Tasso di interesse e capitalizzazione

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Tasso di interesse e capitalizzazione"

Transcript

1 Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo a prestito oggi 1 e devo restituire fra un anno 1 + i. 1 + i è il montante di un prestito (somma odierna) pari a 1. Se prendo oggi a prestito la somma S, il montante è S (1 + i). Questo calcolo si chiama capitalizzazione. S(1+i)=S+Si Se prendo oggi a prestito la somma S, il montante è S (1 + i). Questo calcolo si chiama capitalizzazione. Dopo un anno il mio debito è S (1 + i). Se non ho risorse per la restituzione, devo prendere a prestito tale somma. Allora dopo due anni devo restituire S (1 + i) (1 + i) = S (1 + i) 2. Dopo n anni il mio debito diventa S (1 + i) n. i è il tasso, e (1+i) è il fattore, di crescita del montante

2 Attualizzazione (sconto) Se oggi ho la somma S e non mi serve, mi conviene darla a prestito, così domani ho S (1 + i), e fra n anni S (1 + i) n. Se so che fra un anno avrò la cifra F ma oggi devo spendere, posso prendere a prestito una somma, per restituirla domani usando F. Che cifra massima P posso prendere a prestito? Una cifra il cui montante sia proprio F, cioè P (1 + i) = F, ovvero: P = F / (1 + i). P è detto il valore attuale della cifra futura F. Il calcolo di P si chiama attualizzazione (o sconto). Se so che fra due anni avrò F, il suo valore attuale è F / (1 + i) 2. Il valore attuale della cifra F disponibile fra n anni è F / (1 + i) n. Nozione di equivalenza finanziaria.

3 Nozioni su variabili casuali Variabile casuale x =una variabile che in una data circostanza può assumere uno solo di diversi valori (es. roulette): x 1, x 2,, x n Ogni valore si può verificare con una certa probabilità: p 1, p 2,, p n Descrizione completa della variabile casuale: x 1 p 1 x 2 p 2... x n p n

4 Esito del lancio di una moneta non truccata: testa p=1/2 croce p=1/2 Esempi di variabili casuali Se l esito del lancio della moneta dà luogo a vincite monetarie, ho un altra variabile casuale. Es. testa = 100, croce = 0 : 100 p=1/2 0 p=1/2 Altro esempio. Lancio del dado: se esce la faccia 1 vinco 100, altrimenti vinco niente: 100 p=1/6 0 p=5/6

5 Media e valore atteso, 1 Per descrivere in modo sintetico le variabili casuali si usano indicatori sintetici. Il primo è il valore atteso. Per comprenderlo, partiamo dal concetto di media (voti in decimi): media fra 2 e 8 = (2+8)/2 = 5; media fra 4 e 6 = (4+6)/2 = 5 Graficamente: La media sta a metà strada. Ma ciò è vero solo nel caso particolare. Se invece io ho preso due 2 e un 8, la media è (2+2+8)/3 = 4. Grafico: 2 4 8

6 Media e valore atteso, 2 Altro esempio. Se ho preso questi voti (in trentesimi): 20, 24, 29, 24, 30, 21, 21, 24, 23 la media è: ( ) / 9 = 24. Altri modi di calcolarla: ( ) / 9 = /9+(21+21) 1/9+23 1/9+( ) 1/9+29 1/9+30 1/9 = / / / / / /9 = 24. Nell ultimo calcolo: ogni diverso valore è moltiplicato per la sua frequenza (= quante volte capita, diviso numero totale dei casi), e poi si somma tutto

7 Media e valore atteso, 3 Media è un concetto riferito a valori già osservati. Valore atteso è un concetto a priori, quando conosco le probabilità senza bisogno di osservare esperimenti e frequenze. Esempi: Lancio una moneta: se esce testa vinco 100, se croce vinco 0. Vincita attesa (calcolabile a priori) = 100 1/ /2 = 50. Compro un biglietto, dei venti milioni circolazione, della Lotteria Italia: se estratto vinco , altrimenti vinco 0. Vincita attesa = (1/ ) + 0 ( / ) = , , = 0,25 euro

8 Media e valore atteso, 4 Caso più generale: lotteria con vincita bassa B e vincita alta A. La probabilità di A è p, e dunque la probabilità di B è (1 p). Valore atteso = B (1-p) + A p Caso particolare, ma interessante: p=0, oppure p=1; Allora siamo di fronte a certezza: l intera probabilità si concentra su uno solo dei valori, e gli altri hanno p=0. Certezza come caso particolare di lotteria.

