montagna ai trasporti internazionali Luca Bertazzi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "montagna ai trasporti internazionali Luca Bertazzi"

Transcript

1 Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0

2 Il problema dello zaino Zaino: - capacità B Oggetti (items): - numero n - indice i =1,2,...,n - valore p i - peso w i Quali oggetti inserire nello zaino al fine di Quali oggetti inserire nello zaino al fine di massimizzare il valore totale?

3 Applicazioni classiche Gita in montagna Sbarco sulla luna

4 Applicazioni finanziarie Un investitore ha un capitale B. Può sottoscrivere progetti di investimento. Ogni progetto i: - richiede un capitale w p i - ha un rendimento i w i Quali progetti sottoscrivere al fine di massimizzare il rendimento totale?

5 Applicazioni alla Logistica

6 1) Gestione della produzione

7 Un produttore ha a disposizione una barra di ferro di una data lunghezza. La barra può essere tagliata in pezzi. Ogni pezzo : i B -ha una lunghezza w i -ha un prezzo di vendita p i Quali pezzi tagliare al fine di massimizzare il ricavo Quali pezzi tagliare al fine di massimizzare il ricavo totale?

8 2) Gestione magazzini e scorte

9 Area di ricezione Area di stoccaggio remoto Area ad accesso rapido Area di spedizione i

10 Area ad accesso rapido - Dimensione dell area: B - Ogni prodotto: - occupa un volume w i - implica un time saving se collocato nell area p i Quali prodotti collocare nell area per massimizzare il time saving totale?

11 3) Gestione dei trasporti

12 Trasporti nell e-business Un veicolo di capacità, durante il viaggio di ritorno, può scegliere di servire alcuni clienti. Ogni cliente: - occupa un volume w - fornisce un profitto p i i B Quali clienti servire per massimizzare il profitto totale? Backhauling

13 Trasporti internazionali Un gestore di cargo ha a disposizione un aereo merci di capacità B. Ha una lista di carichi. Ogni carico: - occupa un volume w - fornisce un profitto p i i Quali carichi scegliere al fine di massimizzare Quali carichi scegliere al fine di massimizzare il profitto totale?

14 4) Logistica integrata Strategie di produzione e spedizione che 1 ottimizzino: 0 3 Produzione Trasporto Scorte sistemi integrati di produzione e distribuzione

15 Problema dello zaino: soluzioni intuitive Algoritmo p i - greedy B =15 i pi = 5 w n i - Ordinare gli oggetti sulla base di p i in modo non crescente Inserire gli oggetti fino al raggiungimento della capacità greedy z p i 4 = 10

16 Esiste una soluzione migliore? B =15 n = 5 i p i w i Se inseriamo nello zaino gli oggetti otteniamo: Profitto totale: 15 Peso totale: 8 Esiste!!

17 Conclusione: p i L algoritmo -greedy non è esatto (non assicura di ottenere una soluzione ottima) Qual è il limite di questo algoritmo? Non tener conto del peso degli oggetti e quindi del profitto per unità di peso

18 Un secondo algoritmo B =15 n = 5 i pi Profitto per unità di peso w i p i / w i Algoritmo Greedy - Ordinare gli oggetti sulla base di p i / w i in modo non crescente , Inserire gli oggetti fino al raggiungimento g della capacità , Greedy z = 15

19 L algoritmo Greedy è esatto? B = 200 n = 3 i 1 2 pi w i p / i w i Greedy: Greedy 1 2 z = 102 Altra soluzione: inserire 2 e 3 Profitto totale: 200

20 Profitto totale del Greedy: 102 Esiste una soluzione con profitto 200 Il profitto ottimo è almeno 200 Conclusione: L algoritmo Greedy non è esatto Esiste almeno un caso in cui il profitto del Greedy è il 51% del profitto ottimo

21 E il caso peggiore? B = 200 n = 2 Greedy: Greedy 1 z = 2 i 1 2 pi wi p / i 2 1 w i Altra soluzione: inserire 2 Profitto totale: 200

22 L algoritmo Greedy può generare soluzioni con profitto molto basso rispetto all ottimo Esiste un algoritmo con profitto minimo garantito?

23 L algoritmo Ext-Greedy Scegliere la migliore fra: - la soluzione del Greedy - la soluzione che contiene solo l oggetto con profitto massimo L algoritmo Ext-Greedy genera un profitto pari ad almeno il 50% del profitto ottimo

24 Alla ricerca della soluzione ottima Come determinare una soluzione ottima? Algoritmo di completa enumerazione - Generare tutte le soluzioni - Scegliere la soluzione ammissibile con il profitto maggiore

25 B = 200 n = 3 i pi w profitto peso SI NO NO 2 1 SI NO SI SI SI NO i SI SI SI NO N0 NO NO NO SI NO SI NO NO SI SI oggetti 8 soluzioni

26 L algoritmo di completa enumerazione genera sempre una soluzione ottima, ma Numero di soluzioni: n oggetti oggetti numero di soluzioni n 2 soluzioni E 27

