Calcolo degli integrali indefiniti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo degli integrali indefiniti"

Transcript

1 Appendice B Calcolo degli integrali indefiniti Se f è una funzione continua nell intervallo X, la totalità delle sue primitive prende il nome di integrale indefinito della funzione f, o del differenziale f (), e si indica con il simbolo: f (). (B.0.1) Ogni funzione primitiva dicesi una determinazione dell integrale indefinito. Si ricorda che se F è una primitiva di f, l insieme delle primitive si ottiene dalla relazione G () = F () + c al variare della costante c. Si scrive perciò: f () = F () + c con c costante arbitraria, detta costante d integrazione. Ci occuperemo, in questa appendice della questione d individuare delle classi di funzioni elementarmente integrabili e del calcolo delle primitive. A tale scopo risulta utile la seguente tabella di integrali, che chiameremo integrali indefiniti fondamentali, e che costituiscono il punto di partenza per affrontare la questione cui dianzi abbiamo accennato: = + c α = α c α 1, = log + c α + 1 a = a log a + c, e = e + c cos = sin + c, sin = cos + c 375

2 376 Calcolo degli integrali indefiniti cos = tan+c, cosh = sinh + c, 1 sin = cotg +c, sinh = cosh + c = arcsin + c = arccos + c = arctg + c = arccotg + c = settsenh + c = log c 1 = settcosh + c = log c 1 = setttgh + c = 1 log c cosh = tanh+c Osservazione 16 A proposito dell integrale di 1 1 e di ricordiamo che è arcsin + arccos = π e arctg + arccotg = π B.1 Integrazione per decomposizione in somma Se f 1, f sono funzioni continue in un intervallo, e se c 1, c sono costanti, si ha: [c 1 f 1 () + c f ()] = c 1 f 1 () + c f () Esempio 56 Per il calcolo dell integrale cos ci ricordiamo che: cos = cos sin = cos 1 cos = 1 (1 + cos ) donde: cos = 1 (1 + cos ) = sin + c

3 B. Integrazione per parti 377 B. Integrazione per parti Se u e v sono funzioni derivabili in un intervallo, con derivate continue, si ha: u ()v () = u ()v () u ()v () (B..1) Dimostrazione Per rendersi conto di ciò, basta osservare che: D [u ()v ()] = u ()v () + u ()v () e quindi, integrando ambo i membri, è: u ()v () = u ()v () + u ()v () da cui si ricava la (B..1). La formula (B..1) esprime la regola d integrazione per parti; nell integrale a primo membro i fattori u () e v () si chiamano, rispettivamente, il fattore finito ed il fattore differenziale. La (B..1) si può usare quando si debba calcolare un integrale del tipo: f ()g () (B..) e si conosca una primitiva di uno dei due fattori. Se ad esempio è nota una primitiva G di g, si assume f () come fattore finito e g () = dg () come fattore differenziale. Applicando la (B..1) si trova allora: f ()g () = f ()dg () = f ()G() f ()G() e così il calcolo dell integrale (B..) si riconduce al calcolo dell integrale del prodotto G ()f (). Il procedimento è utile se quest ultimo integrale o è più semplice di quello di partenza o se quest ultimo integrale è fondamentale. Esempio 57 Per calcolare l integrale: e, se si sceglie e come fattore differenziale si ha: e = de = e e = e e + c = e ( 1) + c Se invece si sceglie come fattore differenziale, si trova: ( ) e = e d = e 1 e e, come si vede, si perviene ad un integrale più complicato di quello di partenza.

4 378 Calcolo degli integrali indefiniti Il metodo d integrazione per parti è applicabile anche al calcolo dell integrale: f () scegliendo 1 come fattore differenziale. Si trova allora: f () = f () f () e naturalmente il procedimento è utile se l integrale di f () è più semplice di quello di f (). Esempio 58 Si ha: log () = log () 1 = log () + c = (log () 1) + c B.3 Integrazione per sostituzione Sia f una funzione continua nell intervallo [a, b] e φ(t) una funzione continua assieme alla sua derivata prima in un certo intervallo [α, β]. Supponiamo inoltre che il codominio della φ(t) sia contenuto in [a, b] in modo che possiamo considerare la funzione composta f [φ(t)]. Posto: f () = F () + c (B.3.1) è: F () = f () Premesso ciò, deriviamo la funzione F [φ(t)]. Si ha: (B.3.) DF [ϕ (t)] = F [ϕ (t)] ϕ (t) = f [ϕ (t)] ϕ (t) da cui: F [ϕ (t)] = f [ϕ (t)] ϕ (t)dt In base alla (B.3.1) possiamo anche scrivere: [ ] f () = f [ϕ (t)] ϕ (t)dt =ϕ(t) (B.3.3) Se ora supponiamo che la funzione = φ(t) sia dotata di funzione inversa t = ψ (), poichè φ[ψ ()] =, ponendo nella (B.3.1) t = ψ () si ha: [ ] f () = f [ϕ (t)] ϕ (t)dt (B.3.4) t=ψ()

5 B.3 Integrazione per sostituzione 379 Ora accade sovente che, scegliendo opportunamente la funzione φ(t), l integrazione del differenziale f [ϕ (t)] ϕ (t)dt sia più facile che non quella del differenziale f () ; la formula (B.3.4) può dunque riuscire, in molti casi, assai utile e il metodo d integrazione per sostituzione consiste appunto nella sua applicazione. Esempio 59 Si voglia calcolare l integrale; e α Si ha: e α = 1 α e α d (α) = 1 α [ Esempio 60 Si voglia valutare l integrale: e sin t sintcos tdt. Si noti che con la sostituzione seguente: = sint = cos tdt ] e t dt = 1 t=α α eα + c si ha: ossia: [ e sin t sintcos tdt = ] e =sin t e sin t sintcos tdt = e sin t (sint 1) + c Esempio 61 Si voglia calcolare: a, a > 0. Notiamo che, in R, tale integrale ha senso se e solo se: sicchè possiamo porre: a 0 a a = asint, con t [ π, π ] Allora è: a = a a sin t acos tdt = = a a cos t 1 sin tdt = ] cos td (t) + dt = [ cos t + 1 cos tdt = a dt = a 1 [ ] = a 1 sin(t) + t + c = a [sin t cos t + t] + c

6 380 Calcolo degli integrali indefiniti Dalla posizione fatta si ricava: Si noti che: sin t + cos t = 1 cos t = In definitiva è: a = 1 t = arcsin a B.4 Formule di ricorrenza ( 1 sin t cos arcsin ) ( = 1 a a) ( a + arcsin a + a Spesso s incontrano integrali del tipo: I n = (f ()) n g () ) 1 a con f e g funzioni assegnate, ed n integro maggiore di 1. Si vengono così ad ottenere delle formule ricorrenti, i.e. formule che consentono di esprimere I n mediante I n 1. L applicazione ripetuta di tale formula consentirà di esprimere I n mediante I 0 e se quest ultimo integrale è elementarmente calcolabile tale sarà anche I n. Esempio 6 Si voglia calcolare l integrale: I n = n e Integrando per parti si ha facilmente: I n = n e n n 1 e = n e ni n 1 Applicando n volte tale formula il calcolo di I n si riconduce al calcolo di I 0 = e = e + c Così, ad esempio: I 3 = 3 e 3I = 3 e 3 ( e I 1 ) = + c = 3 e 3 [ e (e I 0 ) ] = e ( ) + c

7 B.4 Formule di ricorrenza 381 Esempio 63 Si calcoli l integrale: I n = sin n. Assumendo come fattore differenziale sin e come fattore finito sin n 1, si ha integrando per parti: sin n = sin sin n 1 = sin n 1 d (cos) = = sin n 1 cos + (n 1) cos sin n = sin n 1 cos + (1 + (n 1) sin ) sin n = = sin n 1 cos + (n 1) sin n (n 1) sin n Di qui si trae facilmente la formula ricorrente: I n = 1 n sin n 1 cos + n 1 n I n. E ovvio che mediante tale formula il calcolo di I n si riconduce a quello di: I 0 = = + c se n è pari, e a quello di: I 1 = sin = cos + c se n è dispari. Esempio 64 Si valuti l integrale: I n = arcsin n. Integrando per parti, col fattore differenziale, si trova: I n = arcsin n = arcsin n n 1 arcsinn 1 Si osservi, a tal punto, che: ( ) D 1 = 1 ( ) = d 1. 1 Quindi è: I n = arcsin n + n ( ) arcsin n 1 d 1 (B.4.1)

8 38 Calcolo degli integrali indefiniti Integrando per parti quest ultimo integrale è: ( ) arcsin n 1 d 1 = 1 arcsin n 1 + (n 1) arcsin n. Sostituendo questo risultato in (B.4.1) si ha: I n = arcsin n + n 1 arcsin n 1 n (n 1)I n Quest ultima formula ricorrente condurrà al calcolo di: I 0 = = + c nel caso in cui n sia pari, e a quello di: I 1 = arcsin = arcsin + 1 nel caso in cui n sia dispari. B.4.1 = arcsin+ 1 D ( 1 ) 1 = arcsin c L integrale della funzione 1 (1 + ) n Un altra formula di riduzione, molto importante, è quella che si stabilisce per il calcolo dell integrale: I n = (1 + ) n (n N, n > 1), (B.4.) Si ha: I n = 1 + (1 + ) n = (1 + ) n = I n 1 Per quest ultimo integrale conviene osservare che: = 1 d ( ) (1 + ) n. sicchè è: (1 + ) n = (1 + ) n = 1 d ( 1 + ) (1 + ) n = = 1 ( 1 + ) n ( d 1 + ) = 1 (( 1 + ) ) n+1 d n + 1

9 B.5 Integrali delle funzioni razionali. 383 Integrando per parti è: (1 + ) n = 1 ( 1 + ) n n + 1 = (n 1)(1 + ) n (n 1) = Quindi è: ossia: I n = I n 1 + n + 1 (1 + ) n+1 = (1 + ) n 1 = (n 1) (1 + ) n (n 1) I n 1 (n 1) (1 + ) n 1 1 (n 1) I n 1 I n = n 3 n I n 1 + B.5 Integrali delle funzioni razionali. (n 1)(1 + ) n 1. (B.4.3) Il metodo d integrazione per decomposizione in somma trova una importante applicazione nel problema dell integrazione delle funzioni razionali. Detti n () e D () due polinomi a coefficienti reali di cui il primo di grado n e il secondo di grado m consideriamo la funzione razionale: f () = N () D () Se è n m possiamo eseguire la divisione di N () per D () e, detti Q() e R () il quoziente e il resto, si ha: da cui: f () = N () D () f () = = Q() + R () D () R () Q() + D (). Poichè sappiamo calcolare l integrale del polinomio Q(), il problema dell integrazione della funzione razionale f () è ricondotto a quello dell integrazione di un altra funzione razionale nella quale il grado del numeratore è inferiore a quello del denominatore. E dunque di quest ultimo problema che dobbiamo preoccuparci. Cominciamo a considerare il caso particolare in cui R () è di primo grado e D () di secondo grado, supponiamo cioè che riesca: R () D () = + p + q (B.5.1)

10 384 Calcolo degli integrali indefiniti Il metodo da seguire per calcolare l integrale di una tale funzione differisce a seconda del segno del discriminante del denominatore. Se è 4q p > 0 si scrive: + p + q = m + p + p + q + n mp 1 + p + q, da cui: + p + q = m d log ( + p + q ) + n mp + p + q i.e.: + p + q = m log ( + p + q ) + n mp + p arctg + c 4q p 4q p (B.5.) Se è 4q p < 0 il polinomio a denominatore della nostra funzione ha due radici reali distinte α 1 e α, e si ha pertanto: + p + q = ( α 1 )( α ) Cerchiamo allora di determinare le costanti A 1 e A in modo che riesca: + p + q = A 1 α 1 + A α Tale formula, riducendo le due frazioni a secondo membro allo stesso denominatore, può anche scriversi: + p + q = (A 1 + A ) (A 1 α + A α 1 ) + p + q e affinchè tale identità sussista, occorre e basta, per il principio di identità dei polinomi, che riesca: A 1 + A = m ossia: A 1 α + A α 1 = n A 1 = mα 1 + n α 1 α, A = mα + n α 1 α. Dopo ciò si ha, in definitiva: + p + q = mα 1 + n log α 1 mα + n log α + c α 1 α α 1 α Supponiamo infine che sia 4q p = 0 in tal caso il polinomio + p + q = ( α) (B.5.3)

11 B.5 Integrali delle funzioni razionali. 385 ha una sola radice doppia α = p e si ha quindi: + p + q = ( α) Cerchiamo allora di determinare le costanti A 1 e A in modo che riesca: + p + q = A 1 α + d B 1 τ Eseguendo la derivazione indicata nel secondo membro di tale formula e riducendo tale secondo membro allo stesso denominatore, si ha: da cui: e quindi: + p + q = A 1 A α B 1, + p + q m = A 1, n = (A 1 α + B 1 ) A 1 = m, B 1 = (mα + n). Dopo ciò si ha, in definitiva: mα + n = mlog α + p + q α + c Esempio 65 Si voglia calcolare l integrale: Si ha intanto: Si osservi che l equazione: = = (B.5.4) ha la radice reale = 1 per cui, mettendo in vista nel primo membro il fattore ( 1), essa può anche scriversi: Poichè l equazione di secondo grado: ( 1) ( ) = = 0 non ha radici reali, cerchiamo di determinare le costanti A, m, n in modo che riesca: = A

12 386 Calcolo degli integrali indefiniti Eliminando i denominatori da tale formula si ha: + 7 = (A + m) + (A + n m) + 5A n da cui, eguagliando i coefficienti dei termini omologhi del primo e secondo membro, si ha: A + m = 0, A + n m = 1, 5A n = 7 Da questo sistema di tre equazioni lineari nelle incognite A, m, n si ricava facilmente: A = 1, m = 1, n =. Si ha dunque, in definitiva: da cui: = = log 1 1 log ( ) + 1 arctg c

TAVOLA DEGLI INTEGRALI INDEFINITI

TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni elementari c c ln c arc tan c arc tan c a a a e e c TAVOLA DEGLI INTEGRALI INDEFINITI Integrazione di funzioni composte f( ) f ( ) f '( ) C ' f ln f ( ) c f( ) f '( ) arctan( f

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Unità Didattica N 29 : L integrale Indefinito

Unità Didattica N 29 : L integrale Indefinito Unità Didattica N 9 L integrale indefinito ) La definizione di integrale indefinito ) Proprietà dell ' integrale indefinito ) Integrali indefiniti immediati ) Integrazione per decomposizione ) Integrazione

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

Esercitazione del Analisi I

Esercitazione del Analisi I Esercitazione del 0-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 0-0 Integrale di funzioni razionali Supponiamo di voler calcolare un integrale del tipo P () Q() d

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

Argomento 8 Integrali indefiniti

Argomento 8 Integrali indefiniti 8. Integrale indefinito Argomento 8 Integrali indefiniti Definizione 8. Assegnata la funzione f definita nell intervallo I, diciamo che una funzione F con F : I R è una primitiva di f in I se i) F è derivabile

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST) V foglio di esercizi ESERCIZIO. Siano f(t) = t t + per ogni t R ed F una primitiva di f. Se F () =, si calcoli F (). Le primitive di f(t) sono tutte della forma

Dettagli

Calcolo integrale: esercizi svolti

Calcolo integrale: esercizi svolti Calcolo integrale: esercizi svolti Integrali semplici................................ Integrazione per parti............................. Integrazione per sostituzione......................... 4 4 Integrazione

Dettagli

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito

FORMULARIO: tavola degli integrali indefiniti Definizione. Proprietà dell integrale indefinito FORMULARIO: tavola degli integrali indefiniti Definizione Proprietà dell integrale indefinito Integrali indefiniti fondamentali Integrali notevoli Integrali indefiniti riconducibili a quelli immediati:

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx =

2 + 4 x 4 ) Soluzione Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità, in base al quale si ha: dx = CAPITOLO 1 Integrali 1.1 Integrali indefiniti 1.1.1. Esercizi svolti 1 Calcolare: ( 3 3 + 5 3 3 + 4 4 ) d Occorre calcolare l integrale della somma di più funzioni. Applichiamo il teorema di linearità,

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini

Istituzioni di Matematiche, Integrali fratti. corso di laurea in Scienze geologiche. Mauro Costantini Istituzioni di Matematiche, Integrali fratti corso di laurea in Scienze geologiche. Mauro Costantini tipo: Il nostro obiettivo è studiare gli integrali (indefiniti e definiti delle funzioni razionali,

Dettagli

Metodi di Integrazione. Integrazione per decomposizione in somma

Metodi di Integrazione. Integrazione per decomposizione in somma Metodi di Integrazione Integrazione per decomposizione in somma Integrazione per parti Integrazione per sostituzione Integrazione per decomposizione in somma In molti casi il calcolo dell integrale indefinito

Dettagli

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx.

Soluzioni. 1 x + x. x = t 2 e dx = 2t dt. 1 2t dt = 2. log 2 x dx. = x log 2 x x 2 log x 1 x dx. = x log 2 x 2 log x dx. Calcolo Integrale 8 Soluzioni. Calcolare l integrale indefinito + d. R. Procediamo effettuando il cambio di variabile t = ossia = t e d = t dt. d = + t dt = t + t dt = log + t + c + t Se torniamo alla

Dettagli

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1 Capitolo Integrali b Funzione (b \{ }) e Primitiva b+ b+ log e sin cos cos sin tan log cos cot log sin cos tan sin cot arcsin + arctan sinh cosh cosh sinh tanh log(cosh ) coth log(sinh ) cosh tanh sinh

Dettagli

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c.

Integrali indefiniti fondamentali. Integrali indefiniti riconducibili a quelli immediati. a dx ax c. log. e dx e c. cos xdx senx c. Integrali indefiniti fondamentali Integrali indefiniti riconducibili a quelli immediati d f ( c d f ( c a d a c n n d c con n - n a a d log k e d e k k e c a c e d e c d log c send cos c cos d sen c senhd

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati.

Esercizi 10: Calcolo Integrale Integrali indefiniti. Calcolare i seguenti integrali indefiniti, verificando i risultati indicati. Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in Farmacia - anno acc / docente: Giulia Giantesio, gntgli@unifeit Esercizi : Calcolo Integrale Integrali indefiniti

Dettagli

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 )

Soluzioni delle Esercitazioni VII 12-16/11/ x+c = 1 2 x4 3 2 x2 +x+c. + x4/3. x + 1 ) Soluzioni delle Esercitazioni VII -6//8 A. Integrali indefiniti. Si ha +)d. Si ha + )d. Si ha + d +. Si ha d 5. Si ha / + / )d / ) d d + ++c ++c. + / +c + +c. + ) d ln + / +c ln + +c. ) / d )/ +) / d +)/

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Teoria dell integrazione Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche. () Teoria

Dettagli

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI

ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI ESERCITAZIONE 9: INTEGRALI DEFINITI. CALCOLO DELLE AREE E ALTRE APPLICAZIONI Tiziana Raparelli 5/5/9 CONOSCENZE PRELIMINARI Vogliamo calcolare f ( x, ax + bx + c ) dx. Se a =, allora basta porre bx + c

Dettagli

Capitolo Ottavo L'INTEGRALE INDEFINITO

Capitolo Ottavo L'INTEGRALE INDEFINITO Capitolo Ottavo L'INTEGRALE INDEFINITO. IL PROBLEMA DELLE PRIMITIVE, INTEGRALI IMMEDIATI Ricordiamo che un insieme A ( Â) è detto aperto se è intorno di ogni suo punto, ossia se, per ogni A, esiste un

Dettagli

CALCOLO DEGLI INTEGRALI

CALCOLO DEGLI INTEGRALI CALCOLO DEGLI INTEGRALI ESERCIZI SVOLTI DAL PROF. GIANLUIGI TRIVIA INTEGRALI INDEFINITI. Integrazione diretta.. Principali regole di integrazione. () Se F () f (), allora f () F () dove C è una costante

Dettagli

Primitive e Integrali Indefiniti

Primitive e Integrali Indefiniti Capitolo 0 Primitive e Integrali Indefiniti In questo capitolo ci proponiamo di esporre la teoria delle funzioni primitive per funzioni reali di una variabile reale e di dare cenni ai metodi utilizzati

Dettagli

)DFROWjGL,QJHJQHULD&RUVRGL/DXUHDLQ,QJHJQHULD,QIRUPDWLFD SULPDSDUWH ~~~~~~~~~~~~~~~~~~~~

)DFROWjGL,QJHJQHULD&RUVRGL/DXUHDLQ,QJHJQHULD,QIRUPDWLFD SULPDSDUWH ~~~~~~~~~~~~~~~~~~~~ 8,9(6,7 '(*/,678',',$7( )DFROWjGL,QJJQULD&RUVRGL/DXUDLQ,QJJQULD,QIRUPDWLFD (6(&,,',&$/&/,, SULPDSDUW,7(*$/, Calcolare i seguenti integrali definiti e indefiniti: ~~~~~~~~~~~~~~~~~~~~ 7 8 8 6 )( ) 9)( )

Dettagli

1 Integrazione per parti

1 Integrazione per parti Integrazione per parti Un pò di teoria Date le funzioni f, g : [a, b] R con f, g C [a, b] la regola di integrazione per parti per gli integrali definiti è: b a f(g ( d = f(bg(b f(ag(a b a f (g( d la regola

Dettagli

Esercizi svolti sugli integrali indefiniti

Esercizi svolti sugli integrali indefiniti SCIENTIA http://www.scientiajournal.org/ International Review of Scientific Synthesis ISSN 8-9 Quaderni di Matematica 05 Matematica Open Source http://www.etrabyte.info Esercizi svolti sugli integrali

Dettagli

INTEGRALI IMPROPRI. Esercizi svolti

INTEGRALI IMPROPRI. Esercizi svolti INTEGRALI IMPROPRI Esercizi svolti. Usando la definizione, calcolare i seguenti integrali impropri: a c d e f / + 5 d arctan + d 8 + 4 5/ + e + d 9 + 8 + + d 4 d. d. Usando la definizione di integrale

Dettagli

Integrale indefinito

Integrale indefinito Integrale indefinito 1 Primitive di funzioni Definizione 1.1 Se f: [a, b] R è una funzione, una sua primitiva è una funzione derivabile g: [a, b] R tale che g () = f(). Ovviamente la primitiva di una funzione,

Dettagli

Integrali. Primitive di una funzione di una variabile

Integrali. Primitive di una funzione di una variabile Integrali Paolo Montanari Appunti di Matematica Integrali 1 Primitive di una funzione di una variabile Sia f() una funzione definita in un intervallo X R. Una primitivadi f()su Xè una qualunque funzione

Dettagli

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x)

Integrazione di Funzioni Razionali. R(x) = P 0 (x) + P 1(x) Q(x) Integrazione di Funzioni Razionali Un polinomio di grado n N è una funzione della forma P () = a 0 + a +... + a n n dove a 0, a,..., a n sono costanti reali e a n 0. Una funzione della forma R() = P ()

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Calcolo Integrale. F (x) = f(x)?

Calcolo Integrale. F (x) = f(x)? 3 Calcolo Integrale Nello studio del calcolo differenziale si è visto come si può associare ad una funzione la sua derivata. Il calcolo integrale si occupa del problema inverso: data una funzione f è possibile

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 12 a.a

Analisi Matematica per Bio-Informatici Esercitazione 12 a.a Analisi Matematica per Bio-Informatici Esercitazione a.a. 007-008 Dott. Simone Zuccher Febbraio 008 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile

Teorema Ogni funzione monotona e limitata nell intervallo [a, b] é integrabile ALCUNI COMPLEMENTI TEORICI Tra le classi di funzioni integrabili secondo Riemann, oltre alle funzioni continue (Paragrafo 66 del libro di testo), ci sono le funzioni monotone (limitate): Teorema Ogni funzione

Dettagli

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1

b+ 1 x b+1 log x x e x sin x tan x log cos x cot x log sin x 1 cos 2 x tan x 1 sin 2 x 1 1 x 2 arcsin x 1 arctan x tanh x 1 sinh 2 x coth x 1 Capitolo Integrali b Funzione (b \{ }) e Primitiva b+ b+ log e sin cos cos sin tan log cos cot log sin cos tan sin cot arcsin + arctan sinh cosh cosh sinh tanh log(cosh ) coth log sinh cosh tanh sinh coth

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

0.5 setgray0 0.5 setgray1 Integrazione indefinita di funzioni trascendenti

0.5 setgray0 0.5 setgray1 Integrazione indefinita di funzioni trascendenti Esercizi di riepilogo e complemento 3 0.5 setgray0 0.5 setgray Integrazione indefinita di funzioni trascendenti Indicheremo con R(x,x,...,x n ) una funzione razionale dipendente dalle variabili x,x,...,x

Dettagli

ESAME DI MATEMATICA GENERALE I (semestrale) SOLUZIONI DEL TEMA DEL 29 Gennaio 2001

ESAME DI MATEMATICA GENERALE I (semestrale) SOLUZIONI DEL TEMA DEL 29 Gennaio 2001 Esercizio Si enunci il teorema fondamentale del calcolo integrale. ESAME DI MATEMATICA GENERALE I (semestrale SOLUZIONI DEL TEMA DEL 9 Gennaio 00 SECONDA PROVA PARZIALE Teorema (fondamentale del calcolo:

Dettagli

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + )

sin 3 x x x cos x lim Verificare se la funzione: (x 2)2 f(x) = ln (x 2) sia dotata di minimo assoluto nell intervallo aperto (3, + ) Esercizio 1 Verificare che il numero complesso z = ( 1 3 i)/2 algebrica: 2z 4 + 3z 3 2z 3 è radice dell equazione Esercizio 2 x 0 sin 3 x x x cos x Esercizio 3 Verificare se la funzione: (x 2)2 f(x) =

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti

5. CALCOLO INTEGRALE. 5.1 Integrali indefiniti 5. CALCOLO INTEGRALE Il calcolo integrale nasce, da un lato per l esigenza di calcolare l area di regioni piane o volumi e dall altro come operatore inverso del calcolo differenziale. 5. Integrali indefiniti

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Correzione terzo compitino, testo A

Correzione terzo compitino, testo A Correzione terzo compitino, testo A 24 maggio 2 Parte Esercizio.. Procederemo per esclusione, mostrando come alcune funzioni della lista non possano avere il grafico in figura. La prima cosa che possiamo

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia

Soluzioni. Calcolo Integrale Calcolare l integrale indefinito. 1 x + x. dx. R. Procediamo effettuando il cambio di variabile t = x ossia Calcolo Integrale 5 Soluzioni. Calcolare l integrale indefinito x + x dx. R. Procediamo effettuando il cambio di variabile t = x ossia x = t e dx = t dt. Quindi dx = x + x t dt = t + t dt = log + t + c

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9..8 NOTA: lo svolgimento del Tema contiene alcuni commenti di carattere generale. Esercizio Si consideri la funzione TEMA f := log

Dettagli

II-7 Integrale indefinito

II-7 Integrale indefinito PRIMITIVE II-7 Integrale indefinito Indice Primitive Tecniche di integrazione I. Linearità dell integrale............................................. 3. Integrali quasi immediati...........................................

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1.

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1. Prova scritta di Analisi Matematica I del giorno 05-1-009 Appello riservato a studenti fuori corso o ripetenti 1) Calcolare, se esiste, il ite seguente 1 cos x + log(1 + x) x 0+ x(e x 1) ) Dire per quali

Dettagli

LEZIONE 8. Esercizio 8.1. Calcolare le primitive delle seguenti funzioni. 2x +6dx = x 2 +6x + c. x 3 2 x dx = 1 4 x4 2ln x + c.

LEZIONE 8. Esercizio 8.1. Calcolare le primitive delle seguenti funzioni. 2x +6dx = x 2 +6x + c. x 3 2 x dx = 1 4 x4 2ln x + c. 8 LEZIONE 8 Esercizio 8.. Calcolare le primitive delle seguenti funzioni. x +6dx = x +6x + c. x 3 x dx = 4 x4 ln x + c. cos x sin x dx =sinx +cosx + c. e x + x dx = ex x + c. x / + x /3 dx = 3 x3/ + 3

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A

Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 2007 Tema A Università degli Studi di Bergamo Facoltà di Ingegneria Matematica I Appello del 5 Febbraio 7 Tema A Cognome e Nome Matr... Disegnare un grafico approssimativo della funzione f() log( ). Indicare sul grafico

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 6 luglio 2016 MATRICOLA... VALUTAZIONE =... Analisi I - IngBM - 2015-16 COMPITO A 6 luglio 2016 COGNOME... NOME... MATRICOLA... VALUTAZIONE... +... =... 1. Istruzioni Gli esercizi devono essere svolti negli appositi spazi del presente fascicolo;

Dettagli

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z (1) Calcolare il seguente integrale definito 3/π 1/π 1 3 sen ( 1 ) d integrando dapprima per sostituzione

Dettagli

Integrazione delle funzioni razionali e applicazioni

Integrazione delle funzioni razionali e applicazioni Integrazione delle funzioni razionali e applicazioni Tutte le funzioni razionali sono integrabili elementarmente. Inparticolare: l integrale di un polinomio si calcola per linearità ed è sempre un polinomio

Dettagli

Il teorema fondamentale del calcolo

Il teorema fondamentale del calcolo Il teorema fondamentale del calcolo Versione da non divulgare. Scritta per comodità degli studenti. Può contenere errori. 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Dicembre 2013

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) IV foglio di esercizi ESERCIZIO. Nei seguenti esercizi risolvere il problema di valori iniziali nell intervallo indicato. ) y 3y = e su (, + ), con y(0) = 0, )

Dettagli

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120

Universitá degli Studi Roma Tre - Corso di Laurea in Matematica. Tutorato di AM120 Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di AM A.A. - - Docente: Prof. G.Mancini Tutore: Matteo Bruno ed Emanuele Padulano Soluzioni - 9 Maggio. Se f é pari abbiamo che

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

Soluzioni del Foglio 9

Soluzioni del Foglio 9 ANALISI Soluzioni del Foglio 9 4 dicembre 9 9.. Esercizio. Si scriva il polinomio di Taylor T 5 (x, ), di punto iniziale x = e ordine n = 5 della funzione f(x) = ex e x La funzione f(x) assegnata é, generalmente,

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 13 luglio 2017

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 13 luglio 2017 omanda Sia A = {x R : x > 0}. Allora infa = A 0 omanda La funzione fx = x sin x x 4 A non ha nessun tipo di asintoto ha un asintoto orizzontale e nessun altro tipo di asintoto ha un asintoto verticale

Dettagli

Analisi Matematica 2 Corso di Laurea in Matematica DIARIO DELLE ESERCITAZIONI (Marta Calanchi)

Analisi Matematica 2 Corso di Laurea in Matematica DIARIO DELLE ESERCITAZIONI (Marta Calanchi) Analisi Matematica Corso di Laurea in Matematica DIARIO DELLE ESERCITAZIONI (Marta Calanchi) 8-3-. Studiare la derivabilità delle seguenti funzioni f() = { + b sin e a > (b) Sia f : R R definita da ( 3

Dettagli

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Polinomi di Taylor. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Polinomi di Taylor Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Polinomi di Taylor Analisi Matematica 1 1 / 18 Introduzione Sia f : I R e sia x 0 I. Problemi:

Dettagli

Appello del 27/1/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato

Appello del 27/1/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato Corso di Laurea in Economia e Management Appello del 27//27 Matematica per l Economia lettere E-Z, a.a. 26 27, compito A, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta dello

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti

Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti Esercizi di Matematica per le Scienze Funzioni: integrali indefiniti A.M. Bigatti e G. Tamone Esercizi Una funzione g() derivabile su un intervallo (a, b) si dice primitiva della funzione f() se f() =

