Fondamenti di Algebra Lineare e Geometria TEMA A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fondamenti di Algebra Lineare e Geometria TEMA A"

Transcript

1 Fondamenti di Algebra Lineare e Geometria Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA A Risolvere i seguenti esercizi motivando adeguatamente ogni risposta. () Sia data la matrice A r = + r r + 3 r +. r + r (a) (3pt) Si determini per quali valori reali di r la matrice A r è diagonalizzabile su R. (b) (pt) Si determini per quali valori reali del parametro r esiste una base ortonormale di autovettori di A r. Per tali valori determinare una tale base. (c) (3pt) Per r = si determinino una matrice diagonale D ed una matrice invertibile P per le quali D = P A r P. () (pt) Si risolva il sistema lineare nelle incognite x, x, x 3 C x +ix ix 3 = i + ( i)x +(i + )x (i + )x 3 = 3i + ( + i)x ( i)x +( i)x 3 = + 3i (3) Siano dati i sottospazi di R 5 W = 3,,, 5 6 ed x V = y z R x + y + z 6w = ; x w =. w (a) (3pt) Si determinino una base B di W V ed una base C di W + V. (b) (pt) Si dica se C è una base di R. In caso contrario, si completi C ad una base di R.

2 () Siano date le basi B = {x +, x, x + x 3, x x 3 } e B = {, x, x, x 3 } di R[x] 3, la base canonica C =,,,, di R 5 e l applicazione lineare f : R[x] 3 R 5 determinata dalle seguenti condizioni: 6 f(x + ) = ; f(x ) 6 ; f(x + x 3 ) = ; f(x x 3 ) = (a) (pt) Si determinino M B,C (f) e M B,C (f). (b) (pt) Si dica se l applicazione f è iniettiva. In caso contrario, si determini una base di Ker(f). (c) (pt) Si determini una base di Im(f). (5) Nello spazio euclideo tridimensionale, al variare del parametro reale t, siano dati il piano α e la retta s di equazioni rispettivamente: tx + (t )y = 5, e tx + y + tz = 3; tx + z =. (a) (3pt) Determinare per quali valori di t la retta s ed il piano α sono paralleli. (b) (3pt) Per t = ed t = di determini la distanza tra α ed s. (6) Siano dati due sottospazi X, Y R n tali che X Y = X. (a) (pt) Dimostrare che (X + Y ) = Y. (b) (pt) Si dimostri che X + Y = X. (7) In R 3 siano dati un insieme libero {u, u } e un vettore non nullo u 3 ortogonale ad u ed u. (a) (pt) Si dimostri che {u, u, u 3 } è una base di R 3. (b) (pt) Si determini λ R affinché {u, u + λu, u 3 } sia una base ortogonale di R 3.

3 Fondamenti di Algebra Lineare e Geometria 3 Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA B Risolvere i seguenti esercizi motivando adeguatamente ogni risposta. () Sia data la matrice A t = t t t. t t (a) (3pt) Si determini per quali valori reali di t la matrice A t è diagonalizzabile su R. (b) (pt) Si determini per quali valori reali del parametro t esiste una base ortonormale di autovettori di A t. Per tali valori determinare una tale base. (c) (3pt) Per t = si determinino una matrice diagonale D ed una matrice invertibile P per le quali D = P A t P. () (pt) Si risolva il sistema lineare nelle incognite x, x, x 3 C x +x +ix 3 = + i ( i)x +( i)x +( + i)x 3 = 3i + ( + i)x +( + i)x +(i )x 3 = 3i (3) Siano dati i sottospazi di R 5 U =,,, ed x W = y z R x + y + 6z w = ; y + z =. w (a) (3pt) Si determinino una base B di U W ed una base C di U + W. (b) (pt) Si dica se C è una base di R. In caso contrario, si completi C ad una base di R.