27 Come varia il tempo di calcolo al variare di n? n Tempo di calcolo < 1 secondo 19 ore 392 secoli un milione di miliardi di operazioni i al secondo L algoritmo di completa enumerazione può essere impraticabile

28 Non solo brutte notizie È possibile ottenere la soluzione ottima di problemi con migliaia di oggetti in pochi secondi su un PC n tempo 15 sec 1 min 1 min e 25 sec Come è possibile ottenere questo risultato? Solver: CoinMP 1.3 PC: AMD Athlon 64 X2 Dual Core Processor GB RAM

29 Ricerca operativa metodi quantitativi e scientifici nei processi decisionali Operations Research: The Science of Better

30 Ricerca operativa Applicazioni: Metodo: Logistica Finanza Telecomunicazioni Data Mining Bio-informatica Gestione delle Risorse Umane Gestione dei Servizi Sanitari PROBLEMA MODELLO What-if? What-is-best? ALGORITMI software

31 1) Definizione del problema PROBLEMA MODELLO Quali oggetti inserire nello zaino al fine di massimizzare il profitto totale? ALGORITMI software

32 Dati: B : capacità dello zaino n : numero di oggetti p w i i : profitto dell'oggetto : peso dell'oggetto i i

33 2) Formulazione di un modello 1) Variabili decisionali: L oggetto i viene inserito nello zaino? Variabile binaria { 0,1 } x i PROBLEMA MODELLO x i 0 i non viene inserito 1 i viene inserito ALGORITMI software

34 2) Funzione obiettivo: PROBLEMA massimizzare il profitto totale Profitto oggetto i Profitto totale: n 0 se x i = 0 p se i x i p i x i=1 i = 1 MODELLO ALGORITMI software

35 Funzione obiettivo: PROBLEMA massimizzare il profitto totale MODELLO max n p i x i=1 i ALGORITMI software

36 3) Vincoli: Vincolo di capacità Peso oggetti inseriti < capacità PROBLEMA MODELLO n wi x i i=1 B ALGORITMI software

37 Modello: max n w x i= 1 x i i i n pi x i i = 1 B { 0,1 } i = 1,2,..., n modello di programmazione lineare intera (binaria) PROBLEMA MODELLO ALGORITMI software

38 3) Applicazione di algoritmi a) Esatti soluzione ottima x 12 = 0 x 1 12 = Completa enumerazione Branch-&-Bound Branch-&-Cut x13 = 0 x 13 = 1 x 14 = 0 x 1 14 = PROBLEMA MODELLO ALGORITMI software

39 b) Euristici soluzione buona p i -greedy Greedy Ext-Greedy PTAS FPTAS PROBLEMA MODELLO ALGORITMI software

40 Obiettivo ideale: - Soluzione ottima - Tempo polinomiale ottima soluzione euristica PROBLEMA MODELLO ALGORITMI software 0 profitto

41 tempo polinomiale esponenziale Es: p i - greedy e Greedy Es: Completa enumerazione tempo

42 Per il problema dello zaino: Tempo/Sol. Ottima Euristica Polinomiale -greedy p i Greedy Esponenziale Completa enumerazione Branch-&-Bound Branch-&-Cut

43 Algoritmi esatti polinomiali Non è mai stato ottenuto un algoritmo in grado di fornire la soluzione ottima del problema dello zaino in tempi polinomiali (algoritmo esatto polinomiale) Inoltre: Il problema dello zaino è NP-hard

44 Il problema dello zaino è NP-hard Appartiene ad una classe di problemi per i quali: -nonè mai stato trovato un algoritmo esatto polinomiale - se si trovasse un algoritmo esatto polinomiale per uno di questi problemi, ogni problema della classe avrebbe un algoritmo esatto polinomiale Teoria della complessità computazionale

45 È altamente probabile che un algoritmo esatto polinomiale per il problema dello zaino non esista Potenziare gli algoritmi esatti algoritmi euristici PROBLEMA MODELLO ALGORITMI software

46 Algoritmi esatti: Risolvere all ottimo istanze sempre più grandi PROBLEMA MODELLO Soluzione ottima in meno di un secondo! ALGORITMI software

47 Algoritmi euristici: Trovare soluzioni sempre più vicine i all ottimo PROBLEMA MODELLO Garanzie sulla bontà della soluzione! ALGORITMI software

48 4) Utilizzo di software Gli algoritmi esatti ed euristici sono implementati in software Esatti general purpose: PROBLEMA MODELLO - Risolutore di Excel - MPL ALGORITMI -LINGO software

49 PROBLEMA MODELLO ALGORITMI software

50 Il problema dello zaino e la Logistica Il problema dello zaino è uno dei sottoproblemi della logistica La vera sfida consiste nel trovare la soluzione migliore per l intero sistema

51 componenti fornitori 164 impianti PROBLEMA rivenditori MODELLO Risparmio del 26% del costo logistico! ALGORITMI software