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

Funzioni di una variabile reale

Funzioni di una variabile reale Capitolo. Introduzione Nella matematica, ed in molte delle sue applicazioni scientifiche e tecniche, si ha molto spesso la necessità di considerare grandezze variabili. L esistenza di una grandezza variabile

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

Analisi Matematica 1-10/2/15 - Compito 3 - Versione 1

Analisi Matematica 1-10/2/15 - Compito 3 - Versione 1 Analisi Matematica - /2/5 - Compito 3 - Versione Cognome Nome, matricola, e-mail istituzionale :.... (p. 4) Studiare la seguente funzione rispondendo alle seguenti domande: f(x) = e x3 +x, (a) (p..*) determinare

Dettagli

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA ( ) f() = log (determinare il dominio D; calcolare i limiti per che tende agli estremi finiti o infiniti z 4 + (3 + 6i)z + 5 + i = 0. ( + 3 ) α α (log + log + ) d. y = e y, y() = α. TEMA ( ) f() =

Dettagli

DERIVATE pag Calcolo della derivata prima [ ] [ ] [ ] ( ) ( 1. ( x x 1) f () x = x. xcos

DERIVATE pag Calcolo della derivata prima [ ] [ ] [ ] ( ) ( 1. ( x x 1) f () x = x. xcos Calcolo della derivata prima.0. f = 5 + 5 7.0. f sin +.0. f = log.0. f = log DERIVATE pag. = 5 ] 6 = f ' = cos + 7 [ ] f ' = f ' = f ' = cos sin = cos [ ].0.5 f = sin cos.0.6 ( f = )( + ) = 0 + 6 ].0.7

Dettagli

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti

Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Equazioni differenziali ordinarie (ODE) lineari del secondo ordine a coefficienti costanti Fulvio Bisi Corso di Analisi Matematica A (ca) Università di Pavia Facoltà di Ingegneria 1 ODE lineari del secondo

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1 Esercizio Data la funzione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3 TEMA fx = x 3 + logx, a determinarne il dominio, calcolarne i iti agli estremi e determinare eventuali

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza + Svolgimento (cenno) a) Dominio={ R,6= }. Non ci sono simmetrie. b)! f() = 4,! + f() = 4. La funzione non può essere prolungata per continuità in =, dove c è un salto.!+1 f() =!+1 arctan + = 1, f()!+1

Dettagli

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica

Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata, Matematica DIPARTIMENTO DI MATEMATICA Università degli Studi di Trento Via Sommarive - Povo (TRENTO) Raccolta degli Scritti d Esame di ANALISI MATEMATICA U.D. 2 assegnati nei Corsi di Laurea di Fisica, Fisica Applicata,

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Secondo test di verifica a. a. 2006/2007 Risolvere esattamente due tra gli esercizi seguenti. Le risposte non motivate non saranno prese

Dettagli

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri

Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Calcolo di integrali definiti utilizzando integrali dipendenti da parametri Mosè Giordano 6 novembre Introduzione I seguenti esercizi mostrano alcuni esempi di applicazioni degli integrali dipendenti da

Dettagli

0.1 Spazi Euclidei in generale

0.1 Spazi Euclidei in generale 0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo

Dettagli

Forme differenziali lineari e loro integrazione

Forme differenziali lineari e loro integrazione Forme differenziali lineari e loro integrazione Integrazione di una forma differenziale in due variabili Siano L(, ) e ( ) consideriamo l espressione M, due funzioni definite e continue in un insieme connesso

Dettagli

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ;

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ; Ingegneria Elettronica e Informatica Analisi Matematica a Foschi) Compito dell 8..08. Determina tutti i punti di accumulazione dell insieme { k E := k + k sin π ) } : k N. Soluzione: L insieme E è formato

Dettagli

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2

Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F (x) = x i. i=1. x 2 + y 2 Capitolo 4 Campi vettoriali Ultimo aggiornamento: 3 maggio 2017 Ricordiamo che l operatore divergenza agisce su un campo vettoriale F ed è definito come segue: div F x = n F i x. x i i=1 Esercizio 4.1

Dettagli

Ricevimento del 2 Febbraio 2011

Ricevimento del 2 Febbraio 2011 Ricevimento del 2 Febbraio 20 Davide Boscaini Queste sono le note del ricevimento del 2 Febbraio. Ho scelto di scrivere queste poche pagine per una maggior chiarezza e per chi non fosse stato presente

Dettagli

Soluzioni del Foglio 7

Soluzioni del Foglio 7 7.1. Esercizio. Assegnate le funzioni ANALISI Soluzioni del Foglio 7 18 novembre 2009 e e sin(), dire quali possono essere prolungate per continuitá in = 0, studiare, per le funzioni che risultino prolungabili

Dettagli