Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme"

Transcript

1 G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero che varia nell insieme dei numeri naturali (o, più generalmente in sottoinsiemi del tipo {n Z n a}, dove a Z è un fissato numero intero) Ad esempio: () per ogni n N, la somma dei primi n numeri naturali è uguale a n(n + )/, oppure: () ogni numero naturale maggiore o uguale a è prodotto di numeri naturali primi Nel caso () l enunciato è: P(n): la somma dei primi n numeri naturali è uguale a n(n + )/, o, in simboli, n n(n + )/ Tale enunciato dipende dalla variabile n, che varia nell insieme dei numeri naturali N Nel secondo caso, l enunciato è P(n): ogni numero naturale n è prodotto di numeri primi o, in simboli, n N, n, h N e p,, p h N, primi, tali che n = p p h Anche in questo caso l enunciato dipende da n, che varia nell insieme {n N n } Parlando informalmente, il Principio di Induzione è il Principio della scala infinita Supponiamo di avere un scala infinita, i cui gradini corrispondono ai numeri naturali In questo contesto il Principio di Induzione si potrebbe enunciare così: supponiamo di sapere che una data persona: (a) è in grado di salire il primo gradino; (b) se è ad un certo gradino, diciamo n, allora è in grado di salire sul gradino successivo (diciamo n + ) Allora questa persona è in grado di salire ogni gradino della scala all infinito (cioè per ogni n) Passiamo alle formulazioni rigorose e alle corrispondenti dimostrazioni Proposizione (Principio di Induzione) Sia a Z e sia P {n Z n a} Se l insieme P verifica le seguenti condizioni: (a) a P ; (b) sia n a Se n P allora n + P ; allora P = {n Z n a} Proof Dimostrazione per assurdo Consideriamo l insieme complementare di P nell insieme {n Z n a} Consideriamo cioè l insieme Q = {n Z n a e n P } Dobbiamo dimostrare che, se valgono le proprietà (a) e (b), allora Q = Supponiamo che Q non sia vuoto Osserviamo che Q è un sottoinsieme dell insieme dei numeri interi limitato inferiormente (perchè Q un sottoinsieme dell insieme {n Z n a}) Allora Q possiede certamente un elemento minimo q 0 Certamente q 0 > a, per la proprietà (a) Ne segue che anche () q 0 Q Insiemi X dotati di una relazione d ordine (vedi lezioni successive) con la proprietà seguente: ogni sottoinsieme A X limitato inferiormente possiede un elemento minimo sono detti insiemi ben ordinati Quindi, nella dimostrazione, stiamo usando il fatto che Z è ben ordinato Ad esempio, R non è ben ordinato (esistono sottoinsiemi di R, ad esempio la seniretta aperta (0, + ), che non hanno elemento minimo)

2 (altrimenti, per la proprietà (b), se non fosse così, q 0 = (q 0 ) + apparterebbe a P, e quindi non a Q) La () è in contrasto con il fatto che q 0 sia il minimo di Q Quindi, l ipotesi che Q non sia vuoto ci porta ad una contraddizione Dunque Q deve essere necessariamente vuoto Caso particolare Sia P N Se P verifica le seguenti condizioni: (a) P ; (b) sia n N Se n P allora n + P ; allora P = N Proof È la Proposizione precedente con a = Come anticipato sopra, il Principio di Induzione si usa spesso nella forma seguente Versione 3 Sia a Z e n a, sia P(n) una proposizione (ossia un enunciato che o è vero o è falso) Se (a) P(a) è vera; (b) n a, se P(n) è vera allora P(n + ) è vera; allora P(n) è vera n a Proof Si applica la Proposizione all insieme P = {n Z n a, e P(n) è vera} Esempio 4 Torniamo all esempio () dell introduzione: dimostriamo, per induzione, che, n N, la somma dei primi n numeri naturali è n(n + )/ In simboli, n(n + ) n N In questo caso l enunciato dipendente da n N è () P(n) : Cominciamo con il verificare il Passo base: P() è vera In altre parole ( + ) n(n + ) che è ovvio Compiamo ora il passo induttivo, cioè la dimostrazione dell implicazione P(n) P(n + ) In questo caso, dobbiamo dimostrare la seguente proposizione (3) Ipotesi induttiva: Se allora (4) Tesi: n+ Dimostrazione : Si ha che n+ n (n + )(n + ) i + (n + ) = = = n(n + ) (n + )(n + ) i + (n + ) Per ipotesi induttiva, n(n + ) + (n + )

3 Ma, portando a denominatore comune, n(n + ) n(n + ) + (n + ) (n + )(n + ) + (n + ) = = In definitiva abbiamo dimostrato che, se vale l ipotesi induttiva (3) allora n+ (n + )(n + ) Abbiamo quindi stabilito il passo induttivo, cioè che (3) implica (4) A volte è utile usare la seguente leggera variante del Principio di Induzione Variante 5 (Variante del Principio di Induzione) Sia a Z e sia P {n Z n a} Se l insieme P verifica le seguenti condizioni: (a) a P ; (b) Sia n a Se {m Z a m n} P allora n + P ; allora P = {n Z n a} Proof La dimostrazione è del tutto simile a quella della Proposizione Consideriamo l insieme complementare di P nell insieme {n Z n a} Consideriamo cioè l insieme Q = {n Z n a e n P } Dobbiamo dimostrare che, se valgono le proprietà (a) e (b), allora Q = Osserviamo che Q è limitato inferiormente, poichè Q un sottoinsieme dell insieme {n Z n a} Supponiamo che Q non sia vuoto Allora, poichè Q è un sottoinsieme limitato inferiormente dell insieme dei numeri interi, Q possiede un elemento minimo q 0 Certamente q 0 > a, per la proprietà (a) Ne segue anche che esiste un m Q tale che a m q 0 (altrimenti, per la proprietà (b), se non fosse così, q 0 apparterebbe a P, e quindi non a Q) Ciò è in contrasto con il fatto che q 0 sia il minimo di Q Quindi Q deve essere necessariamente vuoto Versione 6 Sia a Z e n a, sia P(n) una proposizione (ossia un enunciato che o è vero o è falso) Se (a) P(a) è vera; (b) n a, se P(m) è vera m tale che a m n, allora P(n + ) è vera; allora P(n) è vera n a Proof Come quella della Versione 3 La differenza dalla Versione sta nell ipotesi induttiva Mentre nella Versione tale ipotesi è che P(n) è vera, nella versione è che P(m) è vera per ogni m tale che a m n Esempio 7 Cerchiamo di apprezzare la leggera differenza tra le due versioni nell esempio () dell introduzione: dimostriamo, per induzione, che ogni numero naturale maggiore o uguale a due è prodotto di numeri primi (non necessariamente distinti, chiaramente) In simboli, n, h N e p,, p h, numeri naturali primi, tali che n = p,, p h In questo caso l enunciato dipendente da n {n N n } è P(n) : h N e p,, p h, numeri naturali primi, tali che n = p,, p h Passo base: P() è vera In altre parole, il numero è prodotto di numeri primi Questo è ovvio perchè è primo (in simboli = p p h con h = e p = ) Passo induttivo: P(m) vera, m tale che m n, P(n + ) vera In questo caso dobbiamo dimostrare la seguente Proposizione: 3