52 Conclusione 0 Un antico proverbio recita: Se un problema non ha soluzioni, perchè preoccuparsi? Se un problema ha soluzioni, perchè preoccuparsi? PROBLEMA MODELLO ALGORITMI Un problema dello zaino con 60 oggetti ha soluzioni

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi

Il problema dello zaino: dalla gita in montagna ai trasporti internazionali. Luca Bertazzi Il problema dello zaino: dalla gita in montagna ai trasporti internazionali Luca Bertazzi 0 Ricerca Operativa (Operations Research) The Science of Better Modelli e algoritmi per la soluzione di problemi

Dettagli

Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi

Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata. Luca Bertazzi Il problema del commesso viaggiatore: da Ulisse alla Logistica integrata Luca Bertazzi 0 3 Ulisse: da Troia a Itaca Troia Itaca 509 km Quale è stato invece il viaggio di Ulisse? Il viaggio di Ulisse Troia

Dettagli

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI

ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI ESEMPIO P.L. : PIANIFICAZIONE DI INVESTIMENTI PROBLEMA: un azienda deve scegliere fra due possibili investimenti al fine di massimizzare il profitto netto nel rispetto delle condizioni interne e di mercato

Dettagli

Il Metodo Branch and Bound

Il Metodo Branch and Bound Il Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 4 Novembre 2014 Ricerca Operativa 2 Laurea Magistrale in Ingegneria Gestionale

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 9/0/06 (Cognome) (Nome) (Matricola) Esercizio. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 20/12/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0// (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x x +x x x x x x x 0 x x

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano

Capitolo 5: Ottimizzazione Discreta. E. Amaldi DEI, Politecnico di Milano Capitolo 5: Ottimizzazione Discreta E. Amaldi DEI, Politecnico di Milano 5.1 Modelli di PLI, formulazioni equivalenti ed ideali Il modello matematico di un problema di Ottimizzazione Discreta è molto spesso

Dettagli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli

Modelli di programmazione lineare. Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Ricerca Operativa 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi (come

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Introduzione Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Introduzione La Ricerca Operativa La Ricerca Operativa è una disciplina relativamente recente. Il termine Ricerca Operativa è stato coniato

Dettagli

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni

Scopo intervento. Integrazione scorte e distribuzione. Indice. Motivazioni Scopo intervento Integrazione scorte e distribuzione Modelli a domanda costante Presentare modelli e metodi utili per problemi di logistica distributiva Indicare limiti degli stessi e come scegliere tra

Dettagli

Modelli di Programmazione Lineare. PRTLC - Modelli

Modelli di Programmazione Lineare. PRTLC - Modelli Modelli di Programmazione Lineare PRTLC - Modelli Schema delle esercitazioni Come ricavare la soluzione ottima Modelli Solver commerciali Come ricavare una stima dell ottimo Rilassamento continuo - generazione

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale Premessa Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire solamente i concetti fondamentali necessari per il raggiungimento degli obiettivi

Dettagli

Ottimizzazione Multi Obiettivo

Ottimizzazione Multi Obiettivo Ottimizzazione Multi Obiettivo 1 Ottimizzazione Multi Obiettivo I problemi affrontati fino ad ora erano caratterizzati da una unica (e ben definita) funzione obiettivo. I problemi di ottimizzazione reali

Dettagli

Progetto: Cutting Stock Bidimensionale

Progetto: Cutting Stock Bidimensionale Relazione 24 agosto 2010 v1.0 Relazione_progetto_cs2d_1.0.pdf Corso in Metodi e Modelli per l'ottimizzazione Combinatoria Progetto: Cutting Stock Bidimensionale Relazione Alberto Zatton Registro delle

Dettagli

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 16/06/2014 Andrea Scozzari Esercizio n.1 Un agenzia finanziaria deve investire 1000000 di euro di un suo cliente in fondi di investimento. Il mercato offre cinque

Dettagli

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi

Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6. Docente: Laura Palagi Laboratorio di Ricerca Operativa Cad Ingegneria Gestionale (BGER3 - I semestre) a.a. 2012-13 Homework n 6 Docente: Laura Palagi PIANIFICAZIONE DELLA PRODUZIONE 2 Si distingue in: PRODUCTION PLANNING: Tentativo

Dettagli

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12

Seconda Prova di Ricerca Operativa. Cognome Nome Numero Matricola A 1/12 A 2/12 A / A / Seconda Prova di Ricerca Operativa Cognome Nome Numero Matricola Nota: LA RISOLUZIONE CORRETTA DEGLI ESERCIZI CONTRADDISTINTI DA UN ASTERISCO È CONDIZIONE NECESSARIA PER IL RAGGIUNGIMENTO DELLA

Dettagli

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano

Capitolo 3: Ottimizzazione Discreta. E. Amaldi DEIB, Politecnico di Milano Capitolo 3: Ottimizzazione Discreta E. Amaldi DEIB, Politecnico di Milano 3.1 Modelli di PLI e PLMI Moltissimi problemi decisionali complessi possono essere formulati o approssimati come problemi di Programmazione

Dettagli

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE. E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 3 CENNI DI TEORIA DELLA COMPLESSITA COMPUTAZIONALE E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 Scopo: Stimare l onere computazionale per risolvere problemi di ottimizzazione e di altra natura

Dettagli

Management Sanitario. Modulo di Ricerca Operativa

Management Sanitario. Modulo di Ricerca Operativa Management Sanitario per il corso di Laurea Magistrale SCIENZE RIABILITATIVE DELLE PROFESSIONI SANITARIE Modulo di Ricerca Operativa Prof. Laura Palagi http://www.dis.uniroma1.it/ palagi Dipartimento di

Dettagli

Logistica - Il problema del trasporto

Logistica - Il problema del trasporto Logistica - Il problema del trasporto Federico Di Palma December 17, 2009 Il problema del trasporto sorge ogniqualvolta si debba movimentare della merce da una o più sorgenti verso una o più destinazioni

Dettagli

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007)

Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Nome... Cognome... 1 Appello di Ricerca Operativa A.A. 2006-2007 (29/3/2007) Si consideri la funzione f(x) = 4x 2 1 + 6x 4 2 2x 2 1x 2. Si applichi per un iterazione il metodo del gradiente a partire dai

Dettagli

Esempi di modelli di programmazione lineare (intera) 2014

Esempi di modelli di programmazione lineare (intera) 2014 Esempi di modelli di programmazione lineare (intera) 2014 1) Combinando risorse Una ditta produce due tipi di prodotto, A e B, combinando e lavorando opportunamente tre risorse, R, S e T. In dettaglio:

Dettagli

Esercizio 1: Automobili

Esercizio 1: Automobili Esercizio 1: Automobili Le variabili decisionali sono i quattro pesi da attribuire alle quattro caratteristiche. Si tratta di variabili intere maggiori o uguali a 1, minori o uguali a 5, che sommate devono

Dettagli

Modelli matematici avanzati per l azienda a.a. 2010-2011

Modelli matematici avanzati per l azienda a.a. 2010-2011 Modelli matematici avanzati per l azienda a.a. 2010-2011 Docente: Pasquale L. De Angelis deangelis@uniparthenope.it tel. 081 5474557 http://www.economia.uniparthenope.it/siti_docenti P.L.DeAngelis Modelli

Dettagli

Università del Salento

Università del Salento Università del Salento Dipartimento di Matematica DAI SISTEMI DI DISEQUAZIONI LINEARI.. ALLA PROGRAMMAZIONE LINEARE Chefi Triki La Ricerca Operativa Fornisce strumenti matematici di supporto alle attività

Dettagli

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000

mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 1.7 Servizi informatici. Un negozio di servizi informatici stima la richiesta di ore di manutenzione/consulenza per i prossimi cinque mesi: mese 1 2 3 4 5 richiesta 6000 7000 8000 9500 11000 All inizio

Dettagli

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini

Politecnico di Milano. Reti Wireless. Seminari didattici. Dalla teoria alla soluzione. Ilario Filippini Politecnico di Milano Reti Wireless Seminari didattici Dalla teoria alla soluzione Ilario Filippini 2 Approccio euristico 3 Obiettivo dell approccio euristico 4 Tipi di euristiche Dalla teoria alla soluzione

Dettagli

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO

METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 CANDIDATO.. VOTO METODI MATEMATICI PER LE DECISIONI ECONOMICHE E AZIENDALI 12 1) In un problema multiattributo i pesi assegnati ai vari obiettivi ed i risultati che essi assumono in corrispondenza alle varie alternative

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Introduzione a PowerSchedO

Introduzione a PowerSchedO Il sistema di supporto alle tue decisioni Introduzione a PowerSchedO White paper Per maggiori informazioni http://www.powerschedo.it http://www.mbigroup.it PowerSchedO è un marchio registrato MBI. Questo

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP

Contenuto e scopo presentazione. Vehicle Scheduling. Motivazioni VSP Contenuto e scopo presentazione Vehicle Scheduling 08/03/2005 18.00 Contenuto vengono introdotti modelli e metodi per problemi di Vehicle Scheduling Problem (VSP) Scopo fornire strumenti di supporto alle

Dettagli

La gestione delle scorte

La gestione delle scorte La gestione delle scorte Controllo delle scorte Sist. prod. / Fornitore ordini domanda I Magazzino R Lead Time T La gestione delle scorte Problema: uando ordinare uanto ordinare Obiettivi: Basso livello

Dettagli

Ricerca Operativa A.A. 2007/2008

Ricerca Operativa A.A. 2007/2008 Ricerca Operativa A.A. 2007/2008 9. Cenni su euristiche e metaeuristiche per ottimizzazione combinatoria Motivazioni L applicazione di metodi esatti non è sempre possibile a causa della complessità del

Dettagli

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione

Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Esercitazione in Laboratorio: risoluzione di problemi di programmazione lineare tramite Excel il mix di produzione Versione 11/03/2004 Contenuto e scopo esercitazione Contenuto esempi di problema di programmazione

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Uso di Excel nella Programmazione Matematica