4 () Siano date le basi B = {x +, x, x + x 3, x x 3 } e B = {, x, x, x 3 } di R[x] 3, la base canonica C =,,,, di R 5 e l applicazione lineare T : R[x] 3 R 5 determinata dalle seguenti condizioni: 6 T (x + ) = ; T (x ) 8 6 ; T (x + x 3 ) = 3 ; T (x x 3 ) = 8. 6 (a) (pt) Si determinino M B,C (T ) e M B,C (T ). (b) (pt) Si dica se l applicazione è iniettiva. In caso contrario, si determini una base di Ker(T ). (c) (pt) Si determini una base di Im(T ). (5) Nello spazio euclideo tridimensionale, al variare del parametro reale s, siano dati il piano β e la retta r di equazioni rispettivamente: (s )y + sz = 6, e sx + y + sz = ; x + sz =. (a) (3pt) Determinare per quali valori di s la retta r ed il piano β sono paralleli. (b) (3pt) Per s = ed s = di determini la distanza tra β ed r. (6) Siano dati due sottospazi W, U R n tali che W U = W. (a) (pt)dimostrare che (W + U) = U. (b) (pt) Si dimostri che U + W = W. (7) In R 3 siano dati un insieme libero {u, v} ed un vettore non nullo w ortogonale ad u e v. (a) (pt) Si dimostri che {u, v, w} è una base di R 3. (b) (pt) Si determini a R affinché {u, v + au, w} sia una base ortogonale di R 3.

5 Fondamenti di Algebra Lineare e Geometria 5 Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA C Risolvere i seguenti esercizi motivando adeguatamente ogni risposta. () Sia data la matrice A l = l l + l. l l 3 (a) (3pt) Si determini per quali valori reali di l la matrice A l è diagonalizzabile su R. (b) (pt) Si determini per quali valori reali del parametro l esiste una base ortonormale di autovettori di A l. Per tali valori determinare una tale base. (c) (3pt) Per l = si determinino una matrice diagonale D ed una matrice invertibile P per le quali D = P A l P. () (pt) Si risolva il sistema lineare nelle incognite x, x, x 3 C x +ix +ix 3 = i + ( + i)x +(i )x +(i )x 3 = 5i ( + i)x +(i )x +(i )x 3 = 3 + i (3) Siano dati i sottospazi di R 3 6 V =,,, 5 5 ed x W = y z R x + y + z 6w = ; z + w =. w (a) (3pt) Si determinino una base B di V W ed una base C di W + V. (b) (pt) Si dica se C è una base di R. In caso contrario, si completi C ad una base di R.

6 6 () Siano date le basi B = {x +, x, x + x 3, x x 3 } e B = {, x, x, x 3 } di R[x] 3, la base canonica C =,,,, di R 5 e l applicazione lineare L: R[x] 3 R 5 determinata dalle seguenti condizioni: 6 L(x + ) = ; L(x ) 6 ; L(x + x 3 ) = ; L(x x 3 ) = (a) (pt) Si determinino M B,C (L) e M B,C (L). (b) (pt) Si dica se l applicazione è iniettiva. In caso contrario, si determini una base di Ker(L). (c) (pt) Si determini una base di Im(L). (5) Nello spazio euclideo tridimensionale, al variare del parametro reale a, siano dati il piano π e la retta s di equazioni rispettivamente: (a )x + ay =, e ay + z = ; x + ay + az =. (a) (3pt) Determinare per quali valori di a la retta s ed il piano π sono paralleli. (b) (3pt) Per a = ed a = di determini la distanza tra π ed s. (6) Siano dati due sottospazi X, W R n tali che X W = X. (a) (pt) Dimostrare che (X + W ) = W. (b) (pt) Si dimostri che X + W = X. (7) In R 3 siano dati un insieme libero {x, y} ed un vettore non nullo z ortogonale ad x ed y. (a) (pt) Si dimostri che {x, y, z} è una base di R 3. (b) (pt) Si determini b R affinché {x, y + bx, z} sia una base ortogonale di R 3.

