione: La seconda legge di Newton =m a Statica Introduzione: La seconda legge di Newton =m a F =0 F =0 M ) fissare un riferimento (assi x e y) ) scoporre ogni forza in x e y 3) scegliere il punto in cui calcolare il Movimento (punto + complicato)

Dettagli

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta.

GEOMETRIA ANALITICA. (*) ax+by+c=0 con a,b,c numeri reali che è detta equazione generale della retta. EQUAZIONE DELLA RETTA Teoria in sintesi GEOMETRIA ANALITICA Dati due punti A e B nel piano, essi individuano (univocamente) una retta. La retta è rappresentata da un equazione di primo grado in due variabili:

Dettagli

Composizione dell asse. geometrie di transizione

Composizione dell asse. geometrie di transizione Composizione dell asse geometrie di transizione Principali criteri di composizione dell asse La lunghezza massima dei rettifili è limitata dalla normativa ad un valore pari a 22 V p max ; le ragioni di

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I 1. La tensione alla quale una lenza si spezza è comunemente detta resistenza della lenza. Si vuole calcolare la resistenza minima T min che deve

Dettagli

2 R = mgr + 1 2 mv2 0 = E f

2 R = mgr + 1 2 mv2 0 = E f Esercizio 1 Un corpo puntiforme di massa m scivola lungo la pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. Calcolare: a) Il valore

Dettagli

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE

LA MISURA DI GRANDI DISTANZE CON LA TRIANGOLAZIONE L MISUR DI GRNDI DISTNZE ON L TRINGOLZIONE ome si può misurare l altezza di un lampione senza doversi arrampicare su di esso? Se è una giornata di sole, è possibile sfruttare l ombra del lampione. on un

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

La velocità può anche essere calcolata come media pesata (con pesi uguale ai tempi di percorrenza) delle velocità medie dei singoli tratti:

La velocità può anche essere calcolata come media pesata (con pesi uguale ai tempi di percorrenza) delle velocità medie dei singoli tratti: ESERCIZI SUL MOTO RETTILINEO UNIFORME -- - Un'auto percorre 4 m in 4 s e altri 4 m in 6 s. Quale 6 stata la velocità media nei due tratti e quella sull'intero percorso? Velocità media nel primo tratto

Dettagli

ESERCIZIARIO DI FISICA 1. Pietro Donatis

ESERCIZIARIO DI FISICA 1. Pietro Donatis ESERCIZIARIO DI FISICA 1 Pietro Donatis 12 settembre 2012 Questo eserciziario è pubblicato sotto una licenza che può essere visionata al sito http://creativecommons.org/licenses/by-nc-sa/2.5/it/. i Premessa

Dettagli

Tonzig Fondamenti di Meccanica classica

Tonzig Fondamenti di Meccanica classica 224 Tonzig Fondamenti di Meccanica classica ). Quando il signor Rossi si sposta verso A, la tavola si sposta in direzione opposta in modo che il CM del sistema resti immobile (come richiesto dal fatto

Dettagli

Alcuni esercizi di Dinamica

Alcuni esercizi di Dinamica Alcuni esercizi di Dinamica Questi esercizi saranno svolti in aula, pertanto è bene che lo studente provi a svolgerli preventivamente in maniera autonoma. Altri esercizi sono presenti alla fine del Cap.

Dettagli

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni

Esercizi di Analisi 2. Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni Esercizi di Analisi 2 Nicola Fusco (Dipartimento di Matematica e Applicazioni, Università Federico II, Napoli) 1. Successioni e Serie di Funzioni 1.1 Al variare di α IR studiare la convergenza della serie

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie

Forze, leggi della dinamica, diagramma del. 28 febbraio 2009 (PIACENTINO - PREITE) Fisica per Scienze Motorie Forze, leggi della dinamica, diagramma del corpo libero 1 FORZE Grandezza fisica definibile come l' agente in grado di modificare lo stato di quiete o di moto di un corpo. Ci troviamo di fronte ad una

Dettagli

Il magnetismo magnetismo magnetite

Il magnetismo magnetismo magnetite Magnetismo Il magnetismo Fenomeno noto fin dall antichità. Il termine magnetismo deriva da Magnesia città dell Asia Minore dove si era notato che un minerale, la magnetite, attirava a sé i corpi ferrosi.

Dettagli

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini

CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini CdS in Ingegneria Energetica, Università di Bologna Programma dettagliato del corso di Fisica Generale T-A prof. S. Pellegrini Introduzione. Il metodo scientifico. Principi e leggi della Fisica. I modelli

Dettagli

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione

CONICHE. Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oxy sia data la conica C di equazione CONICHE Esercizi Esercizio 1. Nel piano con riferimento cartesiano ortogonale Oy sia data la conica C di equazione 7 2 + 2 3y + 5y 2 + 32 3 = 0. Calcolare le equazioni di una rototraslazione che riduce

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Laboratorio di didattica della Fisica (III modulo): Metodologie di insegnamento del Laboratorio di Ottica Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali 5

Dettagli

Le forze. Cos è una forza? in quiete. in moto

Le forze. Cos è una forza? in quiete. in moto Le forze Ricorda che quando parli di: - corpo: ti stai riferendo all oggetto che stai studiando; - deformazione. significa che il corpo che stai studiando cambia forma (come quando pesti una scatola di

Dettagli

2. Moto uniformemente accelerato. Soluzione

2. Moto uniformemente accelerato. Soluzione 2. Moto uniformemente accelerato Il motore di un automobile può imprimere un accelerazione massima = 2m/s 2 el impiantofrenantepuòdecelerarlaalmassimocona 2 = 4m/s 2. Calcolare il tempo minimo necessario

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

SIMULAZIONE - 29 APRILE 2016 - PROBLEMA 1

SIMULAZIONE - 29 APRILE 2016 - PROBLEMA 1 www.matefilia.it SIMULAZIONE - 29 APRILE 216 - PROBLEMA 1 Le centraline di controllo del Po a Pontelagoscuro (FE) registrano il valore della portata dell'acqua, ovvero il volume d'acqua che attraversa

Dettagli

PROBLEMI DI SCELTA dipendenti da due variabili d azione

PROBLEMI DI SCELTA dipendenti da due variabili d azione prof. Guida PROBLEMI DI SCELTA dipendenti da due variabili d azione in un problema di programmazione lineare, si ricorda che la funzione obiettivo z=f(x,y)=ax+by+c assume il suo valore massimo (o minimo)

Dettagli

Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Papa. dx x = 8 m=s2 : dx 2 _x2 + dy A 2! 2 : A 2! 2 A 2 + 900 A 2!

Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Papa. dx x = 8 m=s2 : dx 2 _x2 + dy A 2! 2 : A 2! 2 A 2 + 900 A 2! Problemi Di Cinematica del Punto Materiale A cura del Prof. T.Paa. Un unto materiale si muove luno la traiettoria di equazione y = x 2 e, luno x, ha comonente della velocita _x = 2 m=s, costante. Determinare

Dettagli

Oggetto : Lavoro estivo alunni Docente: Prof ssa Angela Polimeno

Oggetto : Lavoro estivo alunni Docente: Prof ssa Angela Polimeno Istituto Statale d Istruzione Superiore Francesco Gonzaga Liceo Scientifico, Liceo lassico, Liceo Linguistico. Istituto Tecnico ommerciale per Ragionieri IGEA e per Programmatori Mercurio Via F.lli Lodrini

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

Il Solare a Concentrazione

Il Solare a Concentrazione Tecnologie delle Energie Rinnovabili Il Solare a Concentrazione Prof. Daniele Cocco Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di Cagliari daniele.cocco@unica.it http://people.unica.it/danielecocco/

Dettagli

L induzione elettromagnetica - Legge di Faraday-Lentz

L induzione elettromagnetica - Legge di Faraday-Lentz Ver. 1. del 7/1/9 L induzione elettromagnetica - Legge di Faraday-Lentz i osservano alcuni fatti sperimentali. 1 ) Consideriamo un filo metallico chiuso su se stesso (spira) tramite un misuratore di corrente

Dettagli

L EQUILIBRIO DEL PUNTO MATERIALE

L EQUILIBRIO DEL PUNTO MATERIALE 1 L EQUILIBRIO DEL PUNTO MATERIALE La statica studia l equilibrio dei corpi. Un corpo è in equilibrio se è fermo e persevera nel suo stato di quiete al trascorrere del tempo. Un modello è la semplificazione

Dettagli

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale

Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA. Lezione 5 - Meccanica del punto materiale Università degli studi di Salerno corso di studi in Ingegneria Informatica TUTORATO DI FISICA Esercizio 1 Lezione 5 - Meccanica del punto materiale Un volano è costituito da un cilindro rigido omogeneo,

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012

Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 2011/2012 Analisi Matematica 2 per Matematica Esempi di compiti, primo semestre 211/212 Ricordare: una funzione lipschitziana tra spazi metrici manda insiemi limitati in insiemi limitati; se il dominio di una funzione

Dettagli

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Il capo agnetico 1. Fenoeni agnetici 2. Calcolo del capo agnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz Prof. Giovanni Ianne 1/21 Fenoeni agnetici La agnetite è un inerale

Dettagli

Esercitazioni di fisica per biotecnologie

Esercitazioni di fisica per biotecnologie Esercitazioni di fisica per biotecnologie Fabrizio Grill Emanuele Zorzan Indice 1 Ripasso di matematica 3 2 Vettori e cinematica in una dimensione 8 3 Cinematica in due dimensioni 14 4 Leggi delle dinamica

Dettagli

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre)

Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Per ripassare gli argomenti di fisica classe 3^ ( e preparare il test d ingresso di settembre) Un corpo viene lasciato cadere da un altezza di 30 m. dal suolo. In che posizione e che velocità possiede

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore)

CdL Professioni Sanitarie A.A. 2012/2013. Unità 3 (4 ore) L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Statica del Corpo Rigido Momento di una forza Unità 3 (4 ore) Condizione di equilibrio statico: leve

Dettagli

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA

PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA Simulazione 01/15 ANNO SCOLASTICO 01/15 PROBLEMI TRADIZIONALI SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Il candidato risolva uno dei due problemi Problema 1 Nella

Dettagli

Cinematica. Cinematica. Cinematica (II) Principio di Relatività. La meccanica studia i moti dei corpi e le leggi che li governano.

Cinematica. Cinematica. Cinematica (II) Principio di Relatività. La meccanica studia i moti dei corpi e le leggi che li governano. Cinematica Cinematica Relatività, Energia e Ambiente Fano (PU), Liceo Scientifico Torelli, 4 aprile 2011 http://www.fondazioneocchialini.it La meccanica studia i moti dei corpi e le leggi che li governano.

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

LA PRIMA LEGGE DI OHM

LA PRIMA LEGGE DI OHM Applichiamo le conoscenze 1. Osserva la seguente tabella relativa alla corrente che attraversa un circuito. V (V) 15 3 45 6 I (A),1,2,3,4 a) Il rapporto tra la differenza di potenziale e intensità di corrente

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

Il Metodo Scientifico

Il Metodo Scientifico Unita Naturali Il Metodo Scientifico La Fisica si occupa di descrivere ed interpretare i fenomeni naturali usando il metodo scientifico. Passi del metodo scientifico: Schematizzazione: modello semplificato

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE IL BARICENTRO GENERALITA' GEOMETRIA DELLE MASSE Un corpo può essere immaginato come se fosse costituito da tante piccole particelle dotate di massa (masse puntiformi); a causa della forza di gravità queste

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche.

Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Campo elettrico E Grandezza fisica vettoriale che esprime le proprietà dello spazio dovute alla presenza in esso di una o più cariche elettriche. Il concetto di campo elettrico venne introdotto da Michael

Dettagli

IL MOTO. 1 - Il moto dipende dal riferimento.

IL MOTO. 1 - Il moto dipende dal riferimento. 1 IL MOTO. 1 - Il moto dipende dal riferimento. Quando un corpo è in movimento? Osservando la figura precedente appare chiaro che ELISA è ferma rispetto a DAVIDE, che è insieme a lei sul treno; mentre

Dettagli

Leggi di Newton ed esempi

Leggi di Newton ed esempi Leggi di Newton ed esempi 1 Leggi di Newton Lo spazio delle fasi. Il moto di un punto materiale nello spazio è descritto dalla dipendenza temporale delle sue grandezze cinematiche, posizione, velocità

Dettagli

Verifica sperimentale del principio di conservazione dell'energia meccanica totale

Verifica sperimentale del principio di conservazione dell'energia meccanica totale Scopo: Verifica sperimentale del principio di conservazione dell'energia meccanica totale Materiale: treppiede con morsa asta millimetrata treppiede senza morsa con due masse da 5 kg pallina carta carbone

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Interpolazione Statistica

Interpolazione Statistica Interpolazione Statistica Come determinare una funzione che rappresenti la relazione tra due grandezze x e y a cura di Roberto Rossi novembre 2008 Si parla di INTERPOLAZIONE quando: Note alcune coppie

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli V-X del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "GUALA" BRA SEZIONE ASSOCIATA I.T.I. ANNO SCOLASTICO 2009/2010

ISTITUTO ISTRUZIONE SUPERIORE GUALA BRA SEZIONE ASSOCIATA I.T.I. ANNO SCOLASTICO 2009/2010 PROGRAMMAZIONE ISTITUTO ISTRUZIONE SUPERIORE "GUALA" BRA SEZIONE ASSOCIATA I.T.I. ANNO SCOLASTICO 2009/2010 CLASSE 1 a F ITI Disciplina: Fisica e laboratorio Bra, 14 Settembre 2009 Elaborata e sottoscritta

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

Corso di Laurea in FARMACIA

Corso di Laurea in FARMACIA Corso di Laurea in FARMACIA 2015 simulazione 1 FISICA Cognome nome matricola a.a. immatric. firma N Evidenziare le risposte esatte Una sferetta è appesa con una cordicella al soffitto di un ascensore fermo.

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Curve e integrali curvilinei: esercizi svolti

Curve e integrali curvilinei: esercizi svolti Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA

BILANCIO DEI VINCOLI ED ANALISI CINEMATICA BILANCIO DEI VINCOLI ED ANALISI CINEMATICA ESERCIZIO 1 Data la struttura piana rappresentata in Figura 1, sono richieste: - la classificazione della struttura in base alla condizione di vincolo; - la classificazione

Dettagli

Lezioni di Fisica per studenti di Informatica. Paolo Fornasini

Lezioni di Fisica per studenti di Informatica. Paolo Fornasini Lezioni di Fisica per studenti di Informatica Paolo Fornasini 0 aprile 202 2 Indice Introduzione. Perché la Fisica per Informatici?.............................2 Il metodo scientifico....................................3

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova di FISICA del 9 novembre 2004 ORSO DI LURE IN SIENZE IOLOGIHE Prova di FISI del 9 novembre 004 1) Una particella di massa m= 0.5 kg viene lanciata dalla base di un piano inclinato O con velocità iniziale v o = 4 m/s, parallela al piano.

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o

BIOMECCANICA A A 2 0 11-2 0 1 2. P r o f. s s a M a r i a G u e r r i s i D o t t. P i e t r o P i c e r n o A A 2 0 11-2 0 1 2 U N I V E R S I TA D E G L I S T U D I D I R O M A T O R V E R G ATA FA C O LTA D I M E D I C I N A E C H I R U R G I A L A U R E A T R I E N N A L E I N S C I E N Z E M O T O R I E

Dettagli

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 TURNO 1 COMPITO A Un'automobile di massa m=1500 kg viaggia ad una velocità costante v 1 di 35 Km/h. Ad un certo punto inizia ad accelerare

Dettagli

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo?

Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Cosa vuol dire misurare l'area di una figura piana a contorno curvilineo? Idea elementare: 1. fissare un quadratino come unità di misura 2. contare quante volte questo può essere riportato nella figura

Dettagli

Esercitazioni di MECCANICA e TERMODINAMICA

Esercitazioni di MECCANICA e TERMODINAMICA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Scienze Corso di Laurea in FISICA Esercitazioni di MECCANICA e TERMODINAMICA Anno Accademico 2014 2015 UNITÀ A Cinematica [a cura di Alberto Clarizia]

Dettagli

CORSO DI ANALISI MATEMATICA 2 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 2 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 8 febbraio 6 iv Indice 4 Calcolo differenziale 4 Derivate parziali 4 Derivate parziali 4 Massimi e minimi 4 Massimi e minimi di funzioni 43 Derivate

Dettagli

PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) VERIFICA TECNICA

PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) VERIFICA TECNICA PERIZIA TECNICA RIFERIMENTO: AUMENTO VELOCITA MOTO OSCILLATORIO CAMPANE PARROCCHIA DI BREGUZZO (TN) COMMITTENTE: ELETTROIMPIANTI AUDEMA - CASTREZZATO (BS) OGGETTO: VERIFICA TECNICA PREMESSE Il sottoscritto

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

4 FORZE FONDAMENTALI

4 FORZE FONDAMENTALI FORZA 4! QUANTE FORZE? IN NATURA POSSONO ESSERE OSSERVATE TANTE TIPOLOGIE DI FORZE DIVERSE: GRAVITA' O PESO, LA FORZA CHE SI ESERCITA TRA DUE MAGNETI O TRA DUE CORPI CARICHI, LA FORZA DEL VENTO O DELL'ACQUA

Dettagli

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3)

FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) FUNZIONE DI UTILITÀ CURVE DI INDIFFERENZA (Cap. 3) Consideriamo un agente che deve scegliere un paniere di consumo fra quelli economicamente ammissibili, posto che i beni di consumo disponibili sono solo

Dettagli

Massimi e minimi vincolati in R 2 - Esercizi svolti

Massimi e minimi vincolati in R 2 - Esercizi svolti Massimi e minimi vincolati in R 2 - Esercizi svolti Esercizio 1. Determinare i massimi e minimi assoluti della funzione f(x, y) = 2x + 3y vincolati alla curva di equazione x 4 + y 4 = 1. Esercizio 2. Determinare

Dettagli