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Uso di Excel nella Programmazione Matematica Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili Uso di Ecel nella Programmazione Matematica Uso degli spreadsheet (formulazione nel formato richiesto da Ecel) Conversione della formulazione

Dettagli

Logistica Integrata. Network configuration

Logistica Integrata. Network configuration Logistica Integrata Global Supply Chain Una rete globale di (fornitori) produttori e clienti, attraversata da flussi fisici ed informativi, supportata da infrastrutture fisiche ed informatiche Sistema

Dettagli

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa

Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 16 Offerta dell impresa Prof. Gianmaria Martini Offerta dell impresa La decisione di un impresa a riguardo della quantità

Dettagli

Ricerca Operativa Prima Parte

Ricerca Operativa Prima Parte 1 2 fasi Prima Parte 2 Testi didattici S. Martello, M.G. Speranza, Ricerca Operativa per l Economia e l Impresa, Ed. Esculapio, 2012. F.S. Hillier, G.J. Lieberman, Ricerca operativa - Fondamenti, 9/ed,

Dettagli

Ricerca Operativa A.A. 2008/2009

Ricerca Operativa A.A. 2008/2009 Ricerca Operativa A.A. 08/09 2. Modelli di Programmazione Lineare Modelli di programmazione lineare Il metodo grafico è basato su linearità della funzione obiettivo linearità dei vincoli Sotto queste ipotesi

Dettagli

Modelli LP (complementi)

Modelli LP (complementi) Modelli LP (complementi) Daniele Vigo D.E.I.S. - Università di Bologna dvigo@deis.unibo.it rev. 1.0 - ottobre 2003 1. Comprare o fabbricare? Electro-Poly è un produttore leader di lavatrici Ha ricevuto

Dettagli

Il problema del commesso viaggiatore

Il problema del commesso viaggiatore ITTS Vito Volterra Progetto ABACUS Ottimizzazione combinatoria Il problema del commesso viaggiatore Studente: Davide Talon Esame di stato 2013 Anno scolastico 2012-2013 Indice 1. Introduzione........................................

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

Management briefing Pianificazione orizzontale: integrazione lungo la supply chain del settore petrolifero e del gas

Management briefing Pianificazione orizzontale: integrazione lungo la supply chain del settore petrolifero e del gas Management briefing Pianificazione orizzontale: integrazione lungo la supply chain del settore petrolifero e del gas Prendi decisioni di pianificazione volte a massimizzare i profitti, incrementare la

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Il risolutore. Docente: M. Sechi - Elementi di informatica e programmazione Università degli studi di Brescia D.I.M.I - A.A.

Il risolutore. Docente: M. Sechi - Elementi di informatica e programmazione Università degli studi di Brescia D.I.M.I - A.A. Università degli Studi di Brescia Elementi di informatica e Dipartimento di Ingegneria Meccanica e Industriale Dipartimento di Ingegneria Meccanica e Industriale Programmazione EXCEL Docente: Marco Sechi

Dettagli

UNITED COLORS OF BENETTON. DOTT. FRANCESCO BARBARO

UNITED COLORS OF BENETTON. DOTT. FRANCESCO BARBARO UNITED COLORS OF BENETTON. DOTT. FRANCESCO BARBARO 1 INDICE 1/2 1. IL GRUPPO BENETTON: COMPANY OVERVIEW 2. LA STRATEGIA D AREA 2.1 IL POSIZIONAMENTO COMPETITIVO 2.2 LA CONFIGURAZIONE DELLE ATTIVITA 3.

Dettagli

LA RICERCA OPERATIVA

LA RICERCA OPERATIVA LA RICERCA OPERATIVA Il termine Ricerca Operativa, dall inglese Operations Research, letteralmente ricerca delle operazioni, fu coniato per esprimere il significato di determinazione delle attività da

Dettagli

Approcci esatti per il job shop

Approcci esatti per il job shop Approcci esatti per il job shop Riferimenti lezione: Carlier, J. (1982) The one-machine sequencing problem, European Journal of Operational Research, Vol. 11, No. 1, pp. 42-47 Carlier, J. & Pinson, E.

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Strumenti di pianificazione e. teleriscaldamento urbano

Strumenti di pianificazione e. teleriscaldamento urbano Strumenti di pianificazione e gestione ottima delle reti di teleriscaldamento urbano Daniele Vigo Università di Bologna Dip. di Elettronica, Informatica e Sistemistica daniele.vigo@unibo.it Sommario Introduzione

Dettagli

Un investimento è un operazione che dà luogo a costi immediati in vista di ricavi attesi.

Un investimento è un operazione che dà luogo a costi immediati in vista di ricavi attesi. Scelta di un progetto di investimento Un investimento è un operazione che dà luogo a costi immediati in vista di ricavi attesi. La sua utilità economica è valutata sulla base del confronto tra le risorse

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 22: 1 Giugno 2010. Meccanismi Randomizzati Strumenti della Teoria dei Giochi per l Informatica AA 2009/10 Lecture 22: 1 Giugno 2010 Meccanismi Randomizzati Docente Vincenzo Auletta Note redatte da: Davide Armidoro Abstract In questa lezione descriveremo

Dettagli

Complessità computazionale degli algoritmi

Complessità computazionale degli algoritmi Complessità computazionale degli algoritmi Lezione n. 3.bis I precursori dei calcolatore Calcolatore di Rodi o di Andikithira 65 a.c. Blaise Pascale pascalina XVII secolo Gottfried Leibniz Joseph Jacquard

Dettagli

Contenuto e scopo presentazione. Problemi di Zaino e di Caricamento. Gestione delle operazioni ai terminali. Motivazioni

Contenuto e scopo presentazione. Problemi di Zaino e di Caricamento. Gestione delle operazioni ai terminali. Motivazioni Contenuto e scopo presentazione Problemi di Zaino e di Caricamento Contenuto vengono introdotti dei modelli e degli algoritmi di soluzione per problemi di zaino e di caricamento 09/01/2006 8.00 Scopo fornire

Dettagli

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio

Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio MODELLISTICA E SIMULAZIONE febbraio 007 a prova Cognome e Nome:... Autorizzo Politecnico di Milano I a Facoltà di Ingegneria C.S. in Ing. per l Ambiente e il Territorio Non autorizzo la pubblicazione su

Dettagli

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari

Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Ricerca Operativa (Compito A) Appello del 18/06/2013 Andrea Scozzari Esercizio n.1 Un azienda intende incrementare il proprio organico per ricoprire alcuni compiti scoperti. I dati relativi ai compiti

Dettagli

LABORATORIO DI ANALISI DEI SISTEMI

LABORATORIO DI ANALISI DEI SISTEMI LABORATORIO DI ANALISI DEI SISTEMI Si utilizzerà, come strumento di lavoro, un foglio elettronico, il più diffuso Excel o anche quello gratuito di OpenOffice (www.openoffice.org). Tale scelta, pur non

Dettagli

Problemi complessi : come trovare una soluzione soddisfacente?

Problemi complessi : come trovare una soluzione soddisfacente? Informatica nel futuro, sfide e prospettive - evento scientifico per i 40 anni di ated Manno, 7 ottobre 2011 Problemi complessi : come trovare una soluzione soddisfacente? Marino Widmer Università di Friburgo

Dettagli

Se c'è: siete a posto Se non c'è: avviate l'opzione Add-Ins dello stesso menu e controllate se appare il Risolutore nella finestrella che compare:

Se c'è: siete a posto Se non c'è: avviate l'opzione Add-Ins dello stesso menu e controllate se appare il Risolutore nella finestrella che compare: Excel ed il Solver Far funzionare il Solver Presuppongo che sappiate usare Excel per fare i conti. Per utilizzare Excel al fine di risolvere problemi di ottimizzazione lineare avete bisogno del Solver

Dettagli

Capitolo 17. I mercati con informazione asimmetrica

Capitolo 17. I mercati con informazione asimmetrica Capitolo 17 I mercati con informazione asimmetrica Introduzione L incertezza sulla qualità e il mercato dei bidoni I segnali di mercato Il rischio morale Il problema agente-principale L informazione asimmetrica

Dettagli

1 Breve introduzione ad AMPL

1 Breve introduzione ad AMPL 1 Breve introduzione ad AMPL Il primo passo per risolvere un problema reale attraverso strumenti matematici consiste nel passare dalla descrizione a parole del problema al modello matematico dello stesso.

Dettagli

IL MEZZO PIU SEMPLICE PER TUTTE LE SPEDIZIONI

IL MEZZO PIU SEMPLICE PER TUTTE LE SPEDIZIONI IL MEZZO PIU SEMPLICE PER TUTTE LE SPEDIZIONI Mercato Il settore delle SPEDIZIONI in Italia è uno dei pochi che oggi riesce a crescere nonostante la crisi economica, secondo un analisi svolta dall Aicai.

Dettagli

Turbodoc. Archiviazione Ottica Integrata

Turbodoc. Archiviazione Ottica Integrata Turbodoc Archiviazione Ottica Integrata Archiviazione Ottica... 3 Un nuovo modo di archiviare documenti, dei e immagini... 3 I moduli di TURBODOC... 4 Creazione dell armadio virtuale... 5 Creazione della

Dettagli

SEMPLICE. COMPATTO. EFFICACE.

SEMPLICE. COMPATTO. EFFICACE. SEMPLICE. COMPATTO. EFFICACE. Il distributore automatico. ABBIAMO AUTOMATIZZATO UN COMPROVATO SISTEMA DI IMMAGAZZINAMENTO... e ne abbiamo perfezionato la forma! Il classico archivio per documenti. L idea

Dettagli

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena

Gestione della produzione e della supply chain Logistica distributiva. Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione Università di Siena Problemi di Distribuzione: Il problema del Vehicle Rou:ng

Dettagli

Informatica 3. LEZIONE 21: Ricerca su liste e tecniche di hashing. Modulo 1: Algoritmi sequenziali e basati su liste Modulo 2: Hashing

Informatica 3. LEZIONE 21: Ricerca su liste e tecniche di hashing. Modulo 1: Algoritmi sequenziali e basati su liste Modulo 2: Hashing Informatica 3 LEZIONE 21: Ricerca su liste e tecniche di hashing Modulo 1: Algoritmi sequenziali e basati su liste Modulo 2: Hashing Informatica 3 Lezione 21 - Modulo 1 Algoritmi sequenziali e basati su

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

INTRODUZIONE. Cplex è un software per la risoluzione di Problemi di Programmazione Lineare e Lineare Intera;

INTRODUZIONE. Cplex è un software per la risoluzione di Problemi di Programmazione Lineare e Lineare Intera; INTRODUZIONE Cplex è un software per la risoluzione di Problemi di Programmazione Lineare e Lineare Intera; L interfaccia con il quale viene utilizzato è Microsoft Excel 1 Installazione CPLEX Dopo aver

Dettagli

Appunti di Ricerca Operativa

Appunti di Ricerca Operativa Appunti di Ricerca Operativa 0/0 Prefazione La Ricerca Operativa è un campo in continua evoluzione, il cui impatto sulle realtà aziendali ed organizzative è in costante crescita. L insegnamento di questa

Dettagli

Laboratory for innovation MUSP. Macchine utensili e sistemi di produzione. Laboratorio MUSP www.musp.it

Laboratory for innovation MUSP. Macchine utensili e sistemi di produzione. Laboratorio MUSP www.musp.it Laboratory for innovation MUSP Macchine utensili e sistemi di produzione www.musp.it Sommario La schedulazione della produzione Gli obiettivi nella schedulazione Le problematiche legate alla schedulazione

Dettagli

Algoritmi euristici per il caricamento e l instradamento di una flotta di bisarche

Algoritmi euristici per il caricamento e l instradamento di una flotta di bisarche Università degli Studi di Modena e Reggio Emilia Ingegneria di Reggio Emilia Estratto della Tesi di Laurea di Simone Falavigna Algoritmi euristici per il caricamento e l instradamento di una flotta di

Dettagli

Problemi computazionali

Problemi computazionali Problemi computazionali Intrattabilità e classi computazionali Decidibilità e Trattabilità Problemi decidibili possono richiedere tempi di risoluzione elevati: Torri di Hanoi Decidibilità e Trattabilità

Dettagli

5 L AZIENDA DI PRODUZIONE. 14 ottobre 2005 Ragioneria Generale e Applicata 1

5 L AZIENDA DI PRODUZIONE. 14 ottobre 2005 Ragioneria Generale e Applicata 1 5 L AZIENDA DI PRODUZIONE 14 ottobre 2005 Ragioneria Generale e Applicata 1 Due principali tipologie di aziende Tutte le aziende esercitano attività di acquisizione, produzione ed uso dei beni economici

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Modellazione in Programmazione Lineare Luigi De Giovanni 1 Modelli di programmazione lineare I modelli di programmazione lineare sono una

Dettagli

RENDIMENTI DI SCALA CRESCENTI

RENDIMENTI DI SCALA CRESCENTI 1 U C I I M - Torino Associazione Cattolica Insegnanti Dirigenti Formatori Sezione di Torino Ettore PEYRON Corso di ECONOMIA PUBBLICA 2007 Aggiornamento per docenti di Scienza delle Finanze della scuola

Dettagli

Problemi di localizzazione impianti

Problemi di localizzazione impianti Problemi di localizzazione impianti Laura Galli Dipartimento di Informatica Largo B. Pontecorvo 3, 56127 Pisa laura.galli@unipi.it http://www.di.unipi.it/~galli 2 Dicembre 2014 Ricerca Operativa 2 Laurea

Dettagli

La progettazione della catena di distribuzione nella supply chain. Progettare la catena distributiva 1

La progettazione della catena di distribuzione nella supply chain. Progettare la catena distributiva 1 La progettazione della catena di distribuzione nella supply chain Progettare la catena distributiva Linea guida Il ruolo della distribuzione nella Supply Chain Fattori che influenzano il progetto della

Dettagli

- mezzi di acquisizione dei dati provenienti da un utente chiamante (105), e relativi

- mezzi di acquisizione dei dati provenienti da un utente chiamante (105), e relativi 1 RIASSUNTO Sistema di instradamento automatico (100) di richieste di connessione telefonica, preferibilmente applicato ad una centralina di smistamento, appartenente ad una infrastruttura base di una

Dettagli

Ricerca Operativa Esercizio 1

Ricerca Operativa Esercizio 1 E1 Esercizio 1 La fonderia ESSELLE deve produrre esattamente 1000 pezzi del peso di un chilogrammo ciascuno. Il ferro con cui questi pezzi saranno fatti deve contenere manganese e silicio nelle seguenti

Dettagli

Modelli di Programmazione Lineare Intera

Modelli di Programmazione Lineare Intera 8 Modelli di Programmazione Lineare Intera 8.1 MODELLI DI PROGRAMMAZIONE LINEARE INTERA Esercizio 8.1.1 Una compagnia petrolifera dispone di 5 pozzi (P1, P2, P3, P4, P5) dai quali può estrarre petrolio.