7 Fondamenti di Algebra Lineare e Geometria 7 Ingegneria Aerospaziale ed Ingegneria dell Energia - Canale B Secondo Appello - luglio TEMA D Risolvere i seguenti esercizi motivando adeguatamente ogni risposta. () Sia data la matrice A s = s s + s. s s (a) (3pt) Si determini per quali valori reali di s la matrice A s è diagonalizzabile su R. Soluzione. Sviluppando rispetto alla prima colonna det(a s xi) si ottiene ( x)(+s x)( s x). Se s,, gli autovalori sono reali e distinti quindi la matrice è diagonalizzabile. Se s = la matrice è diagonale. Se s = ± abbiamo l autovalore con molteplicità algebrica e geometrica quindi la matrice non è diagonalizzabile. (b) (pt) Si determini per quali valori reali del parametro s esiste una base ortonormale di autovettori di A s. Per tali valori determinare una tale base. Soluzione. La matrice A s è simmetrica solo per s =. In questo caso è diagonale quindi la base canonica di R 3 è una base ortonormale di autovettori. (c) (3pt) Per s = si determinino una matrice diagonale D ed una matrice invertibile P per le quali D = P A s P. Soluzione. In questo caso gli autovalori sono, +,. Abbiamo ( ) ) ( ) V = ; V + = ; V = pertanto D = ( ( ) +, P = ( ) + () (pt) Si risolva il sistema lineare nelle incognite x, x, x 3 C + x +ix +ix 3 = i + ( + i)x +(i )x +(i )x 3 = 3i + ( i)x +( + i)x +( + i)x 3 = 3i

8 8 Soluzione. La matrice completa del sistema è i i i + ( + i) (i ) (i ) 3i + ( i) ( + i) ( + i) 3i che in forma a scala è i i i + perciò le soluzioni sono x = (i + ) ia ib, x = a, x 3 = b al variare di a, b C. (3) Siano dati i sottospazi di R 5 V = 3,,, 6 5 ed x U = y z R x + 6y z + w = ; x + y =. w (a) (3pt) Si determinino una base B di U V ed una base C di U + V. Soluzione. Ponendo i generatori di V come {( righe ) ( di una matrice e riducendola )} in forma a scala si ottiene la base di V : 3, perciò gli elementi di ( ) b V sono i vettori della forma a 3a con a, b R. Le condizioni di appartenenza b {( )} ad U sono verificate per a = b quindi una base di U V è data da 3. ) )} Una base di U è data da,. Quindi dim(u + V ) = + = 3 {( ( ed una base si ottiene prendendo i due vettori {( della ) base di ) V ed )} un vettore di U che non appartiene a U V, per esempio:,,. 3 ( ( (b) (pt) Si dica se C è una base di R. In caso contrario, si completi C ad una base di R. Soluzione. C ha solo 3 elementi quindi non può essere una base di R. Ponendo i vettori della base trovati in riga e riducendo in forma a scala si ottiene 3

9 quindi il vettore e della base canonica è indipendente e C {e } è un possibile completamento. 9 () Siano date le basi B = {x +, x, x + x 3, x x 3 } e B = {, x, x, x 3 } di R[x] 3, la base canonica C =,,,, di R 5 e l applicazione lineare g : R[x] 3 R 5 determinata dalle seguenti condizioni: 6 g(x + ) = ; g(x ) 6 ; g(x + x 3 ) = ; g(x x 3 ) = (a) (pt) Si determinino M B,C (g) e M B,C (g). Soluzione M B,C (g) = 6 ; M 3 6 B,C (g) = (b) (pt) Si dica se l applicazione è iniettiva. In caso contrario, si determini una base di Ker(g). Soluzione. Risolvendo il sistema M B,C (g)x = si ottiene la base di Ker(g) = { 3x + x, 3 3x + x } perciò g non è iniettiva. (c) (pt) Si determini una base di Im(g). Soluzione. dim Im(g) = pertanto è sufficiente trovare due vettori indipendenti appartenenti all immagine, per esempio g(x + ) e g(x ). (5) Nello spazio euclideo tridimensionale, al variare del parametro reale l, siano dati il piano π e la retta r di equazioni rispettivamente: e (l )x + lz =, x + ly + lz = 6; y + lz =. (a) (3pt) Determinare per quali valori di l la retta r ed il piano π sono paralleli.