9 Figura Il valore atteso dipende dalle probabilità Esempio: tre lotterie, con vincite B e A, dove p è 1/4, 1/2, e 3/4. Le tre vincite attese VA 1, VA 2 e VA 3 sono qui rappresentate: O B VA VA VA A /4 1/2 3/4 1

10 La varianza, 1 Poniamo due lotterie, entrambe basate su moneta non truccata: 1) testa 500 croce 0 2) testa 300 croce 200 siccome p=1/2, entrambe hanno vincita attesa 250. Ma la prima è più rischiosa. Come misurare questo fenomeno? Intuitivamente occorre valutare lo scostamento medio. Varianza = media degli scostamenti di ogni valore dal valore atteso, elevati al quadrato Tale media degli scostamenti al quadrato si calcola usando le probabilità dei valori.

11 La varianza, 2 Torniamo alle due lotterie dell esempio: 1) varianza = ( ) 2 ½ + (0-250) 2 ½ = ½ + (-250) 2 ½ = ½ ½ = ) varianza = ( ) 2 ½ + ( ) 2 ½ = 50 2 ½ + (-50) 2 ½ = ½ ½ = C.V.D. Se un valore della v.c. ha molta probabilità, il VA si avvicina a quel valore; il suo scostamento dal VA si riduce; ma questo scostamento ha molta probabilità. La varianza diminuisce. Es. v.c. a 2 valori: 300 e 200, con probabilità del primo = ¾. VA = 300 ¾ ¼ = = 275 varianza = ( ) 2 ¾ + ( ) 2 ¼ = 25 2 ¾ + (-75) 2 ¼ = 625 ¾ ¼ = 468, ,25 = 1875 < 2.500

12 La varianza, 3 Altra conseguenza interessante. Prendete la vecchia lotteria numero 2 (300 e 200, p=1/2, VA = 250, varianza = 2.500). Immaginate una nuova lotteria a tre valori: 300, 250, 200 equiprobabili, cioè p=1/3; chiaramente VA = 250. È nato un nuovo valore con p=1/3 a metà strada, 250, dove non c era niente, cioè aveva p=0, e il suo scostamento dal VA è zero. Dunque la varianza dovrebbe diminuire. Infatti: varianza = ( ) 2 1/3 + ( ) 2 1/3 + ( ) 2 1/3 = / /3 + (-50) 2 1/3 = / / /3 = < 2.500

13 Correlazione tra variabili casuali Mondo popolato da due variabili casuali: X e Y, per esempio le quotazioni di due titoli. Possiamo studiarle separatamente, ma anche vedere se hanno qualche relazione tra loro, cioè se conoscere una di dice qualche cosa sull altra. Questa è la correlazione tra v.c. Tre casi: 1) X e Y indipendenti: sapere che X ha un certo valore non ci dice nulla sulle probabilità dei valori di Y 2) X e Y correlate perfettamente in modo positivo: sapere che X ha valore elevato fa sì che anche Y assuma valore elevato con probabilità 1 3) X e Y correlate perfettamente in modo negativo: sapere che X ha valore elevato fa sì che Y invece assuma valore basso con probabilità 1

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015

Università di Milano Bicocca. Esercitazione 6 di Matematica per la Finanza. 14 Maggio 2015 Università di Milano Bicocca Esercitazione 6 di Matematica per la Finanza 14 Maggio 2015 Esercizio 1 Un agente presenta una funzione di utilitá u(x) = ln(1 + 6x). Egli dispone di un progetto incerto che

Dettagli

Scelta intertemporale: Consumo vs. risparmio

Scelta intertemporale: Consumo vs. risparmio Scelta intertemporale: Consumo vs. risparmio Fino a questo punto abbiamo considerato solo modelli statici, cioè modelli che non hanno una dimensione temporale. In realtà i consumatori devono scegliere

Dettagli

Note su quicksort per ASD 2010-11 (DRAFT)

Note su quicksort per ASD 2010-11 (DRAFT) Note su quicksort per ASD 010-11 (DRAFT) Nicola Rebagliati 7 dicembre 010 1 Quicksort L algoritmo di quicksort è uno degli algoritmi più veloci in pratica per il riordinamento basato su confronti. L idea

Dettagli

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010

LEZIONE 3. Ing. Andrea Ghedi AA 2009/2010. Ing. Andrea Ghedi AA 2009/2010 LEZIONE 3 "Educare significa aiutare l'animo dell'uomo ad entrare nella totalità della realtà. Non si può però educare se non rivolgendosi alla libertà, la quale definisce il singolo, l'io. Quando uno

Dettagli

Probabilità II Variabili casuali discrete

Probabilità II Variabili casuali discrete Probabilità II Variabili casuali discrete Definizioni principali. Valore atteso e Varianza. Teorema di Bienaymé - Čebičev. V.C. Notevoli: Bernoulli e Binomiale. Concetto di variabile casuale Cos'è una

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Preliminari di calcolo delle probabilità

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE

DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE DISTRIBUZIONI DI VARIABILI CASUALI DISCRETE variabile casuale (rv): regola che associa un numero ad ogni evento di uno spazio E. variabile casuale di Bernoulli: rv che può assumere solo due valori (e.g.,

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Incertezza, assicurazioni, deterrenza

Incertezza, assicurazioni, deterrenza Incertezza, assicurazioni, deterrenza (anche questo è adattato da altri pezzi per mancanza di tempo) Scelta sotto incertezza come scelta tra lotterie L esperienza ci insegna che in generale le conseguenze

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Calcolo delle probabilità Il Sig. Rossi abita nella città X e lavora nella città Y, poco distante.

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

Tutorato di Probabilità e Statistica

Tutorato di Probabilità e Statistica Università Ca Foscari di Venezia Dipartimento di informatica 20 aprile 2006 Variabili aleatorie... Example Giochiamo alla roulette per tre volte 1 milione sull uscita del numero 29. Qual è la probabilità

Dettagli

Capitalizzazione semplice e composta (sul libro a pag. 386 e seguenti)

Capitalizzazione semplice e composta (sul libro a pag. 386 e seguenti) Capitalizzazione semplice e composta (sul libro a pag. 386 e seguenti) Operazione finanziaria = un operazione in cui avviene uno scambio di denaro in tempi diversi. Mutuante o creditore = chi concede il

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Tempo e rischio Tempo Rischio

Tempo e rischio Tempo Rischio Il Valore Attuale Tempo e rischio Tempo: i 100 euro di oggi valgono di meno dei 100 euro di domani perché i primi possono essere investiti nel mercato dei capitali e fruttare un tasso di interesse r. Rischio:

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014

Dipartimento di Economia Aziendale e Studi Giusprivatistici. Università degli Studi di Bari Aldo Moro. Corso di Macroeconomia 2014 Dipartimento di Economia Aziendale e Studi Giusprivatistici Università degli Studi di Bari Aldo Moro Corso di Macroeconomia 2014 1. Assumete che = 10% e = 1. Usando la definizione di inflazione attesa

Dettagli

Aspetti probabilistici del gioco d azzardo

Aspetti probabilistici del gioco d azzardo Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)

Dettagli

Facciamo qualche precisazione

Facciamo qualche precisazione Abbiamo introdotto alcuni indici statistici (di posizione, di variabilità e di forma) ottenibili da Excel con la funzione Riepilogo Statistiche Facciamo qualche precisazione Al fine della partecipazione

Dettagli

Matematica finanziaria

Matematica finanziaria Matematica finanziaria La matematica finanziaria studia le cosiddette operazioni finanziarie Le operazioni finanziarie sono situazioni nelle quali una persona cede denaro in condizioni di certezza e per

Dettagli

La capitalizzazione composta. Operazione finanziaria = un operazione in cui avviene uno scambio di denaro in tempi diversi.

La capitalizzazione composta. Operazione finanziaria = un operazione in cui avviene uno scambio di denaro in tempi diversi. La capitalizzazione composta Operazione finanziaria = un operazione in cui avviene uno scambio di denaro in tempi diversi. Mutuante o creditore = chi concede il prestito Mutuatario o debitore = chi riceve

Dettagli

Prova di autovalutazione Prof. Roberta Siciliano

Prova di autovalutazione Prof. Roberta Siciliano Prova di autovalutazione Prof. Roberta Siciliano Esercizio 1 Nella seguente tabella è riportata la distribuzione di frequenza dei prezzi per camera di alcuni agriturismi, situati nella regione Basilicata.

Dettagli

Scelta sotto incertezza

Scelta sotto incertezza Scelta sotto incertezza 1. Introduzione Nei capitoli 1 e 2 della microeconomia standard si studia la scelta dei consumatori e dei produttori, che hanno un informazione perfetta sulle circostanze che caratterizzano

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo B. Russell - Cles (TN) Classe 3D Insegnante di riferimento: Claretta Carrara Ricercatrice: Ester Dalvit Partecipanti: Alessio, Christian, Carlo, Daniele, Elena, Filippo, Ilaria,

Dettagli

Finanza Aziendale. Rischio e Valutazione degli

Finanza Aziendale. Rischio e Valutazione degli Teoria della Finanza Aziendale Rischio e Valutazione degli investimenti 9 1-2 Argomenti trattati Costo del capitale aziendale e di progetto Misura del beta Costo del capitale e imprese diversificate Costo

Dettagli

Distribuzioni discrete

Distribuzioni discrete Distribuzioni discrete Esercitazione 4 novembre 003 Distribuzione binomiale Si fa un esperimento (o prova): può manifestarsi un certo evento A con probabilità p oppure no (con probabilità q = p). La distribuzione

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Distribuzione di probabilità, funzione di ripartizione di una v.c. discreta Il tasso di cambio

Dettagli

1.300 2.500 10.000 5.000

1.300 2.500 10.000 5.000 ORDINE DEI PREZZI RITAGLIA I CARTELLINI DEI PREZZI E INCOLLALI NEL QUADERNO METTENDO I NUMERI IN ORDINE DAL PIÙ PICCOLO AL PIÙ GRANDE. SPIEGA COME HAI FATTO A DECIDERE QUALE NUMERO ANDAVA PRIMA E QUALE

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

La probabilità frequentista e la legge dei grandi numeri

La probabilità frequentista e la legge dei grandi numeri La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo

Metodi statistici per l economia (Prof. Capitanio) Slide n. 9. Materiale di supporto per le lezioni. Non sostituisce il libro di testo Metodi statistici per l economia (Prof. Capitanio) Slide n. 9 Materiale di supporto per le lezioni. Non sostituisce il libro di testo 1 TEST D IPOTESI Partiamo da un esempio presente sul libro di testo.

Dettagli

ANALISI DI CORRELAZIONE

ANALISI DI CORRELAZIONE ANALISI DI CORRELAZIONE Esempio: Dati raccolti da n = 129 studenti di Pavia (A.A. 21/2) Altezza (cm) Peso (Kg) Voto Algebra e Geometria Voto Fisica I Valutare la correlazione delle seguenti coppie: Peso

Dettagli

Capitolo Terzo Valore attuale e costo opportunità del capitale

Capitolo Terzo Valore attuale e costo opportunità del capitale Capitolo Terzo Valore attuale e costo opportunità del capitale 1. IL VALORE ATTUALE La logica di investimento aziendale è assolutamente identica a quella adottata per gli strumenti finanziari. Per poter

Dettagli

FREQUENTLY ASKED QUESTIONS

FREQUENTLY ASKED QUESTIONS FREQUENTLY ASKED QUESTIONS NUOVA OFFERTA FORMATIVA Il numero rosso indica l ultimo aggiornamento 1. Che offerta formativa ci sarà l anno prossimo nella nostra facoltà? Oltre alle due lauree triennali professionalizzanti

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

ESERCIZI EVENTI E VARIABILI ALEATORIE

ESERCIZI EVENTI E VARIABILI ALEATORIE ESERCIZI EVENTI E VARIABILI ALEATORIE 1) Considera la tabella seguente, che descrive la situazione occupazionale di 63 persone in relazione al titolo di studio. Occupazione SI NO Titolo Licenza media 5%

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011

2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 2 CERTAMEN NAZIONALE DI PROBABILITA E STATISTICA FELICE FUSATO Fase di Istituto 15 febbraio 2011 1) Non sfogliare questo fascicolo finché l insegnante non ti dice di farlo. 2) E ammesso l utilizzo di calcolatrici

Dettagli

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni

Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Corso di ELEMENTI DI STATISTICA Alcuni problemi di probabilità, con soluzioni Si tratta di problemi elementari, formulati nel linguaggio ordinario Quindi, per ogni problema la suluzione proposta è sempre

Dettagli

Corso di Economia Politica. Il mercato dei cambi. Stefano Papa

Corso di Economia Politica. Il mercato dei cambi. Stefano Papa Corso di Economia Politica Il mercato dei cambi Stefano Papa Mercato della valuta Mercato: Non è (necessariamente) un luogo fisico preciso, ma è l insieme della domanda e dell offerta e delle istituzioni

Dettagli

Ulteriori problemi di fisica e matematica

Ulteriori problemi di fisica e matematica Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Agosto 2010 Ulteriori problemi di fisica e matematica Giovanni Romano Perché un raggio di luce proveniente dal Sole e fatto passare attraverso

Dettagli

IL RENDICONTO FINANZIARIO

IL RENDICONTO FINANZIARIO IL RENDICONTO FINANZIARIO IL RENDICONTO FINANZIARIO INDICE IL RENDICONTO FINANZIARIO,... 2 LA POSIZIONE FINANZIARIA NETTA,... 3 IL RENDICONTO FINANZIARIO DELLA POSIZIONE FINANZIARIA NETTA,... 6 PRIMO PASSO:

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Laboratorio di dinamiche socio-economiche

Laboratorio di dinamiche socio-economiche Dipartimento di Matematica Università di Ferrara giacomo.albi@unife.it www.giacomoalbi.com 21 febbraio 2012 Seconda parte: Econofisica La probabilità e la statistica come strumento di analisi. Apparenti

Dettagli

Le scelte del consumatore in condizione di incertezza (cap.5)

Le scelte del consumatore in condizione di incertezza (cap.5) Le scelte del consumatore in condizione di incertezza (cap.5) Che cos è il rischio? Come possiamo indicare le preferenze del consumatore riguardo al rischio? C è chi acquista assicurazione (non ama il

Dettagli

Interesse, sconto, ratei e risconti

Interesse, sconto, ratei e risconti TXT HTM PDF pdf P1 P2 P3 P4 293 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 293 129.1.1 Esercizio per il calcolo dell

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Scelte in condizioni di rischio e incertezza

Scelte in condizioni di rischio e incertezza CAPITOLO 5 Scelte in condizioni di rischio e incertezza Esercizio 5.1. Tizio ha risparmiato nel corso dell anno 500 euro; può investirli in obbligazioni che rendono, in modo certo, il 10% oppure in azioni

Dettagli

Probabilità e Statistica Esercitazioni. a.a. 2006/2007

Probabilità e Statistica Esercitazioni. a.a. 2006/2007 Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Test n. 7 Problemi matematici

Test n. 7 Problemi matematici Test n. 7 Problemi matematici ) Determinare il numero il cui doppio, aumentato di 0, è uguale a 44. A) 6 C) 7 B) 5 D) 8 ) Determinare due numeri tenendo presente che la loro somma è uguale a 8 e la loro

Dettagli

3 Scegliere quando il mondo è incerto

3 Scegliere quando il mondo è incerto 3 Scegliere quando il mondo è incerto (Parte del cap. 3 di I. Lavanda e G. Rampa, Microeconomia. Scelte individuali e benessere sociale, Roma, Carocci, 2004) 1. Introduzione Nel capitolo precedente abbiamo

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni?

COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013. - Come cambia il REA atteso se l'obbligazione sarà ancora in vita dopo le prime tre estrazioni? UNIVERSITA DEGLI STUDI DI URBINO (Sede di Fano) COMPITO DI MATEMATICA FINANZIARIA 8 Febbraio 2013 1) L'impresa Gamma emette 250 obbligazioni il cui VN unitario è pari a 100. Il rimborso avverrà tramite

Dettagli

La distribuzione Gaussiana

La distribuzione Gaussiana Università del Piemonte Orientale Corso di Laurea in Biotecnologie Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in biotecnologie - Corso di Statistica Medica La distribuzione

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria Venezia, 12 maggio 2010 Il problema La matematica finanziaria fornisce gli strumenti necessari per il confronto di flussi di moneta o capitali che si verificano in momenti

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza

MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti. Enrico Saltari Università di Roma La Sapienza MICROECONOMIA La teoria del consumo: Alcuni Arricchimenti Enrico Saltari Università di Roma La Sapienza 1 Dotazioni iniziali Il consumatore dispone ora non di un dato reddito monetario ma di un ammontare

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Teoria dei Giochi non Cooperativi

Teoria dei Giochi non Cooperativi Politecnico di Milano Descrizione del gioco Egoismo Razionalità 1 L insieme dei giocatori 2 La situazione iniziale 3 Le sue possibili evoluzioni 4 I suoi esiti finali I Giochi della teoria Perché studiare

Dettagli

Interesse, sconto, ratei e risconti

Interesse, sconto, ratei e risconti 129 Interesse, sconto, ratei e risconti Capitolo 129 129.1 Interesse semplice....................................................... 129 129.1.1 Esercizio per il calcolo dell interesse semplice........................

Dettagli

Blanchard, Macroeconomia Una prospettiva europea, Il Mulino 2011 Capitolo IV. I mercati finanziari. Capitolo IV. I mercati finanziari

Blanchard, Macroeconomia Una prospettiva europea, Il Mulino 2011 Capitolo IV. I mercati finanziari. Capitolo IV. I mercati finanziari Capitolo IV. I mercati finanziari 1. La domanda di moneta La moneta può essere usata per transazioni, ma non paga interessi. In realtà ci sono due tipi di moneta: il circolante, la moneta metallica e cartacea,

Dettagli

11. Analisi statistica degli eventi idrologici estremi

11. Analisi statistica degli eventi idrologici estremi . Analisi statistica degli eventi idrologici estremi I processi idrologici evolvono, nello spazio e nel tempo, secondo modalità che sono in parte predicibili (deterministiche) ed in parte casuali (stocastiche

Dettagli

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione

CP110 Probabilità: Esame del 3 giugno 2010. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 8 luglio, 2010 CP110 Probabilità: Esame del 3 giugno 2010 Testo e soluzione 1. (6 pts 12 monete da 1 euro vengono distribuite tra

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 16 luglio 2006 V.a. discrete e distribuzioni discrete Esercizio 1 Dimostrare la proprietà della mancanza di memoria della legge geometrica, ovvero

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria 09.XI.2009 La matematica finanziaria e l estimo Nell ambito di numerosi procedimenti di stima si rende necessario operare con valori che presentano scadenze temporali

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

I punteggi zeta e la distribuzione normale

I punteggi zeta e la distribuzione normale QUINTA UNITA I punteggi zeta e la distribuzione normale I punteggi ottenuti attraverso una misurazione risultano di difficile interpretazione se presi in stessi. Affinché acquistino significato è necessario

Dettagli

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere?

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Abbiamo visto nella lezione precedente che lo spazio degli eventi più idoneo a rappresentare l esperimento

Dettagli

Capitolo 10 Z Elasticità della domanda

Capitolo 10 Z Elasticità della domanda Capitolo 10 Z Elasticità della domanda Sommario Z 1. L elasticità della domanda rispetto al prezzo. - 2. La misura dell elasticità. - 3. I fattori determinanti l elasticità. - 4. L elasticità rispetto

Dettagli

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni

Analisi dei residui. Test Esatto di Fisher. Differenza fra proporzioni Statistica Economica Materiale didattico a cura del docente Analisi dei residui Test Esatto di Fisher Differenza fra proporzioni 1 Analisi dei residui Il test statistico ed il suo p-valore riassumono la

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

Unità 1. I Numeri Relativi

Unità 1. I Numeri Relativi Unità 1 I Numeri Relativi Allinizio della prima abbiamo introdotto i 0numeri 1 naturali: 2 3 4 5 6... E quattro operazioni basilari per operare con essi + : - : Ci siamo però accorti che la somma e la

Dettagli

OPERAZIONI DI PRESTITO

OPERAZIONI DI PRESTITO APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede

Dettagli

Elementi di calcolo delle probabilità

Elementi di calcolo delle probabilità Elementi di calcolo delle probabilità Definizione di probabilità A) Qui davanti a me ho un urna contenente 2 palline bianche e 998 nere. Mi metto una benda sugli occhi, scuoto ripetutamente l urna ed estraggo

Dettagli

Un modello matematico di investimento ottimale

Un modello matematico di investimento ottimale Un modello matematico di investimento ottimale Tiziano Vargiolu 1 1 Università degli Studi di Padova Liceo Scientifico Benedetti Venezia, giovedì 30 marzo 2011 Outline 1 Investimento per un singolo agente

Dettagli