Dettagli

CENTRO DI TAGLIO SC 55

CENTRO DI TAGLIO SC 55 CENTRO DI TAGLIO SC 55 SC 55 Centro di taglio Centro di taglio CNC a 2 assi controllati, studiato per il taglio di profili in PVC. La macchina esegue le operazioni di carico profilo dal magazzino barre,

Dettagli

Esempi di sensitivity analisys

Esempi di sensitivity analisys Esempi di sensitivity analisys SELEZIONE DI INVESTIMENTI: Un modello multiperiodale Prendiamo ora in esame un esempio di problema di selezione di investimenti che ci permette di evidenziare alcune possibilità

Dettagli

PowerSchedo. Un sistema di supporto alla decisione nel settore dell'oil&gas. For further information: www.mbigroup.it

PowerSchedo. Un sistema di supporto alla decisione nel settore dell'oil&gas. For further information: www.mbigroup.it PowerSchedo Un sistema di supporto alla decisione nel settore dell'oil&gas For further information: Introduzione PowerSchedO è uno strumento software di supporto alle decisioni per problemi nel settore

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

La Programmazione Lineare

La Programmazione Lineare 4 La Programmazione Lineare 4.1 INTERPRETAZIONE GEOMETRICA DI UN PROBLEMA DI PROGRAMMAZIONE LINEARE Esercizio 4.1.1 Fornire una rappresentazione geometrica e risolvere graficamente i seguenti problemi

Dettagli

1. Considerazioni generali

1. Considerazioni generali 1. Considerazioni generali Modelli di shop scheduling In molti ambienti produttivi l esecuzione di un job richiede l esecuzione non simultanea di un certo numero di operazioni su macchine dedicate. Ogni

Dettagli

VC-dimension: Esempio

VC-dimension: Esempio VC-dimension: Esempio Quale è la VC-dimension di. y b = 0 f() = 1 f() = 1 iperpiano 20? VC-dimension: Esempio Quale è la VC-dimension di? banale. Vediamo cosa succede con 2 punti: 21 VC-dimension: Esempio

Dettagli

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA

CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA CAPITOLO IX 9. - PROGRAMMAZIONE LINEARE INTERA Molto spesso i risultati che si desidera ottenere come soluzione di un problema di programmazione lineare sono numeri interi, ad es. il numero di vagoni ferroviari

Dettagli

Modelli di Programmazione Lineare e Programmazione Lineare Intera

Modelli di Programmazione Lineare e Programmazione Lineare Intera Modelli di Programmazione Lineare e Programmazione Lineare Intera 1 Azienda Dolciaria Un azienda di cioccolatini deve pianificare la produzione per i prossimi m mesi. In ogni mese l azienda ha a disposizione

Dettagli

14.6 Effettuare scelte in presenza di vincoli 15

14.6 Effettuare scelte in presenza di vincoli 15 14 18-12-2007 19:04 Pagina 403 Le decisioni di breve termine fra alternative diverse 403 Fig. 14.5 Il trattamento analitico dei costi a gradino Costo Comportamento reale del costo Trattamento analitico

Dettagli

Logistica industriale e gestione degli approvvigionamenti

Logistica industriale e gestione degli approvvigionamenti Logistica industriale e gestione degli approvvigionamenti ECONOMIA E GESTIONE DELLE IMPRESE CAP. 16 Una definizione La logistica è il sistema di connessione tra l approvvigionamento dei materiali, la trasformazione

Dettagli

Fondamenti di Economia Aziendale ed Impiantistica Industriale

Fondamenti di Economia Aziendale ed Impiantistica Industriale Politecnico di Milano IV Facoltà di Ingegneria Fondamenti di Economia Aziendale ed Impiantistica Industriale Impiego della programmazione lineare nella progettazione degli impianti Cosa significa progettare

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Teoria delle scorte. Ricerca operativa Met. e mod. per le decisioni (Informatica Matematica) Pierluigi Amodio

Teoria delle scorte. Ricerca operativa Met. e mod. per le decisioni (Informatica Matematica) Pierluigi Amodio Teoria delle scorte Ricerca operativa Met. e mod. per le decisioni (Informatica Matematica) Pierluigi Amodio Dipartimento di Matematica Università di Bari Teoria delle scorte p.1/26 definizione del problema

Dettagli

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito:

RICERCA OPERATIVA. Questi due tipi di costi contribuiscono a determinare il costo totale di produzione così definito: RICERCA OPERATIVA Prerequisiti Rappresentazione retta Rappresentazione parabola Equazioni e disequazioni Ricerca Operativa Studio dei metodi e delle strategie al fine di operare scelte e prendere decisioni

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo

Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo Metodi e Modelli per l Ottimizzazione Combinatoria Il problema del flusso di costo minimo L. De Giovanni G. Zambelli 1 Problema del flusso a costo minimo Il problema del flusso a costo minimo é definito

Dettagli