10 Soluzione. La giacitura di π è W = ). Perciò v W se ( l l l v Ciò accade per l =,, 3/. ( l l ) = l[(l )(l ) + ] =. {( l l )} mentre la direzione di r è v = (b) (3pt) Per l = ed l = di determini la distanza tra π ed r. Soluzione. Se l = retta e piano sono paralleli. Considero( la) retta ortogonale a π passante per un punto della retta r, per esempio P =. Tale retta avrà ( ) 3 equazioni parametriche x = t, y =, z = t ed interseca π in Q =. Perciò d(π, r) = d(p, Q) =. Se l = retta e piano sono incidenti quindi la distanza è. (6) Siano dati due sottospazi U, V R n tali che U V = U. (a) (pt) Dimostrare che (U + V ) = V. Soluzione. Se U V = U allora U V quindi U V = V pertanto U + V = U V = V = V e (U + V ) = V. (b) (pt) Si dimostri che U + V = U. Soluzione. Poiché U V abbiamo anche V U quindi con ragionamento analogo al punto (a) otteniamo che V + U = V. (7) In R 3 siano dati un insieme libero {v, v } ed un vettore non nullo v 3 ortogonale a v e v. (a) (pt) Si dimostri che {v, v, v 3 } è una base di R 3. Soluzione. È sufficiente dimostrare che v, v, v 3 sono indipendenti. Se av +bv + cv 3 = allora = v 3 (av +bv +cv 3 ) = a +b +c(v 3 v 3 ). Poiché v 3 v 3 perché v 3 non è nullo, avremo c = perciò av + bv + cv 3 = av + bv =. Ma v, v sono indipendenti quindi a = b =. (b) (pt) Si determini a R affinché {v, v + av, v 3 } sia una base ortogonale di R 3. Soluzione. = v (v + av ) = v v + av v impone a = v v v v. Inoltre v + av, v e v 3 sono tutti diversi da zero. Per costruzione v (v + av ), inoltre v 3 è ortogonale a tutte le combinazioni lineari di v e v. Quindi per il valore trovato di a l insieme consiste di tre vettori non nulli ed ortogonali di R 3, perciò è una base ortogonale di R 3.

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Compiti di geometria & algebra lineare. Anno: 2004

Compiti di geometria & algebra lineare. Anno: 2004 Compiti di geometria & algebra lineare Anno: 24 Anno: 24 2 Primo compitino di Geometria e Algebra 7 novembre 23 totale tempo a disposizione : 3 minuti Esercizio. [8pt.] Si risolva nel campo complesso l

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.

(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica. 5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A

GEOMETRIA E ALGEBRA LINEARE Soluzioni Appello del 17 GIUGNO Compito A Soluzioni Appello del 17 GIUGNO 2010 - Compito A a) Se h = 7 il sistema ha infinite soluzioni (1 variabile libera), mentre se h 7 la soluzione è unica. b) Se h = 7 allora Sol(A b) = {( 7z, 5z + 5, z),

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Esercizi per il corso di Algebra e Geometria L.

Esercizi per il corso di Algebra e Geometria L. Esercizi per il corso di Algebra e Geometria L AA 2006/2007 1 Foglio 1 In tutti gli esercizi che seguiranno lo spazio ambiente sarà il piano cartesiano a valori nel campo dei numeri reali, dove supporremo

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Corso di Algebra lineare - a.a Prova scritta del Compito A

Corso di Algebra lineare - a.a Prova scritta del Compito A Prova scritta del 23.02.2009 Compito A Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P 1, P 2 e Q i punti di coordinate rispettivamente

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI - - MATRICI E SISTEMI LINEARI ) Calcolare i seguenti determinanti: a - c - d - e - f - g - 8 7 8 h - ) Calcolare per quali valori di si annullano i seguenti determinanti: a - c - ) Calcolare il rango delle

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale

CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale CdL in Ingegneria Gestionale e CdL in Ingegneria del Recupero Edilizio ed Ambientale della prova scritta di Algebra Lineare e Geometria- Compito A- 8 Aprile 8 E assegnato l endomorfismo f : R 3 R 3 definito

Dettagli

Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z

Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z Diario delle lezioni e esercizi settimanali per il corso di Algebra Lineare - Canale I-Z Anno Accedemico 204-5, I Semestre Docente: Alberto De Sole Lezione : lunedì 29 settembre 204, 2 ore Lettura: AdF

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Prova teorica di algebra lineare e geometria del 6 marzo 2009 VERSIONE A

