Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gli insiemi numerici RIPASSIAMO INSIEME OPERAZIONI FRA NUMERI RELATIVI INSIEME N INSIEME Z ELEVAMENTO A POTENZA"

Transcript

1 Gli insiemi numerici RIPASSIAMO INSIEME INSIEME N L insieme N (numeri naturali) è costituito dai numeri interi privi di segno: N {,,,,, } L insieme N presenta le seguenti caratteristiche: è un insieme infinito e discreto (cioè tra due numeri naturali c è al più un numero finito di elementi); è un insieme totalmente ordinato, con un minimo (che è ) e senza massimo; le operazioni di addizione e moltiplicazione sono interne, cioè il loro risultato è ancora un numero naturale. La notazione N individua l insieme dei numeri naturali eccetto lo zero. INSIEME Z L insieme Z (numeri interi relativi) è costituito dai numeri interi preceduti da un segno, positivo o negativo: Z {,,,,,,,,, } L insieme Z presenta le seguenti caratteristiche: è un insieme infinito e discreto (cioè tra due numeri relativi c è al più un numero finito di elementi); è un insieme totalmente ordinato, senza minimo e senza massimo; le operazioni di addizione, sottrazione e moltiplicazione sono interne, cioè il risultato è ancora un numero relativo. La notazione Z individua l insieme dei numeri relativi positivi, mentre la notazione Z individua l insieme dei numeri relativi negativi. Il modulo o valore assoluto di un numero relativo è: il numero stesso, se questo è positivo; l opposto del numero, se questo è negativo. Esempio I numeri relativi possono essere: concordi, se hanno lo stesso segno; discordi, se hanno segno opposto; Esempio e 6 sono concordi e 6 sono discordi Due numeri relativi si dicono opposti se hanno stesso modulo e segno opposto. OPERAZIONI FRA NUMERI RELATIVI Addizione La somma tra numeri concordi è un numero concorde con i numeri dati che ha come modulo la somma dei moduli. Esempio La somma tra numeri discordi è un numero che ha come modulo la differenza dei moduli e come segno il segno del numero con il modulo maggiore. Esempio () Sottrazione La differenza tra due numeri relativi si ottiene addizionando al primo numero l opposto del secondo. Esempio () () Moltiplicazione e divisione Il prodotto (o il quoziente) tra due numeri relativi è un numero che ha per modulo il prodotto (o il quoziente) dei moduli e per segno il risultato dell applicazione della regola dei segni riassunta in tabella: Esempi () () 6 () : () () : () ELEVAMENTO A POTENZA /: Dati due numeri a ed m si dice potenza di base a ed esponente m e si indica con a m il prodotto di m fattori uguali ad a. Esempio Il segno del risultato si determina in base alle seguenti regole: se la base è positiva, la potenza è sempre un numero positivo; Esempio () ()

2 se la base è negativa: se l esponente è pari, la potenza è un numero positivo; Esempio () se l esponente è dispari, la potenza è un numero negativo. Esempio () Valgono le seguenti proprietà delle potenze: moltiplicazione: stessa base: a m a n a mn stesso esponente: a m b m (a b) m divisione: stessa base: a m : a n a mn stesso esponente: a m : b m (a : b) m potenza di una potenza: (a m ) n a m n a e a a FRAZIONI Dati due numeri naturali a e b, con b, si dice frazione il simbolo a, che rappresenta il quoziente della b divisione a : b. Il numero a si dice numeratore, b denominatore. Una frazione può essere: propria, se a b; impropria, se a b; apparente, se a è multiplo di b. Esempi 7 e sono frazioni proprie e sono frazioni improprie 6 e sono frazioni apparenti INSIEME Q L insieme Q (numeri razionali) è costituito dai numeri che possono essere scritti sotto forma di frazioni: Q...,,...,,...,,...,,...,,.... L insieme Q contiene sia l insieme N sia l insieme Z. N Z L insieme Q presenta le seguenti caratteristiche: è un insieme infinito e denso (cioè tra due numeri razionali qualsiasi ne esistono sempre infiniti altri); è un insieme totalmente ordinato, senza minimo e senza massimo; le operazioni di addizione, sottrazione, moltiplicazione e divisione (eccetto che per zero) sono interne, cioè il loro risultato è ancora un numero razionale. La notazione Q a individua l insieme dei numeri razionali assoluti. Il reciproco di un numero razionale è il numero che moltiplicato per esso dà come risultato. Esempio è il reciproco di poiché. Nell insieme Q valgono le seguenti proprietà delle potenze: a b m a b m m a m a m Q OPERAZIONI NEGLI INSIEMI NUMERICI N Z Q Termini Risultato Proprietà Elemento neutro Addizione interna interna interna addendi somma commutativa associativa Sottrazione non interna interna interna minuendo sottraendo differenza invariantiva commutativa Moltiplicazione interna interna interna fattori prodotto associativa distributiva Divisione non interna non interna interna dividendo divisore quoziente invariantiva distributiva