4 4 (5) Ipotesi induttiva: Se m tale che m n h N e p,, p h numeri primi tali che m = p p h allora (6) Tesi: k N e p,, p k numeri primi tali che n + = p p k Dimostrazione : Se n + è primo allora la Tesi è ovvia Se invece n + non è primo, si ha che che n + = a b, con a, b n Per ipotesi induttiva, a e b sono prodotti di primi Quindi anche n + = a b lo è In simboli: per ipotesi induttiva h a N e p,, p ha numeri primi tali che a = p p ha e h b N e p,, p hb numeri primi tali che b = p p hb Dunque n + = a b = p p ha p p hb Raccolta di alcuni esercizi d esame sul principio di induzione Attenzione: questi sono alcuni esercizi d esame, sugli argomenti di questa dispensa Non sono una selezione di quelli che ritengo più significativi, ma solamente quelli tratti daglia appelli di cui sono in possesso del file sorgente Siete quindi invitati a cercare di risolvere gli esercizi, su questi argomenti, tratti dai TUTTI gli esami degli anni passati (oltre agli esercizi assegati, naturalmente) Esercizio Sia a R tale che 0 < a < Dimostrare per induzione che ( a) n < +na, per ogni n Soluzione Sia a (0, ) Passo base: Per n = la disuguaglianza da dimostrare e : a < +a, che si verifica osservando che, moltiplicando e dividendo il primo membro per + a, essa è equivalente a a +a < +a, e quindi a Passo induttivo: l ipotesi e : ( a) n < +na La tesi e : ( a)n+ < +(n+)a Per dimostrare la tesi, si scrive il primo membro ( a) n+ = ( a) n ( a) Per ipotesi induttiva (e usando che a > 0), si ha che ( a) n+ = ( a) n ( a) < a +na Dunque, per a dimostrare la tesi, e sufficiente dimostrare che: +na +(n+)a, per ogni n Portando i membri di quest ultima disuguaglianza a comune denominatore, si vede che essa e equivalente a ( a)( + (n + )a) ( + na)( + (n + )a + na ( + na)( + (n + )a), e quindi a: ( a)( + (n + )a) < + na, cioé: + na (n + )a < + na, che è banalmente vera per ogni n a < Esercizio Sia h un numero reale diverso da a) Dimostrare per induzione che n i=0 h hn+ h per ogni n 0 b) Verificare esplicitamente tale formula per h = e n = SOLUZIONE Verifichiamo l uguaglianza per n = 0: 0 =0 h h 0 =, h h = Supponiamo ora che l uguaglianza sia vera per un n N e dimostriamo che la stessa uguaglianza è vera per n + : n+ h h i + h n+ = hn+ + h n+ = hn+ + (h )h n+ = h h i=0 i=0

5 h n+ h + h n+ h n+ h Quindi l uguaglianza è vera per ogni n 0 = hn+ h Esercizio 3 Si definisca: w 0 =, w = 3 e, per ogni n, w n = w n + w n Dimostrare che w 0 + w + + w n = w n w n+ per ogni n Si dimostra l asserzione richiesta per induzione Per n = è vera: w 0 + w = 3 e w w = 3 5 = 3 Passo induttivo: assumiamo per ipotesi che w + + w n = w n w n+ e dimostriamo che Per l ipotesi induttiva abbiamo w + + w n + w n+ = w n+ w n+ w + + w n + w n+ = w n w n+ + w n+ = w n+ (w n + w n+ ) Poiché per definizione vale w n+ = w n + w n+, l espressione (*) è uguale a w n+ w n+, come richiesto Esercizio 4 Dimostrare per induzione che n 3 +5n è divisibile per 6, per ogni numero naturale n Per n = abbiamo = 6 Dunque P () è vera Facciamo vedere che P (n) P (n + ): assumendo n 3 + 5n divisibile per 6, anche (n + ) 3 + 5(n + ) risulta divisibile per 6 Scriviamo (n + ) 3 + 5(n + ) = n 3 + 3n + 3n + + 5n + 5 = n 3 + 5n + 3n(n + ) + 6 e osserviamo che, poiché n(n+) è sempre divisibile per due (uno fra n ed n+ è pari), 3n(n+) è sempre divisibile per 6 Ne segue che n 3 +5n divisibile per 6 implica (n+) 3 +5(n+) divisibile per 6, come richiesto Esercizio 5 Sia F : N R la funzione definita ricorsivamente definita da F () =, F (n) = n + F (n ), per n (a) Calcolare F (), F (), F (3), F (4) (b) Dimostrare per induzione che F (n) = n +n (a) F () =, F () = + F () = 3, F (3) = 3 + F () = 6, F (4) = 4 + F (3) = 0 (b) P () : F () = + (vera) Ipotesi induttiva: Tesi: P (n) : F (n) = n + n P (n) P (n + ) : F (n + ) = (n + ) + (n + ) = n + 3n + Per definizione F (n + ) = n + + F (n) Per ipotesi induttiva F (n) = n +n Da cui come richiesto F (n + ) = n + + n + n = n + 3n +, Una funzione, definita su N (o, più generalmente, su un insieme del tipo {n Z n a}), è definita ricorsivamente, o induttivamente se si definisce f(), e poi, dato n N, si defisce f(n) in funzione di f(),, f(n ) 5 ( )

6 6 Esercizio 6 Dimostrare per induzione che n 3 + 3n + 5n è divisibile per 3, per ogni n Chiamiamo P (n) la proposizione n 3 + 3n + 5n è divisibile per 3 P () è vera: infatti = 9 è divisibile per 3 Dimostriamo che se P (n) è vera (ipotesi induttiva), anche P (n + ) è vera: (n + ) 3 + 3(n + ) 3 + 5(n + ) = = (n 3 + 3n + 5n) + 3n + 9n + 9 È evidente che 3n + 9n + 9 è divisibile per 3; dunque assumendo n 3 + 3n + 5n divisibile per 3, anche (n + ) 3 + 3(n + ) 3 + 5(n + ) è divisibile per 3, come richiesto Esercizio 7 Dimostrare per induzione che n n Per n =, l enunciato è P () :, ed è vero n, per ogni numero naturale Facciamo vedere che dall enunciato ennesimo P (n) : n n, segue l enunciato (n + )-simo P (n + ) : (n+) n+ Se P (n) è vero, abbiamo intanto la stima n + (n + ) n + (n + ) Se facciamo vedere che n + (n + ) n +, abbiamo dimostrato l enunciato P (n + ) La disequazione (*) è equivalente a n + (n + ) n + (n + ) n n + = n(n + ), che è soddisfatta per ogni numero naturale n La dimostrazione è completa Esercizio 8 Trovare una formula generale per la somma n Dimostrare per induzione che la formula trovata è quella giusta Si tratta di una serie geometrica Per n =,, 3, 4, si trova che la somma è uguale rispettivamente a 3, 7, 5, 3, e si riconoscono le potenze di meno La formula cercata è quindi n = s n = n+ Dimostriamo la validità della formula per induzione: per n = abbiamo che + = s = + Questo è corretto Supponendo che la formula valga per n, abbiamo che s n+ = s n + n+ = ( n+ ) + n+ = n+ Vediamo che la formula vale anche per n +, come richiesto Esercizio 9 Dimostrare per induzione che n k= k n per ogni n Per n = l affermazione è vera Supponendo l affermazione vera per n N facciamo adesso vedere che vale anche per n + Abbiamo che n+ k= = n k k= + Dobbiamo k (n+) dimostrare che questo è n+ Per l ipotesi d induzione abbiamo che n k= k n Basta quindi dimostrare che n + (n+) n+ Questo segue dal fatto che (n+) n(n+) = n n+ Esercizio 0 I numeri di Fibonacci F n sono definiti da F 0 =, F = e induttivamente da F n = F n + F n per n (a) Calcolare F 5 ( )

7 7 (b) Dimostrare per induzione che mcd(f n, F n ) = per ogni n (a) F = F 0 + F =, F 3 = F + F + = 3, F 4 = F + F 3 = 5, F 5 = F 3 + F 4 = 8 (b) n = : mcd(f 0, F ) = mcd(, ) = Passo induttivo: supponiamo che mcd(f n, F n ) = Si deve dimostrare che mcd(f n, F n+ ) = Sia m un numero naturale che divide sia F n che F n+ = F n + F n Allora m divide anche la differenza F n+ F n = F n Quindi m divide sia F n che F n e dunque, per l ipotesi induttiva, m = L asserzione è dimostrata Esercizio Dimostrare per induzione che divide 4 n+ + 5 n per ogni n N formula vale per n =, perché abbiamo che = Per dimostrare la formula per n +, scriviamo 4 n+ + 5 (n+) = 4(4 n+ + 5 n ) 4 5 n + 5 (n+) = = 4(4 n+ + 5 n ) 5 n ( 4 + 5) = 4(4 n+ + 5 n ) + 5 n Siccome per ipotesi la formula vale per n, il fattore 4 n+ +5 n è divisibile per Concludiamo che l ultima espressione è divisibile per e quindi che la formula vale per n + Esercizio Siano G n Z definiti ricorsivamente da G =, G = e G n = G n + 3G n per n 3 (a) Calcolare G 5 (b) Dimostrare per induzione che G n+ G ng n+ = ( 3) n per ogni n N (a) Abbiamo che G 3 = + 3 = 4, G 4 = = 7 e quindi G 5 = = 9 (b) Siccome abbiamo che G G G 3 = 3 =, l affermazione è corretta per n = Supponiamo adesso che la formula valga per n e dimostriamola per n + Abbiamo che G n+ G n+ G n+3 = G n+ (G n+ + 3G n ) G n+ (G n+ + 3G n+ ) = = 3(G n+ G n G n+) = 3( 3) n = ( 3) n+ Nell ultimo passaggio usiamo l ipotesi induttiva, ossia l uguaglianza G n+ G ng n+ = ( 3) n Esercizio 3 Dimostrare per induzione che n k=0 (k+)(k+3) = n n+ La per ogni n Per n =, la somma ha solo il termine con k = 0 ed è uguale a /3 = n/(n + ) Supponiamo adesso che la fomula valga per n e cerchiamo di dimostrarla per n + Per induzione abbiamo che k=0 n (k + )(k + 3) = come richiesto k=0 (k + )(k + 3) + (n + )(n + 3) = n n + + (n + )(n + 3) = = n(n + 3) + (n + )(n + 3) = n + n + 3

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

10. Insiemi non misurabili secondo Lebesgue.

10. Insiemi non misurabili secondo Lebesgue. 10. Insiemi non misurabili secondo Lebesgue. Lo scopo principale di questo capitolo è quello di far vedere che esistono sottoinsiemi di R h che non sono misurabili secondo Lebesgue. La costruzione di insiemi

Dettagli

Equazioni alle differenze finite (cenni).

Equazioni alle differenze finite (cenni). AL 011. Equazioni alle differenze finite (cenni). Sia a n } n IN una successione di numeri reali. (Qui usiamo la convenzione IN = 0, 1,,...}). Diremo che è una successione ricorsiva o definita per ricorrenza

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6

PRINCIPIO DI INDUZIONE. k =. 2. k 2 n(n + 1)(2n + 1) 6 PRINCIPIO DI INDUZIONE LORENZO BRASCO Esercizio. Diostrare che per ogni n si ha nn. 2 Esercizio 2. Diostrare che per ogni n si ha 2 2 nn 2n. Soluzione Procediao per induzione: la 2 è ovviaente vera per

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE

ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE ALGEBRA: LEZIONI DAL 13 OTTOBRE AL 3 NOVEMBRE 1 DIPENDENZA E INDIPENDENZA LINEARE Se ho alcuni vettori v 1, v 2,, v n in uno spazio vettoriale V, il sottospazio 1 W = v 1,, v n di V da loro generato è

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI.

IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. IL TEOREMA FONDAMENTALE DELL ARITMETICA: FATTORIZZAZIONE IN NUMERI PRIMI. PH. ELLIA Indice Introduzione 1 1. Divisori di un numero. 2 2. Numeri primi: definizioni. 4 2.1. Fare la lista dei numeri primi.

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento:

+ P a n n=1 + X. a n = a m 3. n=1. m=4. Per poter dare un significato alla somma (formale) di infiniti termini, ricorriamo al seguente procedimento: Capitolo 3 Serie 3. Definizione Sia { } una successione di numeri reali. Ci proponiamo di dare significato, quando possibile, alla somma a + a 2 +... + +... di tutti i termini della successione. Questa

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Sulla monotonia delle funzioni reali di una variabile reale

Sulla monotonia delle funzioni reali di una variabile reale Liceo G. B. Vico - Napoli Sulla monotonia delle funzioni reali di una variabile reale Prof. Giuseppe Caputo Premetto due teoremi come prerequisiti necessari per la comprensione di quanto verrà esposto

Dettagli

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali

Numeri naturali numeri naturali minore maggiore Operazioni con numeri naturali 1 Numeri naturali La successione di tutti i numeri del tipo: 0,1, 2, 3, 4,..., n,... forma l'insieme dei numeri naturali, che si indica con il simbolo N. Tale insieme si può disporre in maniera ordinata

Dettagli

Dipendenza dai dati iniziali

Dipendenza dai dati iniziali Dipendenza dai dati iniziali Dopo aver studiato il problema dell esistenza e unicità delle soluzioni dei problemi di Cauchy, il passo successivo è vedere come le traiettorie di queste ultime dipendono

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Numeri complessi e polinomi

Numeri complessi e polinomi Numeri complessi e polinomi 1 Numeri complessi L insieme dei numeri reali si identifica con la retta della geometria: in altri termini la retta si può dotare delle operazioni + e e divenire un insieme

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

PROBLEMI RISOLTI ED IRRISOLTI IN TEORIA DEI NUMERI.

PROBLEMI RISOLTI ED IRRISOLTI IN TEORIA DEI NUMERI. PROBLEMI RISOLTI ED IRRISOLTI IN TEORIA DEI NUMERI. PH. ELLIA Indice 1. Pitagora, Euclide, Diofante. 2 1.1. Pitagora. 2 1.2. Numeri geometrici. 2 1.3. Divisori di un numero, numeri perfetti. 8 1.4. Euclide.

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI

APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI APPUNTI DI MATEMATICA GLI INSIEMI NUMERICI I numeri naturali I numeri interi I numeri razionali Teoria degli insiemi (cenni) ALESSANDRO BOCCONI Indice 1 L insieme N dei numeri naturali 4 1.1 Introduzione.........................................

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

2 Formulazione dello shortest path come problema di flusso

2 Formulazione dello shortest path come problema di flusso Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10 Lecture 20: 28 Maggio 2010 Cycle Monotonicity Docente: Vincenzo Auletta Note redatte da: Annibale Panichella Abstract In questa lezione

Dettagli

Analisi in regime sinusoidale (parte V)

Analisi in regime sinusoidale (parte V) Appunti di Elettrotecnica Analisi in regime sinusoidale (parte ) Teorema sul massimo trasferimento di potenza attiva... alore della massima potenza attiva assorbita: rendimento del circuito3 Esempio...3

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Ricorsione. Corso di Fondamenti di Informatica

Ricorsione. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Ricorsione Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e

Dettagli

1 n. Intero frazionato. Frazione

1 n. Intero frazionato. Frazione Consideriamo un intero, prendiamo un rettangolo e dividiamolo in sei parti uguali, ciascuna di queste parti rappresenta un sesto del rettangolo, cioè una sola delle sei parti uguali in cui è stato diviso.

Dettagli

1. Limite finito di una funzione in un punto

1. Limite finito di una funzione in un punto . Limite finito di una funzione in un punto Consideriamo la funzione: f ( ) = il cui dominio risulta essere R {}, e quindi il valore di f ( ) non è calcolabile in =. Quest affermazione tuttavia non esaurisce

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali.

Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. CAPITOLO 7 Rango: Rouchè-Capelli, dimensione e basi di spazi vettoriali. Esercizio 7.1. Determinare il rango delle seguenti matrici al variare del parametro t R. 1 4 2 1 4 2 A 1 = 0 t+1 1 A 2 = 0 t+1 1

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

Analisi Matematica I

Analisi Matematica I Analisi Matematica I Fabio Fagnani, Gabriele Grillo Dipartimento di Matematica Politecnico di Torino Queste dispense contengono il materiale delle lezioni del corso di Analisi Matematica I rivolto agli

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

I numeri. Premessa: Che cosa sono e a che servono i numeri?

I numeri. Premessa: Che cosa sono e a che servono i numeri? I numeri Premessa: Che cosa sono e a che servono i numeri? Come ti sarai reso conto, i numeri occupano un ruolo importante nella tua vita: dai numeri che esprimono il prezzo degli oggetti venduti in un

Dettagli

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti

I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO 1 Modi di formare gruppi di k oggetti presi da n dati 11 disposizioni semplici, permutazioni Dati n oggetti distinti a 1,, a n si chiamano disposizioni semplici di questi oggetti,

Dettagli

LEZIONE 17. B : kn k m.

LEZIONE 17. B : kn k m. LEZIONE 17 17.1. Isomorfismi tra spazi vettoriali finitamente generati. Applichiamo quanto visto nella lezione precedente ad isomorfismi fra spazi vettoriali di dimensione finita. Proposizione 17.1.1.

Dettagli

Prolog: aritmetica e ricorsione

Prolog: aritmetica e ricorsione Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi

Funzioni tra insiemi niti Numeri di Stirling e Bell. Davide Penazzi Funzioni tra insiemi niti Numeri di Stirling e Bell Davide Penazzi 2 Funzioni tra insiemi niti: i numeri di Stirling e Bell 1 Contare il numero delle funzioni tra insiemi 1.1 Denizioni e concetti preliminari

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio.

Appunti di Analisi Matematica 1. Docente:Fabio Camilli. SAPIENZA, Università di Roma A.A. 2014/15. http://www.dmmm.uniroma1.it/~fabio. Appunti di Analisi Matematica Docente:Fabio Camilli SAPIENZA, Università di Roma A.A. 4/5 http://www.dmmm.uniroma.it/~fabio.camilli/ (Versione del 9 luglio 5) Note scritte in collaborazione con il prof.

Dettagli

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati

Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Algoritmi Algoritmi Risolvere un problema significa individuare un procedimento che permetta di arrivare al risultato partendo dai dati Il procedimento (chiamato algoritmo) è composto da passi elementari

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Convessità e derivabilità

Convessità e derivabilità Convessità e derivabilità Definizione 1 (convessità per funzioni derivabili) Sia f : (a, b) R derivabile su (a, b). Diremo che f è convessa o concava su (a, b) se per ogni 0 (a,b) il grafico di f sta tutto

Dettagli

Nota su Crescita e Convergenza

Nota su Crescita e Convergenza Nota su Crescita e Convergenza S. Modica 28 Ottobre 2007 Nella prima sezione si considerano crescita lineare ed esponenziale e le loro proprietà elementari. Nella seconda sezione si spiega la misura di

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

DISPENSE DI MATEMATICA OLIMPIONICA

DISPENSE DI MATEMATICA OLIMPIONICA QUADERNO DI MATEMATICA A. S. MATHESIS - SEZIONE BETTAZZI A.A. 2010/2011 DISPENSE DI MATEMATICA OLIMPIONICA A. Astolfi G. Audrito A. Carignano F. Tanturri seconda edizione riveduta e ampliata da G. Audrito

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria

LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria LA CORRETTA SCELTA DI UN IMPIANTO PER LA TEMPRA AD INDUZIONE Come calcolare la potenza necessaria Quale frequenza di lavoro scegliere Geometria del pezzo da trattare e sue caratteristiche elettromagnetiche

Dettagli

L. Pandolfi. Lezioni di Analisi Matematica 2

L. Pandolfi. Lezioni di Analisi Matematica 2 L. Pandolfi Lezioni di Analisi Matematica 2 i Il testo presenta tre blocchi principali di argomenti: A Successioni e serie numeriche e di funzioni: Cap., e 2. B Questa parte consta di due, da studiarsi

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Ascrizioni di credenza

Ascrizioni di credenza Ascrizioni di credenza Ascrizioni di credenza Introduzione Sandro Zucchi 2014-15 Le ascrizioni di credenza sono asserzioni del tipo in (1): Da un punto di vista filosofico, i problemi che pongono asserzioni

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica

1A ARITMETICA. I numeri naturali e le quattro operazioni. Esercizi supplementari di verifica A ARITMETICA I numeri naturali e le quattro operazioni Esercizi supplementari di verifica Esercizio Rappresenta sulla retta orientata i seguenti numeri naturali. ; ; ; 0;. 0 Esercizio Metti una crocetta

Dettagli

Note integrative ed Esercizi consigliati

Note integrative ed Esercizi consigliati - a.a. 2006-07 Corso di Laurea Specialistica in Ingegneria Civile (CIS) Note integrative ed consigliati Laura Poggiolini e Gianna Stefani Indice 0 1 Convergenza uniforme 1 2 Convergenza totale 5 1 Numeri

Dettagli

Ricapitoliamo. Ricapitoliamo

Ricapitoliamo. Ricapitoliamo Ricapitoliamo Finora ci siamo concentrati sui processi computazionali e sul ruolo che giocano le procedure nella progettazione dei programmi In particolare, abbiamo visto: Come usare dati primitivi (numeri)

Dettagli

Limiti e continuità di funzioni reali di una variabile

Limiti e continuità di funzioni reali di una variabile di funzioni reali di una variabile Corso di Analisi Matematica - capitolo VI Facoltà di Economia, UER Maria Caterina Bramati Université Libre de Bruxelles ECARES 22 Novembre 2006 Intuizione di ite di funzione

Dettagli

Lezioni del corso AL430 - Anelli Commutativi e Ideali

Lezioni del corso AL430 - Anelli Commutativi e Ideali Lezioni del corso AL430 - Anelli Commutativi e Ideali a.a. 2011-2012 Introduzione alla Teoria delle Valutazioni Stefania Gabelli Testi di Riferimento M. F. Atiyah and I. G. Macdonald, Introduction to Commutative

Dettagli

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b :

Forme bilineari e prodotti scalari. Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione. b : Forme bilineari e prodotti scalari Definizione Dato lo spazio vettoriale V (K) sul campo K, una funzione b : { V V K ( v, w) b( v, w), si dice forma bilineare su V se per ogni u, v, w V e per ogni k K:

Dettagli