Prova teorica di algebra lineare e geometria del 6 marzo 2009 VERSIONE A Prova teorica di algebra lineare e geometria del 6 marzo 9 VERSIONE A Nome e cognome: Matricola: Attenzione: riportare i dati personali su ogni foglio consegnato Esercizio. Sia Ax = v un sistema lineare

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)

Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale) Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i,

1. Esercizi (1) Porre in forma trigonometrica i seguenti numeri complessi: 5, 2 i2, 1 + i. (2) Calcolare le seguenti radici: 2 2i, . Esercizi () Porre in forma trigonometrica i seguenti numeri complessi: 5, i, + i. () Calcolare le seguenti radici: 3 i, 5 i, 5. (3) Risolvere le seguenti equazioni: z z + 3 = ; z z = i; z + z =. (4)

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica

QUADERNI DIDATTICI. Dipartimento di Matematica. Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Università ditorino QUADERNI DIDATTICI del Dipartimento di Matematica E Abbena, G M Gianella Esercizi di Geometria ealgebralinearei Corso di Studi in Fisica Quaderno # 6 - Aprile 003 Gli esercizi proposti

Dettagli

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

10 dicembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 10 dicembre 003 - Soluzione esame di geometria - Ingegneria gestionale - a.a. 003-004 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura 3 ore. ISTRUZIONI

Dettagli

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k,

ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE. 2. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, ESERCIZI SVOLTI SU: GEOMETRIA TRIDIMENSIONALE 1. Fissato un sistema di riferimento cartesiano dello spazio euclideo O, i, j, k, determinare un equazione omogenea del piano parallelo al vettore v = i+j,

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

PROBLEMI DI GEOMETRIA

PROBLEMI DI GEOMETRIA PROBLEMI DI GEOMETRIA Lucio Guerra 1994 v. 1 2001 v. 2.7 Dipartimento di Matematica e Informatica - Università di Perugia Indice 1. EQUAZIONI LINEARI 1 2. SPAZI VETTORIALI 2 3. APPLICAZIONI LINEARI 4 4.

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

ESERCIZI VARI di GEOMETRIA 1

ESERCIZI VARI di GEOMETRIA 1 ESERCIZI VARI di GEOMETRIA 1 Un ovvio consiglio Si giustifichi la risposta ad ogni esercizio (o parte di esercizio) posto in forma di domanda. CAMPI Esercizio 1. Sia K l insieme di tutti i numeri reali

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

6. Spazi euclidei ed hermitiani

6. Spazi euclidei ed hermitiani 6. Spazi euclidei ed hermitiani 6.1 In [GA] 5.4 abbiamo definito il prodotto scalare fra vettori di R n (che d ora in poi chiameremo prodotto scalare standard su R n ) e abbiamo considerato le seguenti

Dettagli

5 Un applicazione: le matrici di rotazione

5 Un applicazione: le matrici di rotazione 5 Un applicazione: le matrici di rotazione 51 Rotazioni nel piano di un angolo ϑ Si vuole considerare il caso della rotazione nel piano di un vettore di R di un angolo ϑ assegnato Chiaramente si tratta

Dettagli

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli...... Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Esercizi di Geometria - 1

Esercizi di Geometria - 1 Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche.

1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Quadriche Esercizi 1. Calcolare gli invarianti ortogonali e riconoscere le seguenti quadriche. (a) x + y + z + xy xz yz 6x 4y + z

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento)

CORSO DI LAUREA in Ingegneria Informatica (Vecchio Ordinamento) CORSO D LAUREA in ngegneria nformatica (Vecchio Ordinamento) Prova scritta di Geometria assegnata il 19/3/2002 Sia f : R 3 R 4 l applicazione lineare la cui matrice associata rispetto alle basi canoniche

Dettagli

A.A. 2014/2015 Corso di Algebra Lineare

A.A. 2014/2015 Corso di Algebra Lineare A.A. 2014/2015 Corso di Algebra Lineare Stampato integrale delle lezioni Massimo Gobbino Indice Lezione 01: Vettori geometrici nel piano cartesiano. Operazioni tra vettori: somma, prodotto per un numero,

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2))

f(x, y, z) = (x + ky + z, x y + 2z, x + y z) f(x, y, z) = (x + 2y z, x + y z, x + 2y) F (f(x)) = (f(0), f(1), f(2)) Algebra Lineare e Geometria Analitica Politecnico di Milano Ingegneria Applicazioni Lineari 1. Sia f : R 3 R 3 l applicazione lineare definita da f(x, y, z) = (x + ky + z, x y + 2z, x + y z) per ogni (x,

Dettagli

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione:

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione: ognome e Nome: orso di Laurea: 4 settembre 3. Sia L: R 3! R 3 l applicazione lineare x x y + z L @ ya = @ x + y +za. z x y z (a) Scrivere la matrice A che rappresenta L nella base canonica di R 3 : (b)

Dettagli

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0.