3 NUMERI DECIMALI I numeri decimali possono essere: limitati (o finiti), cioè con un numero limitato di cifre decimali; Esempi,, illimitati, cioè con un numero infinito di cifre decimali. Tra questi si distinguono: i numeri periodici semplici; i numeri periodici misti; i numeri non periodici. Esempi, e, sono periodici semplici, e, sono periodici misti,6 non è periodico La frazione generatrice è la frazione che genera il numero decimale. Per trasformare il numero decimale nella sua frazione generatrice si opera nel seguente modo: numero decimale limitato: a numeratore si scrive il numero senza la virgola; a denominatore si scrive il numero seguito da tanti zeri quante sono le cifre decimali; numero decimale periodico: a numeratore si scrive la differenza tra il numero senza la virgola e il numero formato da tutte le cifre che precedono il periodo; a denominatore si scrive il numero formato da tanti quante sono le cifre del periodo seguite da tanti zeri quante sono le cifre dell antiperiodo. Esempi,,,,, , OSSERVA COME SI FA Somme algebriche in Z e Q ( 6 ) ( 7) ( 6 ) eseguiamo i calcoli all interno delle parentesi (7) () () eliminiamo le parentesi eseguiamo i calcoli all interno delle parentesi eliminiamo le parentesi ed eseguiamo i calcoli Prodotti e quozienti in Z e Q () () () : (6) eseguiamo le operazioni nell ordine con cui compaiono () : (6) : (6) : eseguiamo le operazioni nell ordine con cui compaiono, tenendo conto delle parentesi 7 : 6 : 7 6 7

4 Potenze in Z e Q ( ) ( ) 7 () () 7 In ogni calcolo teniamo conto del segno della base e del fatto che l esponente sia pari oppure dispari () (- ) 7 7 Trasformazione dei numeri decimali in frazioni, 7,,, In ogni trasformazione teniamo conto del fatto che il numero sia limitato oppure periodico e applichiamo la regola opportuna.,, 7, Espressioni in N, Z e Q : eseguiamo i calcoli all interno delle parentesi e trasformiamo la potenza a esponente negativo : () eseguiamo i calcoli all interno delle parentesi e calcoliamo la potenza : 7 : 7 7 (,) (,) : (,6) :,6 (,) : (,) trasformiamo i numeri decimali in frazioni 7 6 : : 7 : 6 : 6 7 : : eseguiamo i calcoli all interno delle parentesi : 6 : 6 : : 7 : 6 : 7 :

5 6 ( :) : 6 : ( ) trasformiamo le potenze in potenze con uguale base e applichiamo la regola della potenza di potenza [ : ( ) 6 : ( ) [ : ] : ( ) ( ) ( ] ) : ( ) ( 6 ) ( ) : ( ) eseguiamo i calcoli applicando le proprietà delle potenze ( ) : : : : LAVORIAMO INSIEME Espressioni in N, Z e Q : () esegui i calcoli all interno delle parentesi e trasforma la potenza a esponente negativo [(...) (...) ] : (...) esegui i calcoli all interno delle parentesi e calcola la potenza [(...) (...) ]... esegui gli ultimi calcoli ) ( : 7 7 : ( ) trasforma le potenze in potenze con uguale base e applica la regola della potenza di potenza [ : (...) ] (...)... ( )... (...)... : (...)... [... :...] (...) (...) (...) : (...) esegui i calcoli applicando le proprietà delle potenze [......] (...) : (...) ADESSO PROVA TU Calcola le seguenti somme algebriche in Z e Q: ( ) (6 ) [] ( ) (7 ) ( ) [] 6 (7 7) ( ) [] (6 ) ( 7) ( ) []

6 Esegui le seguenti moltiplicazioni e divisioni in Z e Q: () (6) () : () [] () () : (6) : () [] () (7) : () () [] 7 : 7 [] : 6 : 7 6 : : : 7 6 : : 6 7 Calcola le seguenti potenze in Z e Q: 7 () ; ; 7 ; () () () () ; 6; 6 ; ; ; ; 7 7 ; ; 6 ; ; 6 ; Trasforma i seguenti numeri decimali in frazioni:,,,7, ; 7 7 ; ;,,,, 7 ; ; ;,,,7, ; ; 6 ; Calcola le seguenti espressioni in N, Z e Q: { [()() () ( )] ()} { [6 ()] } : [] : 6 : 6 ( ) : ( ) [ ( : ) : ] : [( ) ( 6 : ) ] [] 7 {( [( : ( ) ]} : 6 ( ) []

7 7 6 6 : [( ) : ( ) ] 6 : 7 : 7 : ( ) ( ) ( ) ( ) : () ( ) ( ) : : : 7 6 : [] 6 7 : 7 [] : : : : 7 () : : 6, : (,6,) (,6) 7,6 (,,6) (,6), :,6 () (,) () (,6) 7 [,, (,7,)] : : : 7 6

8 [(, )(,7),] :, : (,7) 7 6,,, :,, : : : {[() () ] : () } [] : : : : 7 6 : 7 [ () (,) (,) ( )] : (,), [] () : 7 : 6 ) ( : 7 7 : ( ) 6 ( ) 6 ( ) 7 ( ) : 6 [ ] [ 7 ] [6 ] 7 : : 6 : : 6 : [], (,) :, :, :, 6 : (6) 6 6 :

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA

Potenziamento formativo, Infermieristica, M. Ruspa RIPASSO DI MATEMATICA RIPASSO DI MATEMATICA MATEMATICA DI BASE CHE OCCORRE CONOSCERE Numeri relativi ed operazioni con i medesimi Frazioni Potenze e relative proprieta Monomi, polinomi, espressioni algebriche Potenze di dieci

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data.

FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data. FRAZIONI E NUMERI DECIMALI (prova di verifica delle conoscenze) Cognome. Nome. Classe. Data. 1. Rispondi: a. Che tipo di numero si ottiene dividendo numeratore e denominatore di una frazione apparente?

Dettagli

ESERCIZI IN PIÙ I NUMERI COMPLESSI

ESERCIZI IN PIÙ I NUMERI COMPLESSI ESERCIZI IN PIÙ I NUMERI COMPLESSI L equazione x x 0 non ha soluzioni nell insieme dei numeri reali; infatti, applicando la formula ridotta, si ottiene x, 3. Interpretando come numero immaginario, cioè

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive

Liceo scientifico Pascal Manerbio Esercizi di matematica per le vacanze estive Di alcuni esercizi non verranno riportati i risultati perché renderebbero inutile lo svolgimento degli stessi. Gli esercizi seguenti risulteranno utili se i calcoli saranno eseguiti mentalmente applicando

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

CONOSCENZE 1. i numeri decimali finiti o illimitati

CONOSCENZE 1. i numeri decimali finiti o illimitati ARITMETICA PREREQUISITI l l l conoscere le proprietaá delle quattro operazioni e saper operare con esse conoscere il sistema di numerazione decimale svolgere calcoli con le frazioni CONOSCENZE 1. i numeri

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

Lezione del 14/11/11 1C

Lezione del 14/11/11 1C Lezione del 14/11/11 1C Le percentuali Per trasformare una frazione in percentuale, basta scrivere la frazione ad essa equivalente con denominatore 100. Es. 271 pag. 119 Scrivi sotto forma di percentuali

Dettagli

Una frazione è irriducibile quando... è già ridotta ai minimi termini (cioè non la posso semplificare ulteriormente). Es. 5/7; 13/2...

Una frazione è irriducibile quando... è già ridotta ai minimi termini (cioè non la posso semplificare ulteriormente). Es. 5/7; 13/2... PREMESSA Una frazione rappresenta un numero razionale che è il quoziente fra due numeri naturali: il numeratore rappresenta il dividendo; il denominatore rappresenta il divisore Una frazione è irriducibile

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene... Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,

Dettagli

La tabella dell addizione Completa la tabella e poi rispondi alle domande.

La tabella dell addizione Completa la tabella e poi rispondi alle domande. La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?

Dettagli

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO 1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO L'estrazione della radice di un numero è una delle due operazioni inverse dell'operazione di elevamento a potenza attraverso la quale si calcola la

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

Buone Vacanze! Compiti per le vacanze. Classe II A

Buone Vacanze! Compiti per le vacanze. Classe II A Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei

Dettagli

ESERCIZI DI MATEMATICA PER GLI ISCRITTI ALLE CLASSI PRIME DELLA SEZIONE TECNICA

ESERCIZI DI MATEMATICA PER GLI ISCRITTI ALLE CLASSI PRIME DELLA SEZIONE TECNICA ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico Istituto Tecnico Industriale ALDO MORO Via Gallo Pecca n. 4/6 10086 RIVAROLO CANAVESE Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Via Gallo Pecca n.

Dettagli

Numeri decimali, rapporti e proporzioni

Numeri decimali, rapporti e proporzioni Numeri decimali, rapporti e proporzioni E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro Corso P.O.N. Modelli matematici e realtà A.S. 2010/2011 Da una forma all altra... Dalla frazione

Dettagli

Utilizza tutte le cifre nei cartellini per formare almeno cinque numeri. Scrivili anche in parola.

Utilizza tutte le cifre nei cartellini per formare almeno cinque numeri. Scrivili anche in parola. I grandi numeri: le migliaia Rappresenta sull abaco i numeri scritti sotto. dak uk h da u dak uk h da u dak uk h da u dak uk h da u dak uk h da u 00 000 9 7 0 7 0 0 900 0 Scrivi in cifre i seguenti numeri.

Dettagli

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico

IL CALCOLO LETTERALE. La «traduzione» del linguaggio comune in linguaggio matematico IL CALCOLO LETTERALE La «traduzione» del linguaggio comune in linguaggio matematico BREVE STORIA DELL ALGEBRA Dall algebra sincopata all algebra simbolica L algebra è una disciplina antichissima ma il

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π

Dettagli

1.2 MONOMI E OPERAZIONI CON I MONOMI

1.2 MONOMI E OPERAZIONI CON I MONOMI Matematica C Algebra. Le basi del calcolo letterale. Monomi e operazioni con i monomi. MONOMI E OPERAZIONI CON I MONOMI... L insieme dei monomi D ora in poi quando scriveremo un espressione letterale in

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

Rappresentazioni numeriche

Rappresentazioni numeriche Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Scuola Politecnica Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2015/2016 M. Tumminello,

Dettagli

PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta

PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta PREVISIONE DEL TIPO DI NUMERO DECIMALE GENERATO DA UNA FRAZIONE di Luciano Porta Lo studio dei numeri decimali, se non si limita all utilizzo non ragionato di formule, ci può condurre molto lontano e ci

Dettagli

Gli insiemi numerici

Gli insiemi numerici Gli insiemi numerici L insieme N Insieme dei numeri naturali N = {0; 1; 2; 3; 4; } Sono i numeri che si usano per contare È un insieme infinito (ogni numero naturale ha un successivo) È un insieme ordinato,

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado Le disequazioni di primo grado Cos è una disequazione? Una disequazione è una disuguaglianza tra due espressioni algebriche (una delle quali deve contenere un incognita) che può essere vera o falsa a seconda

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

1. NUMERI ED OPERAZIONI SUI NUMERI. a b a b a b a b

1. NUMERI ED OPERAZIONI SUI NUMERI. a b a b a b a b 1. NUMERI ED OPERAZIONI SUI NUMERI m/ n m n 1 2 1 0 1 2 x 3 4 x 5 4 x a b a b a b a b 1 Operazioni sui numeri 2 Nota: a 1 a operazione impossibile 0 0 non esiste! 3 1 2 n 0 a a, a a a, a a a a a 3 10 1000

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da..., si dice che a è divisibile per b se... b) In N la divisione è possibile solo se... 2. Sostituisci

Dettagli

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione.

Monomi e Polinomi. Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. Monomi e Polinomi Monomio Si dice monomio un espressione letterale in cui figurano solo operazioni di moltiplicazione. ) Sono monomi: 5 a 3 b 2 z; 2 3 a2 c 9 ; +7; 8a b 3 a 2. Non sono monomi: a + 2; xyz

Dettagli

I NUMERI NATURALI E I NUMERI INTERI

I NUMERI NATURALI E I NUMERI INTERI TEORIA I NUMERI NATURALI E I NUMERI INTERI. CHE COSA SONO I NUMERI NATURALI Conosci già i numeri naturali: 0,, 2, 3, 4, 5, 6, 7, 8, 9, 0... I puntini stanno a significare che l elenco prosegue all infinito.

Dettagli

SCHEDA DI RECUPERO SUI NUMERI RELATIVI

SCHEDA DI RECUPERO SUI NUMERI RELATIVI SCHEDA DI RECUPERO SUI NUMERI RELATIVI I numeri relativi sono l insieme dei numeri negativi (preceduti dal segno -) numeri positivi (il segno + è spesso omesso) lo zero. Valore assoluto di un numero relativo

Dettagli

n L insieme dei numeri interi relativi n Le operazioni aritmetiche con i numeri interi relativi n Le potenze n Espressioni

n L insieme dei numeri interi relativi n Le operazioni aritmetiche con i numeri interi relativi n Le potenze n Espressioni n L insieme dei numeri interi relativi n Le operazioni aritmetiche con i numeri interi relativi n Le potenze n Espressioni n L insieme dei numeri interi relativi 1 I numeri interi relativi I numeri naturali

Dettagli

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE

le frazioni NUMERATORE Termini della frazione le frazioni a cura di Barbara Colla 1 Linea di frazione (rappresenta la divisione) DENOMINATORE le frazioni Termini della frazione NUMERATORE indica il numero delle parti che vengono considerate Linea di frazione (rappresenta la divisione) DENOMINATORE indica il numero delle parti uguali in cui è

Dettagli

RIPASSO_FRAZIONI. Frazioni Equivalenti. per 2 per 3 per 2 per 3 frazione equivalente frazione equivalente frazione equivalente frazione equivalente

RIPASSO_FRAZIONI. Frazioni Equivalenti. per 2 per 3 per 2 per 3 frazione equivalente frazione equivalente frazione equivalente frazione equivalente RIPASSO_FRAZIONI N.B. La risposta ad ogni richiesta può essere riportata sul quaderno Completa: I numeri che possono essere scritti come frazione sono: Essi costituiscono l insieme dei numeri....che si

Dettagli

ANALISI CHIMICO FARMACEUTICA I

ANALISI CHIMICO FARMACEUTICA I Prof. Gianluca Sbardella : 089 969770 : gsbardella@unisa.it L INCERTEZZA E LE CIFRE SIGNIFICATIVE Tutte le misure sono affette da un certo grado di incertezza la cui entità può dipendere sia dall operatore

Dettagli

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio

Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Potenze - Monomi - Polinomi - Operazioni tra Polinomi - Quadrato e Cubo del Binomio - Quadrato del Trinomio Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi

Somma di numeri floating point. Algoritmi di moltiplicazione e divisione per numeri interi Somma di numeri floating point Algoritmi di moltiplicazione e divisione per numeri interi Standard IEEE754 " Standard IEEE754: Singola precisione (32 bit) si riescono a rappresentare numeri 2.0 10 2-38

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

Curricolo verticale MATEMATICA

Curricolo verticale MATEMATICA Curricolo verticale MATEMATICA Scuola dell Infanzia L alunno è in grado di identificare e nominare i numeri naturali da 0 a 10 L alunno è in grado di comprendere le quantità L alunno è in grado di contare

Dettagli

Insiemi numerici La retta numerica. Numeri naturali. Numeri interi. Blocco per appunti Quaderno teoria Quaderno esercizi

Insiemi numerici La retta numerica. Numeri naturali. Numeri interi. Blocco per appunti Quaderno teoria Quaderno esercizi Insiemi numerici La retta numerica Blocco per appunti Quaderno teoria Quaderno esercizi Numeri naturali Numeri interi 1 Numeri razionali Radice di 2 non è un razionale Numeri reali 2 Proprietà della retta

Dettagli

Matematica per tutti. Semplicità di lettura Le sintesi realizzate in forma di tabelle sono facilmente consultabili e ricopiabili.

Matematica per tutti. Semplicità di lettura Le sintesi realizzate in forma di tabelle sono facilmente consultabili e ricopiabili. Progetto editoriale Carla onola Coordinamento editoriale Elisa Smaniotto Progetto grafico, impaginazione, disegni lberto Sangiorgi per Studio Punto & Virgola Copertina Silvia Razzini Redazione Edilibri,

Dettagli

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni

INSIEME Q. Le operazioni di addizione, moltiplicazione e sottrazione erano operazioni già chiuse su Z, e lo rimangono in Q. Alcune definizioni INSIEME Q L'insieme dei numeri razionali (Q) è un'estensione dell'insieme dei numeri interi Z. Ai numeri positivi e negativi interi si aggiungono, così, anche i numeri decimali. Tale estensione, però,

Dettagli

Disequazioni in una incognita. La rappresentazione delle soluzioni

Disequazioni in una incognita. La rappresentazione delle soluzioni Disequazioni in una incognita Una disequazione in una incognita è una disuguaglianza tra due espressioni contenenti una variabile (detta incognita) verificata solo per particolari valori attribuirti alla

Dettagli

Antonella Greco (Coordinamento) Andreina Anna D Arpino, Rosangela Mapelli. Elementi di algebra. E-Book di Matematica per il biennio.

Antonella Greco (Coordinamento) Andreina Anna D Arpino, Rosangela Mapelli. Elementi di algebra. E-Book di Matematica per il biennio. Antonella Greco (Coordinamento) Andreina Anna D Arpino, Rosangela Mapelli Elementi di algebra E-Book di Matematica per il biennio Volume 1 COPIA SAGGIO Campione gratuito fuori commercio ad esclusivo uso

Dettagli

Le frazioni algebriche

Le frazioni algebriche Le frazioni algebriche Le frazioni algebriche, a differenza delle frazioni numeriche, sono frazioni che prevedono al denominatore espressioni polinomiali. Le seguenti, ad esempio, sono frazioni algebriche

Dettagli

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico

CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico CONVITTO NAZIONALE CARLO ALBERTO Scuole annesse: Primaria Secondaria I grado Liceo Scientifico Baluardo Partigiani n 6 28100 - Novara Tel. 0321/620047 - Fax. 0321/620622 Email: novc010008@istruzione.it

Dettagli

L insieme dei numeri naturali e le quattro operazioni aritmetiche

L insieme dei numeri naturali e le quattro operazioni aritmetiche n L insieme dei numeri naturali e le quattro operazioni aritmetiche [p. 23] n Le potenze [p. 27] n Espressioni [p. 30] n Divisibilità, numeri primi, MCD e mcm [p. 34] L insieme dei numeri naturali e le

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze

DIVISIBILITA, DIVISORI E MULTIPLI. Conoscenze DIVISIBILITA, DIVISORI E MULTIPLI Conoscenze 1. Completa: a) Dati due numeri naturali a e b, con b diverso da zero, si dice che a è divisibile per b se la divisione a : b è esatta, cioè ha resto 0 b) In

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

RADICE QUADRATA:LA CRISI DEI PITAGORICI

RADICE QUADRATA:LA CRISI DEI PITAGORICI MATEMATICA RADICE QUADRATA:LA CRISI DEI PITAGORICI Prof.ssa M. Rosa Casparriello Scuola media di Fontanarosa PREREQUISITI Conoscere le potenze e saper operare con esse; Saper applicare la tecnica di scomposizione

Dettagli

Espressioni aritmetiche e ordine delle operazioni

Espressioni aritmetiche e ordine delle operazioni Le operazioni fondamentali Espressioni aritmetiche (UbiMath) - 1 Le operazioni fondamentali Espressioni aritmetiche e ordine delle operazioni Nella risoluzione di problemi compaiono spesso valori legati

Dettagli

La codifica. dell informazione

La codifica. dell informazione La codifica dell informazione (continua) Codifica dei numeri Il codice ASCII consente di codificare le cifre decimali da 0 a 9 fornendo in questo modo un metodo per la rappresentazione dei numeri Il numero

Dettagli

SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI

SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI D Apuzzo PREMESSA: l origine delle cifre 1, 2, 3, 4, 6, 7, 8, 9, 0 I numeri naturali sono stati i primi numeri maneggiati dagli uomini e sono stati utilizzati

Dettagli

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari

Lezione 4. Sommario. L artimetica binaria: I numeri relativi e frazionari. I numeri relativi I numeri frazionari Lezione 4 L artimetica binaria: I numeri relativi e frazionari Sommario I numeri relativi I numeri frazionari I numeri in virgola fissa I numeri in virgola mobile 1 Cosa sono inumeri relativi? I numeri

Dettagli

ESERCIZI DI PREPARAZIONE E

ESERCIZI DI PREPARAZIONE E ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato)

RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) RADICALI QUADRATICI E NON Applicazione geometrica 1 (lato di un quadrato) Se un quadrato ha l'area di 25 mq, qual è la misura del suo perimetro? E se l'area vale 30 mq? Table 1 Risoluzione 1 Poichè l'area

Dettagli

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data

Classe ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data Classe 1-3 - ALLENAMENTO INVALSI MATEMATICA (4) - Numeri (2) Cognome e Nome Classe Data 1. Quale valore deve avere il perché la seguente uguaglianza sia vera? 24,5 : 100 = 2,45 : [ ] B. 1 [ ] C. 0,1 [

Dettagli

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma.

PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si sostituisce la loro somma. Addizione: PROPRIETA' COMMUTATIVA Cambiando l'ordine degli addendi la somma non cambia. 1) a + b = b + a PROPRIETA' ASSOCIATIVA La somma di tre o più addendi non cambia se al posto di alcuni di essi si

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 7 LEZIONE

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 7 LEZIONE METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA 7 LEZIONE I NUMERI INTERI Z I NUMERI INTERI I numeri interi sono quelli che vengono chiamati numeri con il segno. Essi costituiscono un ampliamento

Dettagli

Come aiuto per questo ripasso è consigliato lo svolgimento degli esercizi seguenti.e importante però che:

Come aiuto per questo ripasso è consigliato lo svolgimento degli esercizi seguenti.e importante però che: CONSIGLI PER GLI ALUNNI ISCRITTI ALLA CLASSE PRIMA I docenti di matematica consigliano agli alunni che frequenteranno il prossimo anno scolastico la prima classe presso il nostro istituto, prima dell inizio

Dettagli

3. CALCOLO LETTERALE

3. CALCOLO LETTERALE www.matematicamente.it - Matematica C Algebra. Calcolo letterale MATEMATICA C - ALGEBRA. CALCOLO LETTERALE Indice Ernest! Photo by: Ssmallfry taken from: http://www.flickr.com/photos/ssmallfry/67489/ license:

Dettagli

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it

Esercitazioni di Reti Logiche. Lezione 1 Rappresentazione dell'informazione. Zeynep KIZILTAN zkiziltan@deis.unibo.it Esercitazioni di Reti Logiche Lezione 1 Rappresentazione dell'informazione Zeynep KIZILTAN zkiziltan@deis.unibo.it Introduzione Zeynep KIZILTAN Si pronuncia Z come la S di Rose altrimenti, si legge come

Dettagli

La rappresentazione dei dati

La rappresentazione dei dati La rappresentazione dei dati Base binaria E la base minima che include cifre diverse si devono conoscere le tabelline dello 0 dell 1 in elettronica si realizzano bene dispositivi bistabili There are only

Dettagli

SCHEDA N 4 - Interi.

SCHEDA N 4 - Interi. SCHEDA N 4 - Interi. L'impossibilità di eseguire sempre la sottrazione nell'insieme N dei numeri naturali ha portato alla costruzione dei numeri interi relativi, o semplicemente dei numeri interi. Elementarmente,

Dettagli

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza

Anno 2. Radicali algebrici e aritmetici: condizioni di esistenza Anno 2 Radicali algebrici e aritmetici: condizioni di esistenza 1 Introduzione Perché studiare i radicali? In matematica ogni volta che facciamo un operazione dobbiamo anche vedere se è possibile tornare

Dettagli

Le equazioni di I grado

Le equazioni di I grado Le equazioni di I grado ITIS Feltrinelli anno scolastico 007-008 R. Folgieri 007-008 1 Le equazioni abbiamo una uguaglianza tra due quantità (espressioni algebriche, perché nei due termini ci possono essere

Dettagli

INDICE MATEMATICA GEOMETRIA

INDICE MATEMATICA GEOMETRIA INDICE MATEMATICA Pagina 2 Gli insiemi Pagina 6 Il sistema di numerazione decimale le quattro operazioni fondamentali Pagina 14 Somma e sottrazione Pagina 20 Moltiplicazione e divisione Pagina 28 Le quattro

Dettagli

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre

10. 4 4 11. 2 : 12. Quale delle seguenti frazioni occorre www.matematicamente.it Frazioni Frazioni Nome: Classe: Data:. Nella frazione A. è il denominatore, è il numeratore B. è il numeratore, è il denominatore C. Sia, sia sono detti numeratori D. Sia, sia sono

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Istituto Tecnico - Liceo Scientifico G. CARAMUEL VIGEVANO. Prerequisiti per l area scientifico-matematica

Istituto Tecnico - Liceo Scientifico G. CARAMUEL VIGEVANO. Prerequisiti per l area scientifico-matematica Istituto Tecnico - Liceo Scientifico G. CARAMUEL VIGEVANO Prerequisiti per l area scientifico-matematica 2012/2013 Istituto Tecnico - Liceo Scientifico G. Caramuel VIGEVANO Nella nostra Accademia quella

Dettagli

EQUAZIONI DI PRIMO GRADO

EQUAZIONI DI PRIMO GRADO Cognome... Nome... Equazioni di primo grado EQUAZIONI DI PRIMO GRADO Un'equazione di primo grado e un'uguaglianza tra due espressioni algebriche di primo grado, vera solo per alcuni valori che si attribuiscono

Dettagli

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI

MODULO 3 TITOLO EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO FINALITA OBIETTIVI MODULO TITOLO FINALITA EQUAZIONI E DISEQUAZIONI ALGEBRICHE DI PRIMO GRADO Risoluzione delle equazioni e delle disequazioni algebriche di primo grado con una o più incognite e loro applicazioni PREREQUISITI

Dettagli

LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche

LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09. Scomposizioni in fattori dei polinomi. Frazioni algebriche LICEO SCIENTIFICO STATALE Enrico Fermi Anno Scolastico 2008/09 Classe II E - corso Tecnologico Scomposizioni in fattori dei polinomi Scomposizione di un polinomio in fattori Concetto di scomposizione Raccoglimento

Dettagli

PROGRAMMA SVOLTO DI MATEMATICA CL. 1^ D LICEO A.S. 2015/2016 DOCENTE: CAVANI IRIS

PROGRAMMA SVOLTO DI MATEMATICA CL. 1^ D LICEO A.S. 2015/2016 DOCENTE: CAVANI IRIS ISTITUTO di ISTRUZIONE SUPERIORE A. VENTURI PROGRAMMA SVOLTO DI MATEMATICA CL. ^ D LICEO A.S. 205/206 DOCENTE: CAVANI IRIS Testo: LA Matematica a colori Edizione azzurra vol. di L. Sasso. Ed. Petrini Ripasso

Dettagli

MODULO 1 GLI INSIEMI NUMERICI

MODULO 1 GLI INSIEMI NUMERICI MODULO TITOLO FINALITA GLI INSIEMI NUMERICI Presentazione, a livello elementare, di una panoramica del campo numerico: dai numeri naturali ai numeri complessi. PREREQUISITI Concetto di insieme (A:.,.,.).

Dettagli

Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli

Codice binario. Codice. Codifica - numeri naturali. Codifica - numeri naturali. Alfabeto binario: costituito da due simboli Codice La relazione che associa ad ogni successione ben formata di simboli di un alfabeto il dato corrispondente è detta codice. Un codice mette quindi in relazione le successioni di simboli con il significato

Dettagli

Cifre significative delle misure di grandezze fisiche

Cifre significative delle misure di grandezze fisiche Cifre significative delle misure di grandezze fisiche Si definiscono grandezze fisiche tutte quelle entità con cui vengono descritti i fenomeni fisici e che sono suscettibili di una definizione quantitativa,

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

Anno 1. M.C.D. e m.c.m. fra monomi

Anno 1. M.C.D. e m.c.m. fra monomi Anno 1 M.C.D. e m.c.m. fra monomi 1 Introduzione In questa lezione impareremo come calcolare il massimo comune divisore (M.C.D.) e il minimo comune multiplo (m.c.m.) di due o più monomi. Infine introdurremo

Dettagli

PROGRAMMA SVOLTO E COMPITI ESTIVI

PROGRAMMA SVOLTO E COMPITI ESTIVI Ministero dell Istruzione dell Università e della Ricerca Istituto Comprensivo Statale A. Diaz Via Giovanni XXIII n. 6-08 MEDA (MB) Infanzia Polo: MIAA890Q - Primaria Polo: MIEE890 Primaria Diaz: MIEE890

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli