22.1. Analisi asintotica: il metodo della fase stazionaria.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "22.1. Analisi asintotica: il metodo della fase stazionaria."

Transcript

1 .. Anlisi sinoic: il meodo dell fse szionri.... Nozioni sndrd dell nlisi sinoic. I simboli O, o e sono definii nel modo seguene. Supponimo che f(z) e g(z) sino funzioni complesse definie in qulche regione R C del pino complesso e che bbino un limie qundo z z in R. Allor si consider l seguene nozione bbrevi per descrivere le proprieà relive di quese funzioni nel limie z z. Asinoicmene limi: f(z) = O(g(z)) per z z se il rpporo f(z)/g(z) è limio qundo z z. Dicimo llor che f(z) è sinoicmene limi d g(z) qundo z z. Asinoicmene più piccol: f(z) = o(g(z)) per z z signific che f(z)/g(z) qundo z z. Vle dire, f(z) è sinoicmene più piccol di g(z) qundo z z. Asinoicmene ugule: f(z) g(z) per z z signific che (ssumendo g(z) non null in un inorno di z ) f(z) lim z z g(z) =. Equivlenemene, queso signific che per z z f(z) = g(z) + o(g(z)) Esempi: f() = O() qundo signific che f() è limi qundo (si dice che f è O() qundo è limi ovunque). Se f() = 5 + +, llor, per, f() = o( ), f() = O( ) e f() 5. Per, f(). Per, = o(e ). Osservzioni: L funzione g(z) nelle definizioni precedeni è usulmene de funzione di clibro, in qundo è l funzione rispeo cui si clibr il compormeno limie di f(z) Come nozione lerniv f(z) = o(g(z)), spesso (specilmene in fisic) si us f(z) g(z) per z z.

2 ... Lemm di Riemnn-Lebesgue. Voglimo sudire il compormeno sinoico dell inegrle di Fourier generlizzo () F (λ) = b e iλs(x) f(x)dx nel limie λ. Inuiivmene, ci speimo che l inegrle si pri zero nel limie: se λ è grnde, l funzione inegrnd oscill molo rpidmene e ci speimo che ci si un cncellzione r conribui posiivi e negivi di inervlli diceni, e quindi d un vlore dell inegrle prossimo llo zero. In effei, vle il seguene eorem: Lemm di Riemnn-Lebesgue. Se f(x) è inegrbile e S(x) è coninumene differenzibile in x b e, inolre, non è cosne in nessun soo-inervllo di x b, llor, per λ F (λ) = b e iλs(x) f(x)dx... Meodo dell fse szionri. Sbilio che F (λ) ende, si vuole deerminre il suo ordine di infiniesimo per λ. Nell second meà dell 8 Sokes e Kelvin, principlmene ineressi d ppliczioni ll idrodinmic, svilupprono un meodo, noo come meodo dell fse szionri, che è proprio miro rggiungere queso scopo. Considerimo prim il cso in cui S (x). Moliplichimo e dividimo per S (x) soo il segno di inegrle secondo membro dell (), quindi inegrimo per pri: b Allor e iλs(x) S (x) in f(x) S (x) der dx = e iλs(x) f(x) iλs (x) ermine l bordo b b iλ ( ) d f(x) e iλs(x) dx dx S (x) b F (λ) = e iλs(x) f(x) iλs (x) b ( ) d f(x) e iλs(x) dx iλ dx S (x) ermine inegrle Per il lemm di Riemnn-Lebesgue, il ermine inegrle è o ( λ) qundo λ e quindi, per λ b ( ) F (λ) e iλs(x) f(x) () iλs (x) = O λ ermine l bordo

3 Tuvi, se nell inervllo [, b] l funzione S(x) h un puno criico o szionrio, cioè un puno c in cui si nnull l su deriv, S (c) =, dobbimo cmbire sregi: non possimo inegrre per pri ed vere un S denominore. L ide cenrle del meodo dell fse szionri è che in presenz di un puno criico c di S, il conribuo dominne llo sviluppo sinoico di F (λ) proviene proprio dll inorno di = c. Inuiivmene, l ide del meodo è chir: nell inorno di un puno in cui l fse è szionri non c è cncellzione, come si può verificre con un esempio. Considerimo l inegrle () [ ( )] x cos λ x x dx e riporimo in figur l funzione inegrnd per diversi vlori di λ. x= x=5 λ = λ = 5 cos(x( / )) cos(x( / )) x λ = x= λ = x= x cos(x( / )) cos(x( / )) x x

4 L figur dimosr perché è l regione inorno l puno szionrio dell cubic S(x) = x x, cioè inorno x =, che conribuisce mggiormene ll inegrle (). In figur sono mosri i grfici di x cos [ λ ( x x )] per vlori successivmene cresceni di λ (curve solide in rosso); l curv blu reggi è l cubic S(x) = x x (che un minimo in x = ). Vedimo che, fuori d un inorno del puno szionrio di S(x), le ree r l sse delle x e l curv x cos [ λ ( x x )] si cncellno pprossimivmene, in compleo ccordo con il lemm di Riemnn-Lebesque. Spieghimo il meodo dell fse szionri in pssi. Primo psso. Si c un puno szionrio di S (ssumimo per semplicià che ce ne si uno solo) e si ɛ > piccolo. Allor [ c ɛ c+ɛ b ] F (λ) = + + e iλs(x) f(x)dx c ɛ c+ɛ c+ɛ ( ) = e iλs(x) f(x)dx + O λ c ɛ Infi, per i due inegrli che non conengono il puno criico possimo inegrre per pri, pplicre Riemnn-Lebesgue e rrivre d un equzione simile ll (). Poiché, come vedremo, il conribuo nell inorno di c è dominne, d or in poi rscureremo ques correzione di ordine /λ e scriveremo F (λ) c+ɛ c ɛ e iλs(x) f(x)dx, per λ Secondo psso. Se ɛ è bbsnz piccolo, per oenere il compormeno dell ordine dominne dell inegrle, le segueni pprossimzioni sono giusifice: S(x) S(c) + S (c)(x c) f(x) f(c) Nurlmene, nello sviluppo di Tylor di S(x) mnc il ermine del prim ordine in quno S (c) =. Abbimo inolre ssuno che S (c) : se così non fosse, dovremmo considerre ermini di ordine superiore (e fermrci l primo ermine non nullo). Si come si, oenimo F (λ) c+ɛ c ɛ f(c)e iλ(s(c)+ S (c)(x c) ) dx, per λ Terzo psso. Adesso esendimo il dominio di inegrzione d +. Per quno pprenemene bizzrro, queso è legiimo perché in queso modo inroducimo correzioni di ordine O ( λ), che possono essere rscure. Allor (porndo nche fuori dll inegrle le cosni) F (λ) f(c)e iλs(c) e i λ S (c)(x c) dx, per λ 4

5 5 Con il cmbimeno di vribili (dovuo Morse) λ u = + S (c) (x c) si oiene F (λ) f(c)e iλs(c) e i sgn[s (c)]u du, λ S (c) dove Clcolimo l inegrle sgn(y) = { + se y > se y < e ±iu du = πe ±i π 4 (vedi ppendice). Quindi, l sinoic di F (λ) è (4) F (λ) f(c)e iλs(c)+isgn[s (c)] π π 4 λ S (c), per λ Fine dell descrizione del meodo dell fse szionri. Adesso lcune osservzioni. () Se c = o c = b, il conribuo ll inegrle, che desso è solo su un inervllo semi-infinio, è meà del risulo sinoico rovo. In queso cso occorre dunque moliplicre per il risulo che bbimo rovo. () Se S(x) h moli puni szionri in [, b], llor spezzimo l inegrle in inervlli che conengono solo un puno szionrio, li rimo indipendenemene usndo il meodo ppen descrio e poi sommimo ui i conribui. () Se il puno szionrio è le che ue le derive di S sono nulle fino ll deriv m-esim, che è non null, llor lo sviluppo in serie dell fse srà S(x) S(c) + m! S(m) (c)(x c) m. Esempio. Clcolimo il ermine dominne dello sviluppo sinoico dell inegrle (), che scrivimo nell form Re {F (λ)}, F (λ) = xe iλ( x x) dx Riconoscimo f(x) = x e S(x) = x x. Si h S (x) = x, e solo un delle due rdici, x = è denro l inervllo di inegrzione. Poiché S (x) = x > per x, il puno x = è un minimo locle e globle. Allor f() =, S() =, S () =

6 e dunque, pplicndo l (4), F (λ) π λ ei( π 4 λ ), per λ Prendendone l pre rele, oenimo l sinoic cerc: [ ( )] ( π π x cos λ x x dx λ cos 4 λ ), per λ..4. Asinoic onde core in meccnic qunisic in un cso semplice. Applichimo il meodo dell fse szionri per risolvere un esercizio di ineresse fisico. Esercizio. Deerminre l ndmeno sinoico dell soluzione del seguene problem l conorno i f = f m x f(x, ) = f (x) = r(x)e i s(x) per s(x) = mv x, essendo v un cosne posiiv, e per r(x) funzione rele posiiv. è Sol. Per quno viso nell lezione 9, l soluzione di f(x, ) = G f (x, ) = i f = f m x G(x y, )f (y)dy dove m / G(x, ) = π i eimx L ndmeno sinoico di f(x, ) è oenuo ponendo λ = / e sudindone l sinoic per λ. Dopo ver inserio G nel prodoo di convoluzione, enuo cono dell condizione inizile, e poso λ = /, si oiene mλ mλ (5) f(x, ) = e iλm(x y) / e iλmvy r(y)dy = πi πi F (λ) dove F (λ) = e iλm(x y) / e iλmv y r(y)dy. 6

7 7 Possimo riscrivere queso inegrle come F (λ) = e iλs(y) r(y)dy dove m(x y) S(y) = + mv y. Deerminimo i puni szionri di S(y): S (y) = Il vlore dell fse in c è m(y x) S(c) = m(v ) + mv = = y = x v def = c + mv (x v ) = mv x mv. Per l sinoic ci serve nche l deriv second di S clcol in c. Si h S (y) = m > Applichimo l (4), F (λ) f(c)e iλs(c)+isgn[s (c)] π π 4 λ S (c), per λ. Oenimo F (λ) r(x v )e iλ(mv x mv )+i π 4 π λm Sosiuendo il vlore di F (λ) nell (5) e riprisinndo = /λ si oiene l sinoic cerc (osservndo che le rdici si cncellno vicend e che l rdice di i denominore si cncell con e i π 4 ). Si h f(x, ) r(x v )e i (mv x mv ) che descrive un pccheo d onde con numero d ond e frequenz ω = k = mv mv = k m il cui profilo inizile r(x) si propg nel corso del empo lungo l rieori clssic x() = x + v senz cmbire di form.

8 ..5. Appendice: clcolo di e±iu du = πe ±i π 4. Incomincimo considerndo l inegrle fmilire I = e z dz che sppimo h il vlore π/ qundo z è rele. Lo sesso inegrle può essere penso come un inegrle nel pino complesso. Considerimo il conorno nel pino complesso illusro in figur 8 Poso z = Re i, se < < π/4, llor l inegrle di e z sull rco di cerchio γ in figur) ende qundo R. Infi, π/4 π/4 e z dz = e R e i ird π/4 = e R (cos +i sin ) ird π/4 R e R cos Rd (perché cos > per < < π/4) Allor, essendo e z nliic nell regione inern l conorno, l inegrle sull sse rele (γ in figur) è ugule ll inegrle lungo le re di pendenz π/4(γ in figur), dove z = ue iπ/4 (u rele posiivo), cioè π = e z dz = e iπ/4 e iu du Quindi Anlogmene, si rov e iu du = e iu du = π eiπ/4 π e iπ/4

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE

INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE INTEGRALE IN SENSO IMPROPRIO E INTEGRALE DI LEBESGUE OSSERVAZIONI ED ESEMPI Si f : [,+ ) : R inegrbile in senso improprio. Se,, f() llor f è inegrbile secondo Lebesgue, e i due inegrli coincidono. Infi

Dettagli

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s),

Soluzione N.3. Soluzione T.1]. Sia F la primitiva della nostra funzione f, in altre parole. F 0 (s) =f (s), Soluzione N3 Soluzione T] Si F l primiiv dell nosr funzione f, in lre prole F (s) =f (s), per definizione di inegrle definio oenimo β() α() f (s) ds = F (β ()) F (α ()) derivndo oenimo β() d f (s) ds =

Dettagli

1 REGOLE DI INTEGRAZIONE

1 REGOLE DI INTEGRAZIONE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcolà di Frmci e Medicin - Corso di Lure in CTF REGOLE DI INTEGRAZIONE. REGOLA DI INTEGRAZIONE PER PARTI f(x)g (x)dx = f(x)g(x) g(x)f (x)dx f(x)dg(x) = f(x)g(x)

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno dell esponenzile,

Dettagli

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi

Equazioni e disequazioni logaritmiche ed esponenziali. Sintesi delle teoria e guida alla risoluzione di esercizi Equzioni e disequzioni rimiche ed esponenzili Sinesi delle eori e guid ll risoluzione di esercizi Esponenzile Definizione: si definisce funzione esponenzile, con come vlori l qunià elev ll poenz. è l rgomeno

Dettagli

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario

Risolvi i seguenti esercizi rispondi a 4 quesiti a scelta tra quelli proposti nel questionario Risolvi i segueni esercizi rispondi quesii scel r quelli proposi nel quesionrio Clcol le segueni primiive. Quindi c ln e. Pongo d cui segue, llor: ( e ) d ( e ) c ( e ) c e e d. sin ( ) Pongo d cui segue,

Dettagli

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD

ECONOMIA POLITICA II - ESERCITAZIONE 8 Curva di Phillips Legge di Okun - AD ECOOMIA POLITICA II - ESERCITAZIOE 8 Curv di Phillips Legge di Okun - AD Esercizio 1 Sino β = 0.5, α = 1, u = u n = 6%, λ = 0.5, g y = 0.03. Supponee che nell nno 0 l disoccupzione si 6% e che l bnc cenrle

Dettagli

Capitolo 3 - Trasformata di Fourier (I)

Capitolo 3 - Trasformata di Fourier (I) Appuni di Teori dei Segnli Cpiolo 3 - Trsform di Fourier (I Definizione... Proprieà generli...3 Osservzione: nlogie con lo sviluppo in serie di Fourier...4 Esempio: rsform del rengolo...5 Esempio: rsform

Dettagli

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una

Nota. Talvolta, quando non occorre mettere in evidenza il vettore v, si può indicare una Cpiolo Le rslzioni. Richimi di eori Definizione. Si do un eore del pino. Si chim rslzione di eore (che si indic con il simolo ) l corrispondenz dl pino in sé che d ogni puno P ssoci il puno (P) = P le

Dettagli

5. La trasformata di Laplace Esercizi

5. La trasformata di Laplace Esercizi 5. L rform di Lplce Eercizi Aggiornmeno: febbrio 3 p://www.cirm.unibo.i/~brozzi/mi/pdf/mi-cp.5-ee.pdf 5.. Inroduzione ll rform di Lplce 5.. Proprieà dell rform di Lplce 5.-. Coniderimo l funzione limi

Dettagli

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x)

Capitolo 6. Integrazione. è continua (in quanto derivabile) in x = 0. ( x) Cpiolo 6 Inegrzione 6 Inegrle Indeinio DEFINIZIONE Si ( :(, R ; l unzione F( :(, R si dice primiiv dell unzione ( se F ( è derivile in (, ed F' ( = ( (, OSSERVAZIONE In generle non ue le unzioni sono doe

Dettagli

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1

Nicola De Rosa, Liceo scientifico Americhe sessione ordinaria 2010, matematicamente.it. si determini quella che passa per il punto di coordinate 1 Nicol De Ros, Liceo scienifico Americhe sessione ordinri, memicmene.i PROBLEMA Nel pino riferio coordine cresino Oy:. si sudi l funzione f e se ne rcci il grfico.. Si deermini l mpiezz degli ngoli individui

Dettagli

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE

11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE 11 DIMENSIONAMENTO DEL PIANO DI CODA ORIZZONTALE Avendo già fo un dimensionmeno preliminre del pino di cod orizzonle, riporimo i di oenui d le sim: S.7m b 3.7m profilo: NACA 0006 AR 5.15 Per effeure il

Dettagli

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V

q= idt= dt= R dt R a) Determinare la f.e.m. indotta nella bacchetta dt -BLv=-0.62 V Esercizi 6 Legge di Frdy 1. Si consideri un spir ll qule si conceno un flusso mgneico vribile nel empo, il Φ, Φ. Clcolre l cric ole che e flui nell cui vlore due isni = e si ( ) () resisenz dell spir fr

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

Funzioni a valori vettoriali

Funzioni a valori vettoriali Funzioni vlori veorili Definizione. Un ppliczione defini u un inieme di numeri reli il cui codominio è un n inieme dir è per definizione un funzione vlori veorili. F è un veore che h n componeni e i crive

Dettagli

Compitino di algebra lineare e geometria del 30 Novembre 2007 VERSIONE A

Compitino di algebra lineare e geometria del 30 Novembre 2007 VERSIONE A Compiino di lgebr linere e geomeri del Novembre 7 VERSIONE A Nome e cognome: Oo Perseien Numero di Mricol: 48 Aenzione: riporre i di personli su ogni foglio consegno Esercizio. Si A = Sudire il sisem linere

Dettagli

Calcolo integrale in due e più variabili

Calcolo integrale in due e più variabili Clcolo integrle in due e più vribili 9 dicembre 2010 1 Definizione di integrle Il primo psso st nell definizione e determinzione dell integrle per funzioni due vribili prticolrmente semplici: le funzioni

Dettagli

Zona Frattura critica. Tenacità del materiale

Zona Frattura critica. Tenacità del materiale 1 Perché l frur frgile si verifichi è necessrio il conemporneo verificrsi delle re segueni condizioni: livello di sollecizione elevo (nche se inferiore ll ensione di rour); presenz di un difeo (cricc)

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

ALTRE APPLICAZIONI DELLA CRESCITA LOGISTICA

ALTRE APPLICAZIONI DELLA CRESCITA LOGISTICA LTRE PPLICZIONI DELL CRESCIT LOGISTIC Diffusione di un infezione uoclisi Cineic chimic DIFFUSIONE DI UN MLTTI INFETTIV IPOTESI Popolzione : Infei Non-Infei N individui Tui gli infei sono ugulmene ed immedimene

Dettagli

Comportamento Meccanico dei Materiali. 5 Soluzione degli esercizi proposti. Esercizio 5-1

Comportamento Meccanico dei Materiali. 5 Soluzione degli esercizi proposti. Esercizio 5-1 Esercizio 5- lcolre lo sposmeno dell esremo e le sollecizioni preseni nell sruur in figur, compos d due se in serie con sezione circolre di dimero D 0 e D 8, lunghe enrme 00 e soggee d un crico di 0 k.

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI. Proprieta della TDF (3) Proprieta della TDF (1) Proprieta della TDF (2) Fase. Modulo.

LA TRASFORMATA DI FOURIER: PROPRIETA ed ESEMPI. Proprieta della TDF (3) Proprieta della TDF (1) Proprieta della TDF (2) Fase. Modulo. - 32- - * ( ' 1 w œ žÿ œ œ š Š CBA l k g < ; 7 - roprie dell TDF (1 LINEARITA : l TDF dell combinzione linere (somm pes di due segnli e ugule ll combinzione linere delle TDF dei due segnli DUALITA : -

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

GRANDEZZE PERIODICHE

GRANDEZZE PERIODICHE GRNDEZZE PERIODICHE Un grndezz empodipendene (), che supponimo rele, si definisce periodic qundo d u- guli inervlli ssume vlori uguli, cioè qundo vle l relzione (con n inero qulsisi): ( ) ( n) + () - Il

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Analisi e Geometria 2 Docente: 2 luglio 2015

Analisi e Geometria 2 Docente: 2 luglio 2015 Analisi e Geomeria Docene: luglio 15 Cognome: Nome: Maricola: Ogni risposa deve essere giusificaa. Gli esercizi vanno svoli su quesi fogli, nello spazio soo il eso e, in caso di necessià, sul rero. I fogli

Dettagli

Esercitazioni Capitolo 3 Irraggiamento

Esercitazioni Capitolo 3 Irraggiamento Esercizioni Cpiolo 3 Irrggimeno Il filmeno di un lmpd d incndescenz si rov ll emperur di 500 K. Ipoizzndo che il filmeno si compori come un corpo nero, vlure rdinz inegrle M (poenz specific emess per irrggimeno

Dettagli

DERIVATA DI UNA FUNZIONE

DERIVATA DI UNA FUNZIONE DERIVATA DI UNA FUNZIONE. DEFINIZIONI E CONSIDERAZIONI PROPEDEUTICHE. DEFINIZIONE DI DERIVATA DI UNA FUNZIONE IN UN PUNTO 3. SIGNIFICATO GEOMETRICO DELLA DERIVATA 4. DERIVATA DESTRA E SINISTRA 5. OSSERVAZIONI

Dettagli

Equazioni alle differenze finite lineari

Equazioni alle differenze finite lineari Equzioni lle differenze finie lineri DEFINIZIONE : Si un funzione d e si hun cosne per cui hè nel dominio di se lo è. Allor D, l differenz primdi è quell funzione il cui vlore in, indico con D è do d:

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema

LS-DYNA3D ABAQUS-explicit PAMCRASH RADIOSS. Vediamo come si sviluppa la soluzione esplicita del problema Anlisi rnsiori L'nlisi dinmic rnsiori (de nche nlisi emporle) è un ecnic che consene di deerminre l rispos dinmic di un sruur sogge d un generic eccizione emporle Gli eei emporli sono li d rendere imporni

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Integrazione definita

Integrazione definita Integrzione definit Si [,b] R un intervllo chiuso e limitto. Si f : [,b] R limitt. Def. Trpezoide di f sull intervllo [,b] è l regione di pino delimitt dll sse =, dlle rette = e = b e dl grfico di f. Viene

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 22 SETTEMBRE 25 Si svolgno cortesemente i seguenti esercizi ESERCIZIO (PUNTEGGIO: 6/3) Si clcoli l integrle con A= γ 2z 2 +, SOLUZIONE L funzione integrnd

Dettagli

Pacchetto d onda. e (a2 k 2 ikx) dk (1)

Pacchetto d onda. e (a2 k 2 ikx) dk (1) Pcchetto d ond 1 Clcolo d integrli gussini Per clcolre un integrle del tipo ψ(x) = e ( k ikx) dk (1) l procedur stndrd e di scrivere l espressione che ppre nell esponenzile come il qudrto di un funzione

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Sistemi Intelligenti Reinforcement Learning: Policy iteration

Sistemi Intelligenti Reinforcement Learning: Policy iteration Sisemi Inelligeni Reinforcemen Lerning: Policy ierion Albero Borghese Universià degli Sudi di Milno Lbororio di Sisemi Inelligeni Applici (AIS-Lb) Diprimeno di Scienze dell Informzione borghese@dsi.unimi.i

Dettagli

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 24. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 24 24.1. Prodotti sclri. Definizione 24.1.1. Si V uno spzio vettorile su R. un ppliczione Un prodotto sclre su V è tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici

Equazioni. Definizioni e concetti generali. Incognita: Lettera (di solito X) alla quale e possibile sostituire dei valori numerici Equzioni Prerequisiti Scomposizioni polinomili Clcolo del M.C.D. e del m.c.m. tr polinomi P(X) = 0, con P(X) polinomio di grdo qulsisi Definizioni e concetti generli Incognit: Letter (di solito X) ll qule

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

Soluzioni degli esercizi di Analisi Matematica I

Soluzioni degli esercizi di Analisi Matematica I Sapienza - Universià di Roma - Corso di Laurea in Ingegneria Eleroecnica Soluzioni degli esercizi di Analisi Maemaica I A.A. 6 7 - Docene: Luca Baaglia Lezione del Dicembre 6 Argomeno: Equazioni differenziali,

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

2. Teoremi per eseguire operazioni con i limiti in forma determinata

2. Teoremi per eseguire operazioni con i limiti in forma determinata . Teoremi per eseguire operzioni con i iti in form determint Vedimo dunque i teoremi che consentono il clcolo dei iti, ttrverso i quli si riconducono le situzioni rticolte semplici operzioni lgebriche

Dettagli

Oscillatore armonico unidimensionale

Oscillatore armonico unidimensionale Oscilltore rmonico unidimensionle Autovlori ed utofunzioni L hmiltonin di un oscilltore rmonico unidimensionle si scrive Definendo le vribile dimensionli L eq.) si scrive H = m p + m ω x ) = m h d dx +

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Calendario Boreale (EUROPA) 2014 QUESITO 1

Calendario Boreale (EUROPA) 2014 QUESITO 1 www.mtefili.it Clendrio Borele (EUROPA) 204 QUESITO Si determini, se esiste, un cono circolre retto tle che il suo volume e l su superficie totle bbino lo stesso vlore numerico. Indichimo con r il rggio

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

3. Velocità istantanea

3. Velocità istantanea 3. Velocià isnne E possibile ssocire un velocià d ogni singolo isne? Immginimo un uo che rversi il cenro cidino ed osservimone il chimero sul cruscoo: qundo dimo gs l lnce si spos indicndo vlori grndi,

Dettagli

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x)

INTEGRALI IMPROPRI. TEORIA in sintesi. , sappiamo che sotto tali condizioni esiste. Sia f ( x) l integrale definito fra a e b della funzione f ( x) INTEGRALI IMPROPRI Prerequiii: Oieivi : Clcolo degli inegrli indefinii Inegrle definio di un funzione coninu Teorem e formul fondmenle del clcolo inegrle Appliczioni del clcolo inegrle Sper riconocere

Dettagli

L integrale di Riemann

L integrale di Riemann L integrle di Riemnn Riccrd Rossi Università di Bresci Anlisi B Riccrd Rossi (Università di Bresci) L integrle di Riemnn Anlisi B 1 / 64 Motivzioni: clcolo di un re Si f : [, b] R continu e positiv. Problem

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Integrale e Primitiva

Integrale e Primitiva Alm Mter Studiorum Università di Bologn FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Lure in Mtemtic Integrle e Primitiv Tesi di Lure in Anlisi Mtemtic Reltore: Chir.mo Prof. Ermnno Lnconelli

Dettagli

11. Rango di una matrice.

11. Rango di una matrice. Rngo di un mtrice Considerimo un mtrice di tipo m n d elementi reli rppresentt nel modo seguente: A = (m-) m (m-) m (m-) m (m-) m (n-) (n-) (n-) (m-),(n-) m(n-) n n n (m-)n mn Per ogni i =,,,, (m-), m,

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

(x) d f(x) Se il termine integrale è asintoticamente più piccolo del termine di bordo, cioè termine integrale = o(termine di bordo) quando λ, allora

(x) d f(x) Se il termine integrale è asintoticamente più piccolo del termine di bordo, cioè termine integrale = o(termine di bordo) quando λ, allora 3.1. Anlisi sintotic: integrli di Lplce. Un integrle di Lplce h l form (1) F (λ) = b e λs(x) f(x)dx dove ssumimo che λ >. Tipicmente, λ è un prmetro grnde e simo interessti nell ndmento sintotico dell

Dettagli

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim.

Calcolo I, a.a Esercizi dicembre ) Sia f : [a, b] R una funzione continua. Calcolare le derivate. d dx. 1 lim. Clcolo I,.. 5 6 Esercizi 8 dicembre 5 Si f : [, b] R u fuzioe coiu. Clcolre le derive d f( d, d b f( d, Iolre (usdo il Teorem di de l Hôpil clcolre il ie d f( d. Ricorddo che per il Teorem fodmele del

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

La luna. di Diego Alberto

La luna. di Diego Alberto L lun di Diego Alberto Un mondo sempre più luntico L ide di fondo è quell di descrivere e vlutre l evoluione dell percentule pprente di Lun illumint giorno per giorno: essendo pprossimbile d un sfer, l

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca

COMPLEMENTI SUGLI INTEGRALI DEFINITI. A. Figà Talamanca COMPLEMENTI SUGLI INTEGRALI DEFINITI A. Figà Tlmnc 27 ottobre 2010 2 0.1 Introduzione C è un modo pprentemente semplice ed intuitivo per introdurre l integrle (definito) di un funzione f definit su un

Dettagli

Metodi Matematici della Fisica - I a Unità

Metodi Matematici della Fisica - I a Unità Metodi Mtemtici dell Fisic - I Unità Notzioni Se non specificto diversmente, nelle soluzioni dei problemi si usernno le notzioni fz) funzione generic; Rz) funzione rzionle rpporto di due polinomi); C generic

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Integrali impropri di funzioni di una variabile

Integrali impropri di funzioni di una variabile Integrli impropri di funzioni di un vribile. Le funzioni continue Considerimo nel seguito un delle piú importnti ppliczioni del teorem di uniforme continuitá delle funzioni continue su intervlli chiusi

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Domande. 1. Sì. v x 12 x 23

Domande. 1. Sì. v x 12 x 23 Cpiolo Il moo reilineo Domnde. Sì.. Consider i quro semfori (e le loro disnze relive) mosri in figur. Supponi che ll isne 0 s il semforo diveni verde, menre gli lri sono ncor rossi. Il semforo deve divenre

Dettagli

Esercizi svolti Limiti. Prof. Chirizzi Marco.

Esercizi svolti Limiti. Prof. Chirizzi Marco. Cpitolo II Limiti delle funzioni di un vribile Esercizi svolti Limiti Prof. Chirizzi rco www.elettrone.ltervist.org 1) Verificre che risult: = Dobbimo provre che per ogni ε positivo, rbitrrimente piccolo,

Dettagli