Tempo a disposizione: 150 minuti. 1 Studiare, al variare del parametro reale k, il seguente sistema lineare: x + ky = k 2x + ky + z = 0. Università degli Studi di Catania Anno Accademico 014-015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (1 CFU) 1 Dicembre 014 A Tempo a disposizione: 150 minuti 1 Studiare, al

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Cenni sulle coniche 1.

Cenni sulle coniche 1. 1 Premessa Cenni sulle coniche 1. Corso di laurea in Ingegneria Civile ed Edile Università degli Studi di Palermo A.A. 2013/2014 prof.ssa Paola Staglianò (pstagliano@unime.it) Scopo della geometria analitica

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

GEOMETRIA /2009 II

GEOMETRIA /2009 II Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:

Dettagli

Svolgimento di Algebra I - 22 Marzo Nell insieme delle frazioni F := { a

Svolgimento di Algebra I - 22 Marzo Nell insieme delle frazioni F := { a Svolgimento di Algebra I - 22 Marzo 212 1. Nell insieme delle frazioni F := { a b a, b Z, b } si consideri la relazione definita ponendo: a b a ab = ba. b i Si dimostri che è una relazione di equivalenza

Dettagli

Esercizi svolti per Geometria 1 per Fisici 2008/09

Esercizi svolti per Geometria 1 per Fisici 2008/09 Esercizi svolti per Geometria 1 per Fisici 2008/09 F.Pugliese January 25, 2009 Abstract In queste note svolgerò alcuni esercizi sulla parte del corso che mi riguarda; si tenga presente che si tratta solo

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Forme quadratiche e coniche. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Prodotto scalare. Matrici simmetriche e forme quadratiche. Diagonalizzazione

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Appunti del corso di Geometria del prof. Landi

Appunti del corso di Geometria del prof. Landi Appunti del corso di Geometria del prof. Landi (tratti dal programma svolto) Anno Accademico 2009/2010 A cura di Piccoli Tobia PARTE TEORICA 1 DEFINIZIONI a) Spazio vettoriale Sia K un campo e V un insieme

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Fondamenti di Algebra Lineare e Geometria TEMA A

Fondamenti di Algebra Lineare e Geometria TEMA A Fondamnti di Algbra Linar Gomtria Inggnria Arospazial d Inggnria dll Enrgia - Canal B Quarto Appllo - 3 fbbraio 5 TEMA A Risolvr i sgunti srcizi motivando adguatamnt ogni risposta. () Sia data la matric

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

ordinatamente, i complementi algebrici degli elementi della matrice A).

ordinatamente, i complementi algebrici degli elementi della matrice A). Università degli Studi di Roma La Sapienza Laurea in Ingegneria Energetica A.A. 2016-2017 Programma dettagliato del corso di Geometria Prof. Antonio Cigliola Prerequisiti Logica elementare. Teoria elementare

Dettagli

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi 1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,

Dettagli

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009

Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 2008/2009 Ingegneria Gestionale - Corso di Analisi II e Algebra anno accademico 28/29 Dire se le seguenti proposizioni sono vere o false: ESERCITAZIONE. Proposizione Vera Falsa f : R R 4 rk(f f : R 4 R rk(f f :

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Esercizi di Algebra lineare

Esercizi di Algebra lineare Esercizi di Algebra lineare G. Romani December, 006 1. Esercizi sulle n-ple 1) Eseguire i seguenti calcoli. (, 1) + (1 3); 4(, ) + 3(4, ); 3(1,, 3) + ( )(,, 1) (3, 3, 3) + (4,, 1) + ( )(1, 4, ); (1, 4,

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli