Valori caratteristici di distribuzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Valori caratteristici di distribuzioni"

Transcript

1 Capitolo 3 Valori caratteristici di distribuzioni 3. Valori attesi di variabili e vettori aleatori In molti casi è possibile descrivere adeguatamente una distribuzione di probabilità con pochi valori di sintesi. In altri termini la descrizione delle caratteristiche probabilistiche di una variabile aleatoria attraverso la funzione di probabilità (nel caso discreto) o la funzione di densità (nel caso continuo) può essere agevolata dal ricorso ad un certo numero di indicatori che sintetizzano altrettanti aspetti della distribuzione (tali indicatori, pur rappresentando particolari aspetti della distribuzione stessa, non ne esauriscono la descrizione). 3.. Valori attesi di variabili aleatorie Definizione 3. Data una variabile aleatoria discreta X con funzione di probabilità p X e insieme di definizione X si dice valore atteso o speranza matematica o valor medio di X la quantità E (X) = t p X (t) (3.) t X posto che la somma a secondo membro sia finita. Esempio 3. Sia X una variabile aleatoria discreta con funzione di probabilità { p X (x) = 5 x =,..., 5 altrove il suo valore atteso è dato dall espressione seguente E (X) = 5 t 5 = 3 t= 59

2 6 A. Pollice - Appunti di Probabilità Esempio 3. Sia X una variabile aleatoria discreta con funzione di probabilità p X ( ) x = p p X (x) = X () x = p X () x = altrove posto che valgano E (X) = 6 e p X () = è possibile determinare p X ( ) e p X (), infatti 6 = t= t p X (t) = p X ( ) + + p X () = p X () p X ( ) inoltre dalla funzione di probabilità si deduce che deve valere p X () + p X ( ) =, quindi p X () + p X ( ) = p X () p X ( ) = 6 p X () = 3 p X ( ) = 6 Esempio 3.3 Un urna contiene palline di cui 8 valgono e valgono 5. Se ne scelgano a caso 3 senza reinserimento e si vinca la somma dei valori delle 3 palline estratte. La distribuzione delle vincite possibili è la seguente: P ( 3 palline da ) = P ( 6) = (8 3) ( 3 ) =.467 P ( palline da ed da 5 ) = P ( 9) = (8 )( ) ( 3 ) =.467 P ( pallina da e da 5 ) = P ( ) = (8 )( ) ( 3 ) =.66 Pertanto il valore atteso della vincità è = 7797 Definizione 3. Data una variabile aleatoria continua X con funzione di densità f X si dice valore atteso o speranza matematica o valor medio di X la quantità E (X) = t f X (t) dt (3.) posto che l integrale a secondo membro sia finito.

3 Cap.3: Valori caratteristici di distribuzioni 6 Esempio 3.4 Se dividiamo casualmente un segmento di lunghezza 5 in due parti ed indichiamo con X la lunghezza di una delle due parti ottenute (ad esempio quella posta alla nostra sinistra) posiamo ragionevolmente ritenere che valga f X (x) = 5 < x < 5 altrove In altri termini stiamo supponendo che ciascun punto del segmento abbia la stessa probabilità di essere selezionato per dividerlo in due, ovvero che la lunghezza X della parte sinistra del segmento abbia distribuzione uniforme su tutto il segmento. In tal caso la lunghezza attesa della parte sinistra del segmento è data dal risultato seguente (anche giustificabile intuitivamente) E (X) = 5 t 5 dt = = 5 Esempio 3.5 Sia X una variabile aleatoria continua con funzione di densità continua a tratti 8 < x < x f X (x) = 8 < x < 4 altrove il suo valore atteso è dato da E (X) = t 4 8 dt + t t 8 dt = = 3 Allo scopo di unificare la notazione nel caso di variabili aleatorie discrete e continue la definizione di valore atteso assume talvolta l espressione seguente E (X) = t df X (t) (3.3) dove F X indica la funzione di ripartizione (discreta o continua) della variabile aleatoria X. Tale espressione, che fa riferimento alla teoria dell integrazione di Lebesgue-Stieltjes, prende la forma rispettivamente della somma (3.) o dell integrale (3.) nel caso di variabili aleatorie discrete o dotate di densità. 3.. Valori attesi di funzioni di variabili aleatorie Data una funzione Y = g (X) della variabile aleatoria discreta X il suo valore atteso può essere calcolato ricavando prima la funzione di probabilità p Y della variabile aleatoria Y, quindi applicando la definizione di valore atteso e la (3.) E (Y ) = t Y t p Y (t) Alternativamente è possibile utilizzare la funzione di probabilità della X senza procedere alla determinazione di quella della Y. La speranza matematica di Y = g (X) è data da E (Y ) = t X g (t) p X (t) (3.4)

4 6 A. Pollice - Appunti di Probabilità Esempio 3. (cnt) Siano g (X) = X e g (X) = (X + ) [ E (X + ) ] = E ( X ) = 5 t= 5 t 5 = t= (t + ) 5 = 7 Esempio 3. (cnt) Posto che non si conosca il valore di E (X) e che anche in questo caso valga p X () = si può calcolare il valore di E ( X ), infatti E ( X ) = t p X (t) t= = ( ) p X ( ) + + () p X () = p X ( ) + p X () = Data una funzione Y = g (X) della variabile aleatoria continua X il suo valore atteso può essere calcolato ricavando prima la funzione di densità f Y della variabile aleatoria Y, quindi applicando la definizione di valore atteso E (Y ) = t f Y (t) dt Alternativamente è possibile utilizzare la funzione di densità della X senza procedere alla determinazione di quella della Y. La speranza matematica di Y = g (X) è data da E (Y ) = g (t) f X (t) dt (3.5) Esempio 3.4 (cnt) La lunghezza attesa della sezione di segmento posta alla nostra destra è data da E (5 X) = 5 (5 t) 5 dt = = 5 analogamente il valore atteso del prodotto delle lunghezze delle due sezioni è dato da E [X (5 X)] = 5 t (5 t) 5 dt = = 5 6 Esempio 3.5 (cnt) Tenendo opportunamente conto della funzione di densità continua a tratti della variabile aleatoria X si ha E ( X ) = t 4 8 dt + t t 8 dt = = 3 3

5 Cap.3: Valori caratteristici di distribuzioni 63 Esempio 3.6 Sia X una variabile aleatoria continua con funzione di densità x < x < f X (x) = altrove il valore atteso di Y = X è dato da ( ) E (Y ) = E X = t t dt = = 4 5 Si ottiene lo stesso risultato se si individua prima la densità della Y e poi si calcola direttamente il valore atteso. Infatti essendo y = x una trasformazione monotona per < x < si ha ( f Y (y) = f X g (y) ) dg (y) dy = y y = 4y 3 < y < quindi E (Y ) = t 4t 3 dt = = 4 5 Anche per le funzioni reali di vettori aleatori i valori attesi sono determinabili in modo analogo. Il valore atteso della funzione reale Y = g (X) di un vettore aleatorio k-dimensionale discreto X con funzione di probabilità p X X k è infatti dato dall espressione E (Y ) = g (t) p X X k (t) (3.6) t X k

6 64 A. Pollice - Appunti di Probabilità Esempio 3.7 Sia (X, X ) la variabile aleatoria bidimensionale discreta la cui funzione di probabilità è data da 3 (x, x ) {(, ), (, ), (3, 3)} p X X (x, x ) = altrove Si noti che posto Y = X si ha e analogamente ponendo Y = X si ottiene Il valore atteso di Y = X X è dato da E (X ) = = E (X ) = = E analogamente E (X X ) = = 4 3 [( E X ) ( X )] ( = ) ( ) ( + ) ( ) 3 ( ) ( 3 ) = 6 9 Esempio. (cnt) Utilizzando la tabella che comprende le distribuzioni marginali (p. 48) è possibile calcolare E (X ) ed E (X ) E (X ) = = 4 3 E (X ) = = 8 3 Inoltre si ha che per Y = X X E (X X ) = = 3 Analogamente nel caso di un vettore aleatorio k-dimensionale X dotato di densità f X X k il valore atteso di una sua funzione Y = g (X) è dato dall espressione E (Y ) = g (t) f X X k (t) dt dt k (3.7) k

7 Cap.3: Valori caratteristici di distribuzioni 65 Esempio.4 (cnt) Si noti che posto Y = X si ha E (X ) = 3 8 e analogamente ponendo Y = X si ottiene E (X ) = 3 8 ( t 7t + t ) dt dt = = 3 3 ( t 7t + t ) dt dt = = 7 3 infine se Y = X X E (X X ) = 3 8 ( t t 7t + t ) dt dt = = 3 8 Esempio.5 (cnt) Si noti che posto Y = X si ha E (X ) = 8 e analogamente ponendo Y = X si ottiene E (X ) = 8 t t t t t dt dt = = 4 5 t t t dt dt = = 8 5 infine se Y = X X E (X X ) = 8 t t t t t dt dt = = Proprietà dei valori attesi I valori attesi di variabili aleatorie godono di alcune proprietà che discendono dalle loro definizioni. Nell enunciare queste proprietà si fa riferimento al caso di variabili aleatorie continue unidimensionali. L estensione di enunciati e definizioni alle variabili aleatorie discrete e ai vettori aleatori continui e discreti è semplicemente ottenibile sostituendo agli integrali unidimensionali che definiscono i valori attesi rispettivamente le somme e gli integrali e le somme multidimensionali.. Il valore atteso di una costante è uguale alla costante stessa. Se g (X) = c con c costante, si ha E (c) = c f X (t) dt = c f X (t) dt = c (3.8). Il valore atteso della funzione di una variabile aleatoria moltiplicata per una costante è uguale alla costante per il valore atteso della funzione della variabile aleatoria. Sia in questo caso g (X) = c h (X) con c costante ed h funzione di X, si ha E [c h (X)] = c h (t) f X (t) dt = c E [h (X)] (3.9) 3. Il valore atteso di una combinazione lineare di due funzioni di una variabile aleatoria è uguale alla stessa combinazione lineare dei valori attesi delle stesse due funzioni della variabile aleatoria. In

8 66 A. Pollice - Appunti di Probabilità questo caso g (X) = c h (X) + c h (X) con c e c costanti ed h e h funzioni di X, si ha E [c h (X) + c h (X)] = c h (t) + c h (t) f X (t) dt = c E [h (X)] + c E [h (X)] (3.) 4. La proprietà precedente è immediatamente generalizzabile a combinazioni lineari di n > termini [ n ] E c i h i (X) = i= n c i E [h i (X)] (3.) 5. Il valore atteso del prodotto di due variabili aleatorie è uguale al prodotto dei valori attesi delle variabili se queste sono indipendenti. Siano X ed X variabili aleatorie indipendenti rispettivamente con funzione di densità f X ed f X, si ha E (X X ) = = = i= t t f X X (t, t ) dt dt t t f X (t ) f X (t ) dt dt (3.) t f X (t ) dt t f X (t ) dt = E (X ) E (X ) 6. Disuguaglianza di Schwarz-Hölder. Dati due numeri positivi a e b tali che a + b = e due variabili aleatorie X e X si ha E ( X X ) [E ( X a )] a [ ( E X b)] b (3.3) L espressione precedente fornisce come casi particolari la disuguaglianza di Schwarz [E ( X X )] E ( X ) ( ) E X (3.4) oltre che la seguente disuguaglianza valida per < c < d (E X c ) c ( E X d) d (3.5) Esempio 3. (cnt) E [(X + ) ] = E [ X + 4X + 4 ] = E [ X ] + E [4X] + E [4] = E [ X ] + 4E [X] + 4 = = 7

9 Cap.3: Valori caratteristici di distribuzioni 67 Esempio 3.4 (cnt) E [X (5 X)] = 5E (X) E (5 X) = 5 E (X) = 5 5 = 5 5 t 5 dt = = 5 6 Esempio 3.7 (cnt) [( E X ) ( X )] 3 3 ( = E X X 3 X 3 X + ) 9 = E (X X ) 3 E (X ) 3 E (X ) + 9 = = 6 9 Esempi.,4,5 (cnt) In tutti e tre gli esempi poiché E (X X ) E (X ) E (X ) le variabili aleatorie X e X non sono indipendenti. 3. Momenti di variabili aleatorie Tra i valori attesi delle funzioni di variabili aleatorie unidimensionali assumono un importanza particolare quelli delle potenze con esponente reale non negativo, denominate momenti. Definizione 3.3 Si dice momento (ordinario) r-esimo di una variabile aleatoria unidimensionale X la quantità µ r = E (X r ) (3.6) Naturalmente a seconda che la variabile aleatoria X sia discreta e dotata di funzione di probabilità p X ovvero continua e dotata di funzione di densità f X il momento r-esimo è rispettivamente dato da µ r = t X t r p X (t) (3.7) µ r = t r f X (t) dt (3.8). Si osservi che µ = E (X) = µ, ossia il momento primo di una variabile aleatoria coincide con il suo valore atteso.. Dalla definizione precedente si deduce immediatamente che il momento secondo gode della proprietà di essere nullo se e solo se la variabile aleatoria X è uguale a zero con probabilità E ( X ) = P X (X = ) = (3.9) Definizione 3.4 Si dice momento centrale r-esimo di una variabile aleatoria unidimensionale X la quantità m r = E [(X E (X)) r ] (3.)

10 68 A. Pollice - Appunti di Probabilità. I momenti ordinari e i momenti centrali appena definiti corrispondono a valori tipici che caratterizzano le distribuzioni delle variabili aleatorie a cui si riferiscono. La variabile aleatoria X E (X) è anche detta scarto dalla media. A causa della proprietà di linearità della media il suo valore atteso è nullo m = E [X E (X)] = E (X µ) = (3.). Una variabile aleatoria X ha distribuzione simmetrica rispetto al centro di simmetria a se vale F X (a x) P X (X = a x) = F X (a + x) (3.) questa condizione nel caso di variabili aleatorie continue dotate di densità diventa f X (a x) = f X (a + x) (3.3) mentre le variabili aleatorie discrete simmetriche sono tali che i valori che assumono e le loro probabilità si dispongono simmetricamente rispetto ad a. Se una variabile aleatoria X ha distribuzione simmetrica il suo valore atteso coincide con il centro di simmetria, ovvero µ = a. Inoltre in tal caso i momenti centrali di ordine dispari sono nulli. Esempio.8 (cnt) Per la densità triangolare vale E (Y ) =, inoltre poiché per x > si ha che f Y (x) = x = f Y ( x) allora tale densità è simmetrica e il suo centro di simmetria corrisponde all origine degli assi. Di conseguenza i momenti centrali di ordine dispari sono nulli. [ m 3 = E (Y E (Y )) 3] = E ( Y 3 ) = t 3 ( + t) dt + t 3 ( t) dt = Definizione 3.5 Il momento centrale secondo è anche detto varianza della variabile aleatoria e viene generalmente indicato con m = Var (X) = σ X = E [(X E (X)) ]. La varianza di una variabile aleatoria misura la dispersione della distribuzione di probabilità attorno al valore medio.. Si noti che vale σx = E [(X E (X)) ] [ ] = E X + (E (X)) XE (X) = E ( X ) + (E (X)) E (X) E (X) (3.4) = µ µ In altri termini la varianza è data dal momento secondo meno il quadrato del momento primo.

11 Cap.3: Valori caratteristici di distribuzioni 69. Si ricava facilmente che vale Var (ax + b) = E [ (ax + b E (ax + b)) ] = E [ (ax ae (X)) ] = a Var (X) (3.5) La varianza resta invariata se alla variabile aleatoria si aggiunge una costante b, mentre viene moltiplicata per a se la variabile aleatoria è moltiplicata per a. 3. Si noti che la varianza si annulla se e solo se la variabile aleatoria X assume un unico valore (che ovviamente coincide con il valor medio µ) con probabilità. Dalla proprietà (b) dei momenti ordinari discende infatti che vale [ E (X µ) ] = P X (X µ = ) = (3.6) 4. Per qualsiasi variabile aleatoria vale σ X = E [ (X µ) ] [ = min E (X a) ] (3.7) a infatti [ E (X a) ] = E [(X µ + µ a) ] = E [ (X µ) ] + (µ a) + (µ a) E (X µ) = σ X + (µ a) σ X 5. Disuguaglianza di Cebicev. Sia X una variabile aleatoria per la quale esistano finiti i momenti primo e secondo, per qualsiasi a > vale P X (µ aσ X < X < µ + aσ X ) a (3.8) Infatti, posto b = aσ X la suddetta disuguaglianza implica P X ( X µ < b) σ X b = σ X b P X ( X µ b) (3.9) L ultima disuguaglianza si dimostra nel caso continuo osservando che vale σx = (t µ) f X (t) dt (t µ) f X (t) dt X µ b b X µ b f X (t) dt = b P X ( X µ b) Analoghi passaggi portano alla dimostrazione della disuguaglianza nel caso di variabili aleatorie discrete. È importante sottolineare come la disuguaglianza di Cebicev sussiste per qualunque variabile aleatoria per la quale si conoscano µ e σ X senza alcuna assunzione sulla sua distribuzione. Dunque tale disuguaglianza permette di calcolare il limite inferiore della probabilità di intervalli simmetrici attorno alla media di una variabile aleatoria di cui si conoscano solo i primi due momenti e non l intera distribuzione.

12 7 A. Pollice - Appunti di Probabilità Esempio.8 (cnt) La varianza della variabile aleatoria continua Y con densità triangolare è data da [ σy = E (Y E (Y )) ] = E ( Y ) = t ( + t) dt + t ( t) dt = = 6 Definizione 3.6 La radice quadrata della varianza è detta scarto quadratico medio o deviazione standard σ X = Var (X) (3.3). Si noti che se X è una variabile aleatoria con E (X) = µ e Var (X) = σx, la trasformazione lineare fornisce una variabile aleatoria Z con Z = X µ σ X (3.3) E (Z) = σ X E (X µ) = (3.3) Var (Z) = σx Var (X) = (3.33) Tale trasformazione è dunque detta standardizzazione della variabile aleatoria X.

13 Cap.3: Valori caratteristici di distribuzioni 7 Esempio 3.8 Si calcoli la varianza della somma ottenuta lanciando una coppia di dadi. Siano X il risultato del primo dado ed X quello del secondo con rispettivamente p X (x ) = 6 per x =,..., 6 e p X (x ) = 6 per x =,..., 6 e sia Z = X + X 36 z =, 36 z = 3, p Z (z) = P X X (X + X = z) = 3 36 z = 4, 4 36 z = 5, z = 6, z = 7 altrove E (Z) = t= t= tp Z (t) = = 7 E ( Z ) = t p Z (t) = = 39 6 Si noti che in generale vale m 3 = E [(Z E (Z)) 3] Var (X + X ) = Var (Z) = E ( Z ) [E (Z)] = 35 6 [ ] = E Z 3 (E (Z)) 3 + 3Z (E (Z)) 3Z E (Z) = E ( Z 3) (E (Z)) 3 + 3E (Z) (E (Z)) 3E ( Z ) E (Z) = E ( Z 3) + (E (Z)) 3 3E ( Z ) E (Z) = µ 3 + µ 3 3µ µ Dal calcolo diretto risulta E ( Z 3) = 93 e di conseguenza m 3 = = Infatti la funzione di probabilità della variabile aleatoria discreta Z è evidentemente simmetrica attorno alla media 7.

14 7 A. Pollice - Appunti di Probabilità Esempio 3.9 Data la variabile aleatoria continua X con densità 6x ( x) < x < f X (x) = altrove si voglia determinare la probabilità P (µ σ X < X < µ + σ X ). µ = E (X) = t 6t ( t) dt = = Quindi E ( X ) = σ X = Var (X) = 3 ( t 6t ( t) dt = = 3 ) = ( ) = 5 P X (µ σ X < X < µ + σ X ) = P X ( 5 < X < + 5 ) = Per la stessa probabilità, applicando la disuguaglianza di Cebicev, si ha P X (.53 < X <.947) =.75 6t ( t) dt = =.984 Si noti come in questo secondo caso trascurando l informazione sulla forma della densità della variabile aleatoria X si perviene a una determinazione molto meno precisa della probabilità dell intervallo, infatti l estremo inferiore della probabilità dell intervallo (.75) è piuttosto distante dalla probabilità esatta calcolata precedentemente (.984). 3.. Mediana di una variabile aleatoria I momenti descrivono dunque alcuni aspetti delle distribuzioni delle variabili aleatorie. Quando l integrale (nel caso continuo) o la somma (nel caso discreto) divergono i momenti non esistono. In questi e in altri casi in cui il ricorso ai momenti risulta inopportuno vengono utilizzati altri indicatori della posizione e della forma delle distribuzioni di cui il più importante è la mediana. Definizione 3.7 Data una variabile aleatoria unidimensionale X si dice mediana della variabile aleatoria o della sua distribuzione il valore Me (X) tale che P X (X Me (X)) ovvero in termini della funzione di ripartizione e P X (X Me (X)) (3.34) lim h + F X (Me (X) h) F X (Me (X))

15 Cap.3: Valori caratteristici di distribuzioni 73 Quando la variabile aleatoria X è continua si ha immediatamente che vale F X (Me (X)) =. Nel caso discreto la mediana è per definizione quel valore che lascia alla sua sinistra ed alla sua destra una probabilità almeno pari ad. Esempio 3. Le variabili aleatorie X e Y abbiano funzioni di probabilità rispettivamente 6 x = y = p X (x) = 6 x = 6 x = 3 6 x = 4 6 x = 5 6 x = 6 altrove p Y (y) = y = 5 y = 3 5 y = 4 5 y = 5 altrove Si nota facilmente che Me (X) non è unica, infatti per 3 Me (X) 4 vale la condizione (3.34). Al contrario Me (Y ) = 4. Esempio 3. Sia X una variabile aleatoria continua con densità esponenziale di parametro. mediana è ottenuta rsilvendo l equazione La = Me(X) da cui si ricava Me (X) = log. f X (t) dt = Me(X) e t dt = e Me(X) Per la mediana valgono le due seguenti proprietà:. Se Y = g (X) con g funzione non decrescente, allora Me (Y ) = g (Me (X)).. Per qualsiasi variabile aleatoria X vale 3.. Momenti misti E [ X Me (X) ] = min a E [ X a ] (3.35) Anche tra i valori attesi delle funzioni di variabili aleatorie bidimensionali assumono un importanza particolare quelli dei prodotti delle componenti elevate a potenze con esponente reale non negativo, denominate momenti misti. Definizione 3.8 Si dice momento misto di ordine r, s di un vettore aleatorio bidimensionale (X, X ) la quantità µ r,s = E (X r X s ) (3.36)

16 74 A. Pollice - Appunti di Probabilità Naturalmente a seconda che la variabile aleatoria X sia discreta e dotata di funzione di probabilità p X,X ovvero continua e dotata di funzione di densità f X,X il momento misto di ordine r, s è rispettivamente dato da µ r,s = t r t s p X,X (t, t ) (3.37) (t,t ) X µ r,s = t r t s f X,X (t, t ) dt dt (3.38) Si noti che ponendo r = si ottiene µ,s = E (X s ) e analogamente per s = si ha µ r, = E (X r ). Definizione 3.9 Si dice momento centrale misto di ordine r, s di un vettore aleatorio bidimensionale (X, X ) la quantità m r,s = E [(X E (X )) r (X E (X )) s ] (3.39) Si noti che anche in questo caso ponendo r = si ottiene m,s = E [(X E (X )) s ] e analogamente per s = si ha m r, = E [(X E (X )) r ]. Infine ponendo r = s = si ottiene il momento centrale misto di ordine,. Definizione 3. Il momento centrale misto di ordine, è anche detto covarianza delle variabili aleatorie e viene generalmente indicato con m, = Cov (X, X ) = σ X,X = E [(X E (X )) (X E (X ))].. Si noti che vale σ X,X = E [(X E (X )) (X E (X ))] = E [X X X E (X ) X E (X ) + E (X ) E (X )] (3.4) = E (X X ) E (X ) E (X ) E (X ) E (X ) + E (X ) E (X ) = E (X X ) E (X ) E (X ). Si ricava facilmente che vale Cov (ax + b, cx + d) = E [(ax + b E (ax + b)) (cx + d E (cx + d))] = E [(ax E (ax )) (cx E (cx ))] (3.4) = accov (X, X ) La covarianza è invariante rispetto a traslazioni delle variabili aleatorie mentre reagisce in modo proporzionale ai cambiamenti di scala delle stesse. 3. Se X e X sono due variabili aleatorie indipendenti, allora Cov (X, X ) =. Infatti in tal caso si ha Cov (X, X ) = E (X X ) E (X ) E (X ) = E (X ) E (X ) E (X ) E (X ) = Dunque quando le due variabili aleatorie X e X sono indipendenti la covarianza si annulla. La covarianza può, però, anche annullarsi se le due variabili X e X non sono indipendenti, nel qual caso X e X sono dette incorrelate. Se Cov (X, X ) è positiva, allora X e X sono dette correlate positivamente e a valori alti di X corrispondono valori alti di X nonché a valori bassi di X corrispondono valori bassi di X. Al contrario X e X sono dette correlate negativamente se la covarianza è negativa; in tal caso a valori alti di X corrispondono valori bassi di X e viceversa.

17 Cap.3: Valori caratteristici di distribuzioni Per due variabili aleatorie qualsiasi X e X vale σx +X = E [(X + X E (X + X )) ] = E [(X E (X ) + X E (X )) ] [ = E (X E (X )) ] [ + E (X E (X )) ] (3.4) +E [(X E (X )) (X E (X ))] = σ X + σ X + σ X,X Inoltre, di conseguenza, la varianza della somma di due variabili aleatorie indipendenti è uguale alla somma delle varianze delle due variabili aleatorie (risultato generalizzabile alla somma di più di due variabili aleatorie indipendenti). Esempio. (cnt) Dalle funzioni di probabilità marginali calcolo E (X ) ed E (X ) E (X ) = = 9 36 E (X ) = = 5 36 mentre dalla funzione di probabilità congiunta della variabile bidimensionale (X, X ) calcolo e complessivamente E (X X ) = = Cov (X, X ) = = 5 36 Esempio.8 (cnt) Essendo E (Y ) = ed si ha complessivamente E (Y, Y ) = t t t t dt dt = = Cov (Y, Y ) = E (Y ) =

18 76 A. Pollice - Appunti di Probabilità Esempio 3.8 (cnt) Tenendo conto del fatto che evidentemente Cov (X, X ) =, vale Var (X + X ) = Var (X ) + Var (X ) = Var (X ). E (X ) = 6 tp X (t) = 6 ( ) = 6 t= E ( X ) 6 = t p X (t) = 6 t= Var (X + X ) = Var (X ) = ( ) = 9 6 [ E ( X ) [E (X )] ] = 35 6 Definizione 3. Si dice coefficiente di correlazione la quantità ρ (X, X ) = σ X,X σ X σ X = Cov (X, X ) Var (X ) Var (X ). Dall applicazione della precedente proprietà. della covarianza risulta ( X E (X ) ρ (X, X ) = Cov, X ) E (X ) σ X σ X (3.43) (3.44) da cui si vede come il coefficiente di correlazione rappresenta la covarianza tra le variabili X e X standardizzate.. Per trasformazioni lineari delle variabili X e X vale ρ (ax + b, cx + d) = accov (X, X ) a Var (X ) c Var (X ) = ac a c ρ (X, X ) = sgn (ac) ρ (X, X ) (3.45) Il coefficiente di correlazione è dunque invariante a meno del segno per trasformazioni di scala delle variabili. 3. Si noti che in generale vale [Cov (X, X )] = (E [(X E (X )) (X E (X ))]) [E (X E (X )) (X E (X )) ] [ E (X E (X )) ] E [(X E (X )) ] = Var (X ) Var (X ) (3.46) La prima maggiorazione è banale, mentre la seconda è dovuta alla disuguaglianza di Schwarz. Dalla (3.46) si ricava che ρ (X, X ). 4. Il coefficiente di correlazione tra una variabile aleatoria X e una sua trasformazione lineare ax + b vale ρ (X, ax + b) = Cov (X, ax + b) Var (X) Var (ax + b) = acov (X, X) a Var (X) Var (X) = avar (X) = ± (3.47) a Var (X) In altre parole il coefficiente di correlazione assume valori ± quando le due variabili sono legate da una relazione lineare. Inoltre il valore assoluto del coefficiente di correlazione ρ (X, X ) è tanto più vicino all unità quanto maggiore risulta la concentrazione della distribuzione di probabilità della variabile aleatoria bidimensionale (X, X ) attorno a una retta del piano.

19 Cap.3: Valori caratteristici di distribuzioni 77 Esempio. (cnt) Ancora dalle funzioni di probabilità marginali calcolo E ( X ) ( ) ed E X quindi E ( X ) = = 3 36 E ( X ) = = Var (X ) = 3 36 Var (X ) = ( ) 9 = ( ) 5 = infine ρ (X, X ) = =.86 Esempio.8 (cnt) Essendo Var (Y ) = 6 e si ha che Var (Y ) = Var (X ) = ( ) t dt t dt = 3 ρ (X, X ) = 6 =.7 ( ) = 3..3 Valori attesi e momenti condizionati È possibile applicare la definizione di valore atteso considerando le funzioni di probabilità e di densità condizionate rispettivamente nel caso di variabili aleatorie doppie discrete e continue. Definizione 3. Data la variabile aleatoria doppia discreta (X, X ) e la funzione di probabilità condizionata p X X il valore atteso condizionato della funzione g (X ) dato X = x è definito dall espressione seguente E (g (X ) x ) = g (t ) p X X (t x ) (3.48) {t :(t,x ) X } Definizione 3.3 Data la variabile aleatoria doppia continua (X, X ) e la funzione di densità condizionata f X X il valore atteso condizionato della funzione g (X ) dato X = x è definito dall espressione seguente E (g (X ) x ) = g (t ) f X X (t x ) dt (3.49)

20 78 A. Pollice - Appunti di Probabilità Esempio 3. Si vogliano determinare E (X x ) e Var (X x ) a partire dalla variabile aleatoria doppia continua (X, X ) con funzione di densità f X,X (x, x ) = x + x < x < < x < altrove La densità marginale della variabile condizionante risulta { f X (x ) = x + t dt = x + < x < altrove quindi per un valore < x < f X X (x x ) = { x +x x + < x < altrove da cui E (X x ) = E ( X x ) = t x + t x + t x + t x + dt = = 3x + 6x + 3 dt = = 4x + 3 x + 6 Var (X x ) = E ( X x ) (E (X x )) = 4x + 3 x + 6 ( ) 3x + 6x + 3 = = 6x (x ) + 8 (x + ) Teorema 3. Posto E (g (X ) X ) = h (X ) vale E (h (X )) = E (g (X )), ovvero E (E (g (X ) X )) = E (g (X )) (3.5) Infatti nel caso continuo E (h (X )) = E (E (g (X ) X )) = E (g (X ) t ) f X (t ) dt = = g (t ) f X X (t t ) dt f X (t ) dt g (t ) f X,X (t, t ) dt dt = E (g (X )) In particolare il teorema precedente porta alla seguente uguaglianza E (X ) = E [E (X X )] (3.5)

21 Cap.3: Valori caratteristici di distribuzioni 79 ed inoltre Var (X ) = E ( X ) [E (X )] = E [ E ( X X )] {E [E (X X )]} = E [ E ( X X )] { E [E (X X )] } (3.5) { +E [E (X X )] } {E [E (X X )]} { = E E ( X X ) [E (X X )] } + Var [E (X X )] 3..4 Momenti di vettori aleatori = E [Var (X X )] + Var [E (X X )] Nel paragrafo seguente vengono illustrate alcune proprietà relative ai momenti delle variabili aleatorie multidimensionali. Definizione 3.4 Il momento primo o valore atteso di un vettore aleatorio k-dimensionale X è dato dal vettore k-dimensionale dei valori attesi dei suoi elementi µ = E(X) = (E(X ),..., E(X k )) T = (µ,..., µ k ) T (3.53) Naturalmente la definizione precedente ha senso purché esista finito il valore atteso di ogni componente del vettore aleatorio X. Seguono le principali proprietà dei valori attesi di vettori aleatori. Il valore atteso del trasposto di un vettore aleatorio è uguale al trasposto del valore atteso del vettore stesso E ( X T ) = [E (X)] T (3.54). Linearità. Per X vettore casuale k-dimensionale ed A e b rispettivamente matrice e vettore di costanti in h k ed h vale E(AX + b) = AE(X) + b (3.55) 3. Additività. Per X e X vettori casuali in k ed A e B matrici di costanti in h k vale E(AX + BX ) = AE(X ) + BE(X ) (3.56) Definizione 3.5 La matrice di varianze e covarianze di un vettore aleatorio k-dimensionale X è data dall espressione seguente { } Σ X = Var (X) = E [X E (X)] [X E (X)] T = E ( XX T ) E (X) [E (X)] T (3.57) La definizione precedente ha senso purché esistano finiti i momenti secondi di ciascun elemento del vettore aleatorio X. Il perché è facilmente intuibile se si esplicita il significato degli elementi della matrice di varianze e covarianze σ X σ X,X σ X,X k σ X,X σx σ X,X k Σ X =..... (3.58). σ Xk,X σ Xk,X σx k

22 8 A. Pollice - Appunti di Probabilità Dunque Σ X è una matrice quadrata di ordine k simmetrica e contiene le varianze σx = E {[X i E (X i )] } di ciascuna componente X i sulla diagonale principale, mentre al di fuori di questa si trovano le covarianze σ X,X = E {[X i E (X i )] [X j E (X j )]} tra le possibili coppie di componenti. Si noti che qualsiasi matrice di varianze e covarianze è sempre semidefinita positiva. Infatti affinché Σ X sia semidefinita positiva deve valere a T Σ X a per qualsiasi vettore a k diverso dal vettore nullo: { } { [a a T Σ X a = E a T [X E (X)] [X E (X)] T a = E T (X E (X)) ] } Definizione 3.6 La matrice di covarianze tra il vettore aleatorio k-dimensionale X e il vettore aleatorio h-dimensionale Y è data dall espressione seguente { } Σ X,Y = Cov (X, Y ) = E [X E (X)] [Y E (Y )] T = E ( XY T ) E (X) [E (Y )] T (3.59) Come nel caso della matrice di varianze e covarianze σ X,Y σ X,Y σ X,Y h σ X,Y σ X,Y σ X,Y h Σ X,Y = σ Xk,Y σ Xk,Y σ Xk,Y h (3.6) Se ne conclude che Σ X,Y è una matrice k h il cui generico elemento σ Xi,Y j = E{(X i E(X i ))(Y j E(Y j ))} è la covarianza tra la coppia (X i, Y j ). Si osservi che Cov (X, X) = Var (X): questa seconda definizione è quindi più generale. Teorema 3. Se Z = AX + b e K = CY + d, con X ed Y vettori casuali in k, A e C matrici di costanti in h k, b e d vettori di costanti in h, vale Cov (Z, K) = ACov (X, Y ) C T (3.6) Infatti Cov (Z, K) = E {[Z } E (Z)] [K E (K)] T = E {[AX } + b E (AX + b)] [CY + d E (CY + d)] T = E {[AX } + b AE (X) b] [CY + d CE (Y ) d] T { } = E A [X E (X)] [Y E (Y )] T C T = ACov (X, Y ) C T Da questo risultato generale discendono alcuni importanti casi particolari.. X = Y = Cov (Z, K) = AVar (X) C T. Z = K = AX + b = Var (Z) = AVar (X) A T 3. Z = K = X + b = Var (Z) = Var (X) 4. Z = K = AX = Var (Z) = AVar (X) A T 3.3 Funzione caratteristica e funzioni generatrici Vi sono oltre alle funzioni di ripartizione, alle funzioni di probabilità e di densità e ai momenti ancora altri strumenti per lo studio delle distribuzioni.

23 Cap.3: Valori caratteristici di distribuzioni Funzione caratteristica Tra questi vi è la trasformata complessa della funzione di ripartizione denominata funzione caratteristica che permette di calcolare i momenti della distribuzione in un modo più agevole di quello diretto: tramite derivazione piuttosto che tramite integrazione. Definizione 3.7 Data una variabile aleatoria X con funzione di ripartizione F X si dice funzione caratteristica la funzione definita per u dal seguente valore atteso ψ X (u) = E ( e iux) = e iut df X (t) (3.6) Dove nell espressione precedente, che corrisponde alla trasformata di Eulero-Fourier della funzione di ripartizione, il calcolo del valore atteso è basato sull integrale di Stieltjes. Teorema 3.3 La funzione caratteristica esiste sempre finita (l integrale che la definisce non diverge mai) per u Ṙ. Infatti risulta sempre ψ X (u) ψ X (u) = e iut df X (t) e iut dfx (t) = cos ut + i sin ut df X (t) = cos ut + sin ut df X (t) = df X (t) = Se X è discreta con funzione di probabilità p X e insieme di definizione X l espressione (3.6) diventa ψ X (u) = E ( e iux) = t X e iut p X (t) (3.63) mentre se X è continua e dotata di densità f X ψ X (u) = E ( e iux) = e iut f X (t) dt (3.64)

24 8 A. Pollice - Appunti di Probabilità Esempio 3.3 Sia X una variabile aleatoria continua con funzione di densità uniforme nell intervallo (, ) { f X (x) = < x < altrove la sua funzione caratteristica è dunque definita dal seguente integrale ψ X (u) = e iut dt = eiut iu = ( e iu e iu) iu = (cos u + i sin u cos u + i sin u) iu = sin u u Si noti che ad ogni funzione di ripartizione corrisponde una funzione caratteristica e viceversa: le funzioni caratteristiche sono in corrispondenza biunivoca con le funzioni di ripartizione. Dunque la funzione caratteristica è uno strumento alternativo alla funzione di ripartizione per lo studio delle distribuzioni di probabilità. In particolare se si è in presenza di una funzione caratteristica di forma nota la biunivocità della corrispondenza permette di risalire alla distribuzione. Si può dimostrare che se esistono tutti i momenti E ( X h) per h =,,... e se la serie complessa + iue (X) u E ( X ) + + (iu)h ( E X h) + h! converge in un intorno non nullo dello, allora detta serie coincide con lo sviluppo in serie di Taylor della funzione caratteristica e si ha ψ X (u) = + iue (X) u E ( X ) + + (iu)h ( E X h) + (3.65) h! Questa proprietà stabilisce la corrispondenza tra la funzione caratteristica e la serie completa dei momenti della variabile aleatoria che pertanto individua le caratteristiche distributive della stessa. Il teorema seguente permette invece di utilizzare la funzione caratteristica per ricavare i momenti della variabile aleatoria. Teorema 3.4 Se la variabile aleatoria X ammette momenti finiti sino all r-esimo, allora la funzione caratteristica ψ X (u) è derivabile r volte e, per h =,..., r, vale ( E X h) = µ h = i h dh ψ X (u) du h (3.66) u= Infatti per h = dψ X (u) du = d e iut d df X (t) = du du eiut df X (t) = it e iut df X (t) mentre per h = d ψ X (u) du = d it e iut df X (t) = (it) du e iut df X (t)

25 Cap.3: Valori caratteristici di distribuzioni 83 quindi in generale per h =,..., r d h ψ X (u) du h = (it) h e iut df X (t) Si dimostra che l integrale precedente è sempre convergente per qualsiasi intero h < r. Infine ponendo u = si ottiene d h ψ X (u) du h = i h t h df X (t) = i h µ h u= Esempio 3.4 Sia X la variabile aleatoria che indica il numero di lanci una moneta regolare necessari affinché esca testa. La funzione di probabilità di X è dunque data da { ( ) x p X (x) = x =,,... altrove La funzione caratteristica è ψ X (u) = lim n n t= e iut ( ) t = lim n n ( ) e iu t = t= e iu eiu = eiu e iu l espressione precedente è ottenuta come somma infinita della serie geometrica di ragione eiu con e iu <. Il calcolo delle prime due derivate della funzione caratteristica porta a d ψ X (u) du dψ X (u) du = ieiu ( e iu) e iu ( ie iu) ( e iu ) = ieiu ( e iu ) ( = eiu e iu ) ie iu ( e iu) ( ie iu) ( e iu ) 4 = e3iu 8e iu ( e iu ) 4 Quindi per i primi due momenti di X si ottengono i valori E (X) = i dψ X (u) du = u= E ( X ) = i d ψ X (u) du = 6 u= Var (X) = E ( X ) [E (X)] =

26 84 A. Pollice - Appunti di Probabilità Esempio 3.5 Sia X una variabile aleatoria continua la cui funzione di densità, detta distribuzione di Laplace o esponenziale simmetrica di parametro, è data da f X (x) = e x < x < La funzione caratteristica è definita dall integrale ψ X (u) = e iut e t dt = e iut e t dt + e iut e t dt ( = e t(+iu) ( e t( iu) + iu iu = + iu + iu = + u Il calcolo delle prime due derivate della funzione caratteristica porta a dψ X (u) du = u ( + u ) d ψ X (u) du = ( + u ) + 8u ( + u ) 3 Quindi per i primi due momenti di X si ottengono i valori E (X) = i dψ X (u) du = u= E ( X ) = i d ψ X (u) du = u= Var (X) = E ( X ) [E (X)] =

27 Cap.3: Valori caratteristici di distribuzioni 85 Esempio 3.3 (cnt) per quanto già visto si ha dψ X (u) du = u cos u sin u u d ψ X (u) du = u (cos u u sin u cos u) u (u cos u sin u) u 4 = sin u u sin u u cos u u 3 Dall applicazione della regola dell Hôpital per il calcolo del limite della forma indeterminata si ottiene dψ X (u) u cos u sin u lim = lim u du u u = lim u sin u = d ψ X (u) sin u u sin u u cos u lim u du = lim u u 3 = lim u 3 cos u = 3 Quindi per i primi due momenti di X si ottengono i valori E (X) = i dψ X (u) du E ( X ) = i d ψ X (u) du = u= = u= 3 Var (X) = E ( X ) [E (X)] = 3 Teorema 3.5 Per a e b reali si ha ψ ax+b (u) = e iub ψ X (au) (3.67) Infatti per la definizione di funzione caratteristica e per la linearità del valore atteso [ ψ ax+b (u) = E e iu(ax+b)] = e iub E [ e iuax] = e iub ψ X (au) Esempio 3.3 (cnt) Dalla funzione caratteristica della variabile aleatoria X avente densità uniforme su (, ) si può ottenere facilmente quella della variabile aleatoria Y = (X + ) che ha densità uniforme su (, ) ψ Y (u) = ψ X+ (u) = e i u sin u u = e iu iu ( ) e iu e iu = eiu iu Teorema 3.6 Se X e X sono variabili aleatorie stocasticamente indipendenti la funzione caratteristica della somma X + X è data dal prodotto delle funzioni caratteristiche di X e X ψ X +X (u) = ψ X (u) ψ X (u) (3.68)

28 86 A. Pollice - Appunti di Probabilità Infatti per la definizione di funzione caratteristica e per la proprietà del valore atteso del prodotto di funzioni di variabili aleatorie indipendenti si ha [ ] ψ X +X (u) = E e iu(x +X ) = E [ e iux e iux ] = E [ e iux ] E [ e iux ] = ψ X (u) ψ X (u) Esempio 3.6 Le variabili aleatorie X e X siano indipendenti e abbiano entrambe densità uniforme sull intervallo (, ). Allora si ha che quindi Si noti inoltre che ψ X (u) = ψ X (u) = eiu iu ( e iu ) ψ X +X (u) = = ( e iu iu u e iu ) ψ X (u) = E [ e iux ] = ψ X ( u) = e iu iu quindi ψ X X (u) = eiu e iu = ( + e iu iu iu u e iu) L ultima espressione fornisce la funzione caratteristica associata alla densità triangolare. L enunciato e la dimostrazione dell ultimo teorema possono essere facilmente estesi alla somma di k > variabili aleatorie mutuamente stocasticamente indipendenti X,..., X k k ψ X + +X k (u) = ψ X (u) ψ Xk (u) = ψ Xj (u) (3.69) 3.3. Funzione generatrice dei momenti Oltre alla funzione caratteristica vengono utilizzate altre trasformate della funzione di ripartizione. Una di queste è la trasformata di Laplace che dà luogo alla cosiddetta funzione generatrice dei momenti. Definizione 3.8 Si dice funzione generatrice dei momenti della variabile aleatoria X con funzione di ripartizione F X la funzione ϕ X (u) = E ( e ux) = e ut df X (t) (3.7) purché l integrale sia finito in un intorno dell origine. La funzione generatrice dei momenti si distingue dalla funzione caratteristica per la mancanza dell unità immaginaria. Nonostante la semplificazione che si attua passando dal campo complesso al campo reale, l integrale che definisce la trasformata di Laplace pur esistendo sempre può assumere valore infinito (diversamente dall integrale che definisce la funzione caratteristica). j= Esempio 3.3 (cnt) In questo caso la funzione generatrice dei momenti ha la forma seguente ϕ X (u) = e ut dt = eut u = eu e u u

29 Cap.3: Valori caratteristici di distribuzioni 87 Seguono alcune proprietà analoghe a quelle già enunciate per la funzione caratteristica.. Se esistono finiti tutti i momenti della variabile aleatoria X si ha ϕ X (u) = + ue (X) + u E ( X ) + + uh h! E ( X h) + (3.7). 3. ( E X h) = µ h = dh ϕ X (u) du h (3.7) u= ϕ ax+b (u) = e ub ϕ X (au) (3.73) 4. Per variabili aleatorie X,..., X k indipendenti k ϕ X + +X k (u) = ϕ X (u) ϕ Xk (u) = ϕ Xj (u) (3.74) j=

30 88 A. Pollice - Appunti di Probabilità Esempio 3.3 (cnt) per l esempio precedente si ha dϕ X (u) du = [ ( u e u 4u + e u) ( e u e u)] = ueu + ue u e u + e u u d ϕ X (u) du = 4u 4 [ u ( e u + ue u + e u ue u e u e u) 4u ( ue u + ue u e u + e u)] = u e u u e u ue u ue u + e u e u u 3 Dall applicazione della regola dell Hôpital per il calcolo del limite della forma indeterminata E (X) = µ = dϕ X (u) du u= = lim u ue u + ue u e u + e u u = lim u ue u ue u 4u = si ottiene E ( X ) = σ X = d ϕ X (u) du u= = lim u u e u u e u ue u ue u + e u e u u 3 = lim u u e u + u e u 6u = 3 Inoltre dalla funzione generatrice dei momenti della variabile aleatoria X avente densità uniforme su (, ) si può ottenere facilmente quella della variabile aleatoria Y = (X + ) che ha densità uniforme su (, ) ϕ Y (u) = ϕ X+ (u) = ( ) u e u e u e u = eu u Esempio 3.6 (cnt) La funzione generatrice dei momenti di X + X è data da ϕ X +X (u) = u (eu ) u (eu ) = ( e u u ) mentre la funzione generatrice dei momenti della variabile aleatoria X X avente densità triangolare è data da ϕ X X (u) = ϕ X (u) ϕ X ( u) = u (eu ) ( e u ) = ( e u + e u ) u u Funzione generatrice delle probabilità Un altra trasformata della funzione di ripartizione particolarmente utile nel caso di variabili aleatorie discrete è la trasformata di Dirichlet che dà luogo alla cosiddetta funzione generatrice delle probabilità. Definizione 3.9 Sia X una variabile aleatoria che assume solo valori interi non negativi con funzione di probabilità p X e insieme di definizione X = {x : x =,,,...}. Per u si definisce funzione generatrice delle probabilità della variabile aleatoria X il seguente valore atteso γ X (u) = E ( u X) = u t p X (t) (3.75) t=

31 Cap.3: Valori caratteristici di distribuzioni 89 Si noti che per u > la funzione caratteristica calcolata nel punto i log u fornisce la funzione generatrice delle probabilità ( ψ X i log u ) ( ) = E e i(i log u)x = E ( u X) = γ X (u) (3.76) Di conseguenza per la funzione generatrice delle probabilità valgono proprietà analoghe a quelle valide per la funzione caratteristica. Inoltre esiste la relazione seguente tra la funzione di probabilità e la funzione generatice delle probabilità di una variabile aleatoria discreta.. Per una variabile aleatoria X con funzione generatrice delle probabilità γ X si ha p X (x) = d x γ X (u) x! du x x =,,,... (3.77) u= Infatti è evidente che da cui si ricava γ X (u) = p X () + up X () + u p X () + d du γ X (u) = p X () + up X () + 3u p X (3) + d du γ X (u) = p X () + 6up X (3) + u p X (4) + γ X (u) u= = p X () dγ X (u) du = p X () u= d γ X (u) du = p X () u= ed in generale d x γ X (u) du x = x!p X (x) u= Esempio 3.4 (cnt) Nel caso in questione si ha in generale γ X (u) = p X () = p X () = u t t = ( u ) t u = u t= t= = u u d u du u = u + u u= ( u) = u= u u = 4 ( u) 3 u= = u= d du x!p X (x) = dx du x u u u=

Scheda n.5: variabili aleatorie e valori medi

Scheda n.5: variabili aleatorie e valori medi Scheda n.5: variabili aleatorie e valori medi October 26, 2008 1 Variabili aleatorie Per la definizione rigorosa di variabile aleatoria rimandiamo ai testi di probabilità; essa è non del tutto immediata

Dettagli

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che

VARIABILI ALEATORIE MULTIPLE E TEOREMI ASSOCIATI. Dopo aver trattato delle distribuzioni di probabilità di una variabile aleatoria, che VARIABILI ALATORI MULTIPL TORMI ASSOCIATI Fonti: Cicchitelli Dall Aglio Mood-Grabill. Moduli 6 9 0 del programma. VARIABILI ALATORI DOPPI Dopo aver trattato delle distribuzioni di probabilità di una variabile

Dettagli

1. Richiami di Statistica. Stefano Di Colli

1. Richiami di Statistica. Stefano Di Colli 1. Richiami di Statistica Metodi Statistici per il Credito e la Finanza Stefano Di Colli Dati: Fonti e Tipi I dati sperimentali sono provenienti da un contesto delimitato, definito per rispettare le caratteristiche

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

VARIABILI ALEATORIE E VALORE ATTESO

VARIABILI ALEATORIE E VALORE ATTESO VARIABILI ALEATORIE E VALORE ATTESO Variabili aleatorie Variabili discrete e continue Coppie e vettori di variabili aleatorie Valore atteso Proprietà del valore atteso Varianza Covarianza e varianza della

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Lezione n. 2 (a cura di Chiara Rossi)

Lezione n. 2 (a cura di Chiara Rossi) Lezione n. 2 (a cura di Chiara Rossi) QUANTILE Data una variabile casuale X, si definisce Quantile superiore x p : X P (X x p ) = p Quantile inferiore x p : X P (X x p ) = p p p=0.05 x p x p Graficamente,

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha:

a) Osserviamo innanzi tutto che dev essere x > 0. Pertanto il dominio è ]0, + [. b) Poniamo t = log x. Innanzi tutto si ha: ESERCIZIO - Data la funzione f (x) = (log x) 6 7(log x) 5 + 2(log x) 4, si chiede di: a) calcolare il dominio di f ; ( punto) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B

Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Elementi di Calcolo delle Probabilità e Statistica per il corso di Analisi Matematica B Laurea in Ingegneria Meccatronica A.A. 2010 2011 n-dimensionali Riepilogo. Gli esiti di un esperimento aleatorio

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Esempi di funzione. Scheda Tre

Esempi di funzione. Scheda Tre Scheda Tre Funzioni Consideriamo una legge f che associa ad un elemento di un insieme X al più un elemento di un insieme Y; diciamo che f è una funzione, X è l insieme di partenza e X l insieme di arrivo.

Dettagli

Applicazioni del calcolo differenziale allo studio delle funzioni

Applicazioni del calcolo differenziale allo studio delle funzioni Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag.

SOMMARIO. 13.1 I radicali pag. 3. 13.2 I radicali aritmetici pag. 5. 13.3 Moltiplicazione e divisione fra radicali aritmetici pag. SOMMARIO CAPITOLO : I RADICALI. I radicali pag.. I radicali aritmetici pag.. Moltiplicazione e divisione fra radicali aritmetici pag.. Potenza di un radicale aritmetico pag.. Trasporto di un fattore esterno

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

09 - Funzioni reali di due variabili reali

09 - Funzioni reali di due variabili reali Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Appunti: elementi di Probabilità

Appunti: elementi di Probabilità Università di Udine, Facoltà di Scienze della Formazione Corso di Laurea in Scienze e Tecnologie Multimediali Corso di Matematica e Statistica (Giorgio T. Bagni) Appunti: elementi di Probabilità. LA PROBABILITÀ..

Dettagli

b) Il luogo degli estremanti in forma cartesiana è:

b) Il luogo degli estremanti in forma cartesiana è: Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

Esercitazioni 2013/14

Esercitazioni 2013/14 Esercitazioni 2013/14 Esercizio 1 Due ditte V e W partecipano ad una gara di appalto per la costruzione di un tratto di autostrada che viene assegnato a seconda del prezzo. L offerta fatta dalla ditta

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/2013)

VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/2013) VARIABILI ALEATORIE MULTIVARIATE (vers. 1/11/213) Daniela De Canditiis modulo di CdP di teoria dei segnali - Ingegneria dell informazione - (Sapienza - Latina) VARIABILI ALEATORIE MULTIVARIATE Molto spesso

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2002 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Sessione suppletiva Il candidato risolva uno dei due problemi e dei quesiti in cui si articola il questionario. PROBLEMA Nel piano riferito

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Appunti di Statistica Descrittiva

Appunti di Statistica Descrittiva Appunti di Statistica Descrittiva 30 dicembre 009 1 La tabella a doppia entrata Per studiare dei fenomeni con caratteristiche statistiche si utilizza l espediente della tabella a doppia entrata Per esempio

Dettagli

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete

Corso di Calcolo delle Probabilità e Statistica. Esercizi su variabili aleatorie discrete Corso di Calcolo delle Probabilità e Statistica Esercizi su variabili aleatorie discrete Es.1 Da un urna con 10 pallina bianche e 15 palline nere, si eseguono estrazioni con reimbussolamento fino all estrazione

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k

u 1 u k che rappresenta formalmente la somma degli infiniti numeri (14.1), ordinati al crescere del loro indice. I numeri u k Capitolo 4 Serie numeriche 4. Serie convergenti, divergenti, indeterminate Data una successione di numeri reali si chiama serie ad essa relativa il simbolo u +... + u +... u, u 2,..., u,..., (4.) oppure

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00)

Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Introduzione alle variabili aleatorie discrete e continue notevoli Lezione 22.01.09 (ore 11.00-13.00, 14.00-16.00) Richiami di matematica pag. 2 Definizione (moderatamente) formale di variabile aleatoria

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo

Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo Calcolo delle Probabilità A.A. 2013/2014 Corso di Studi in Statistica per l Analisi dei dati Università degli Studi di Palermo docente Giuseppe Sanfilippo http://www.unipa.it/sanfilippo giuseppe.sanfilippo@unipa.it

Dettagli

Compito di SISTEMI E MODELLI. 19 Febbraio 2015

Compito di SISTEMI E MODELLI. 19 Febbraio 2015 Compito di SISTEMI E MODELLI 9 Febbraio 5 Non é ammessa la consultazione di libri o quaderni. Le risposte vanno giustificate. Saranno rilevanti per la valutazione anche l ordine e la chiarezza di esposizione.

Dettagli

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale

Università degli Studi di Catania A.A. 2012-2013. Corso di laurea in Ingegneria Industriale Università degli Studi di Catania A.A. 2012-2013 Corso di laurea in Ingegneria Industriale Corso di Analisi Matematica I (A-E) (Prof. A.Villani) Elenco delle dimostrazioni che possono essere richieste

Dettagli

I appello - 26 Gennaio 2007

I appello - 26 Gennaio 2007 Facoltà di Ingegneria - Corso di Laurea in Ing. Informatica e delle Telecom. A.A.006/007 I appello - 6 Gennaio 007 Risolvere gli esercizi motivando tutte le risposte. (N.B. il quesito teorico è obbligatorio)

Dettagli

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI

CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI 31 CAPITOLO 3 FONDAMENTI DI ANALISI DELLA STABILITA' DI SISTEMI NON LINEARI INTRODUZIONE L'obbiettivo di questo capitolo è quello di presentare in modo sintetico ma completo, la teoria della stabilità

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti.

Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli. 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Appunti sul corso di Complementi di Matematica - prof. B.Bacchelli 03 - Equazioni differenziali lineari omogenee a coefficienti costanti. Def. Si dice equazione differenziale lineare del secondo ordine

Dettagli

1 Alcuni criteri di convergenza per serie a termini non negativi

1 Alcuni criteri di convergenza per serie a termini non negativi Alcuni criteri di convergenza per serie a termini non negativi (Criterio del rapporto.) Consideriamo la serie a (.) a termini positivi (ossia a > 0, =, 2,...). Supponiamo che esista il seguente ite a +

Dettagli

Pre Test 2008... Matematica

Pre Test 2008... Matematica Pre Test 2008... Matematica INSIEMI NUMERICI Gli insiemi numerici (di numeri) sono: numeri naturali N: insieme dei numeri interi e positivi {1; 2; 3; 4;...} numeri interi relativi Z: insieme dei numeri

Dettagli

I appello - 24 Marzo 2006

I appello - 24 Marzo 2006 Facoltà di Ingegneria - Corso di Laurea in Ing. Energetica e Gestionale A.A.2005/2006 I appello - 24 Marzo 2006 Risolvere gli esercizi motivando tutte le risposte. I.) Studiare la convergenza puntuale,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI

Docente: DI LISCIA F. CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Docente: DI LISCIA F. Materia: MATEMATICA CLASSE 1T MODULO 1: GLI INSIEMI NUMERICI Insiemi numerici: numeri naturali, proprietà delle operazioni aritmetiche; Potenze e loro proprietà; Criteri di divisibilità;

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1

Dettagli

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla

ESERCITAZIONI DI ANALISI 1 FOGLIO 1 FOGLIO 2 FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI. Marco Pezzulla ESERCITAZIONI DI ANALISI FOGLIO FOGLIO FOGLIO 3 FOGLIO 4 FOGLIO 5 FOGLIO 6 FOGLIO 7 SVOLTI Marco Pezzulla gennaio 05 FOGLIO. Determinare il dominio e il segno della funzione ( ) f(x) arccos x x + π/3.

Dettagli

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,...

Entropia. Motivazione. ? Quant è l informazione portata dalla sequenza? Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... Entropia Motivazione Abbiamo una sequenza S di N simboli (campioni audio, pixel, caratteri,... ) s,s 2,s 3,... ognuno dei quali appartiene ad un alfabeto A di M elementi.? Quant è l informazione portata

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 Sessione straordinaria ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 3 Sessione straordinaria Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PROBLEMA È assegnata

Dettagli

Un po di statistica. Christian Ferrari. Laboratorio di Matematica

Un po di statistica. Christian Ferrari. Laboratorio di Matematica Un po di statistica Christian Ferrari Laboratorio di Matematica 1 Introduzione La statistica è una parte della matematica applicata che si occupa della raccolta, dell analisi e dell interpretazione di

Dettagli

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI

CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI CAPITOLO 16 SUCCESSIONI E SERIE DI FUNZIONI Abbiamo studiato successioni e serie numeriche, ora vogliamo studiare successioni e serie di funzioni. Dato un insieme A R, chiamiamo successione di funzioni

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza.

VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD. Si definisce scarto quadratico medio o deviazione standard la radice quadrata della varianza. VARIANZA CAMPIONARIA E DEVIAZIONE STANDARD Si definisce varianza campionaria l indice s 2 = 1 (x i x) 2 = 1 ( xi 2 n x 2) Si definisce scarto quadratico medio o deviazione standard la radice quadrata della

Dettagli

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12

1 Massimi e minimi liberi 1. 2 Massimi e minimi vincolati 7. 3 Soluzioni degli esercizi 12 UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica 1 Massimi e minimi delle funzioni di più variabili Indice 1 Massimi e minimi liberi 1 Massimi e minimi vincolati 7 3 Soluzioni degli esercizi

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

Geometria analitica di base (prima parte)

Geometria analitica di base (prima parte) SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L.

Controlli Automatici T. Trasformata di Laplace e Funzione di trasferimento. Parte 3 Aggiornamento: Settembre 2010. Prof. L. Parte 3 Aggiornamento: Settembre 2010 Parte 3, 1 Trasformata di Laplace e Funzione di trasferimento Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL:

Dettagli

11) convenzioni sulla rappresentazione grafica delle soluzioni

11) convenzioni sulla rappresentazione grafica delle soluzioni 2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi

Dettagli

Massimi e minimi vincolati di funzioni in due variabili

Massimi e minimi vincolati di funzioni in due variabili Massimi e minimi vincolati di funzioni in due variabili I risultati principali della teoria dell ottimizzazione, il Teorema di Fermat in due variabili e il Test dell hessiana, si applicano esclusivamente

Dettagli

LA FUNZIONE INTEGRALE

LA FUNZIONE INTEGRALE LA FUNZIONE INTEGRALE MAGLIOCURIOSO & CAMILLO magliocurioso@hotmail.it Sommario. In questa breve dispensa ho semplicementrascritto in L A TEX il contenuto di questa discussione: http://www.matematicamente.it/forum/

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Analisi discriminante

Analisi discriminante Capitolo 6 Analisi discriminante L analisi statistica multivariata comprende un corpo di metodologie statistiche che permettono di analizzare simultaneamente misurazioni riguardanti diverse caratteristiche

Dettagli

Metodi Numerici per Equazioni Ellittiche

Metodi Numerici per Equazioni Ellittiche Metodi Numerici per Equazioni Ellittiche Vediamo ora di descrivere una tecnica per la risoluzione numerica della più semplice equazione ellittica lineare, l Equazione di Laplace: u xx + u yy = 0, (x, y)

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media.

Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. FORMA DI UNA DISTRIBUZIONE Per forma di una distribuzione si intende il modo secondo il quale si dispongono i valori di un carattere intorno alla rispettiva media. Le prime informazioni sulla forma di

Dettagli