Operazioni tra matrici e n-uple

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Operazioni tra matrici e n-uple"

Transcript

1 CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ, µ R, calcolare A+B, B A, λa+µb, AB, BA, A : λ =, µ = λ =, µ = Esercizio.. Date le seguenti matrici: A = ; A = ; A 4 = 4 5 ; A 4 = 5 0 ; A 5 = ; A 6 = ; calcolare, quando possibile, i prodotti A i A j per i,j =,,,4,5,6. Esercizio.4. Date le matrici [ 4 ] I 4 = calcolare i prodotti AI 4 e I 4 A T. Esercizio.5. Date le matrici calcolare A B e AB T. [ ] [ ] Esercizio.6. Calcolare la potenza A della matrice 0 0 Esercizio.7. Data la matrice calcolare, se esiste, l inversa di A (cioè determinare se esiste la matrice B tale che A B I). Esercizio.8. Date le seguenti matrici A, calcolare, se esiste, l inversa di A (cioè determinare se esiste la matrice B tale che A B I).

2 . OPERAZIONI TRA MATRICI E n-uple Esercizio.9. Date le matrici 0 0 calcolare AB, BA, BC e CB. 0 C = 0 0 Esercizio.0. Si consideri il seguente insieme (matrici triangolari superiori di M (R)) { } a b I = a,b,c R 0 c Si verifichi che I è chiuso rispetto al prodotto e alla somma di matrici, ovvero che presi due elementi di I anche il loro prodotto e la loro somma sono elementi di I. Esercizio.. Mostrare attraverso un esempio che esistono matrici A,B non nulle tali che A 0. Esercizio.. Sia e B una matrice tale che A BA. Si dimostri che dove λ, x R. λi x 0 0 Esercizio.. Date le matrici e C = 5 4 determinare la matrice B tale che A+ C. Esercizio.4. Date le matrici, stabilire se D è combinazione lineare di A, B, C., C = Esercizio.5. Date le matrici k, 0, D =, C = 6 0 stabilire se esistono valori di k per cui C è combinazione lineare di A, B. In caso positivo esprimere tale combinazione lineare. Esercizio.6. Si considerino le seguenti n-uple di numeri reali, con n =, o 4: ( ) u = (,0) u =, u = (, 4 ), 5 u 4 = (0, ), u 5 = (,,, ) u 6 = (0,0, ), Si calcoli quando possibile u i +u j, u i u T j, λ u i, con λ = 0,,, i,j =,...6 Esercizio.7. Dimostrare che un numero complesso coincidente con il proprio coniugato è necessariamente reale. Esercizio.8. Si risolva il sistema Ax = b dove, x = 4 Esercizio.9. Siano A e B matrici tali che Si dimostri che deve necessariamente essere: [ x x ] b = A BA B M λi per qualche λ R

3 . SOLUZIONI Esercizio.0. Si risolva il sistema Ax = b nei seguenti casi a) 0 6, x x = x b = 0 0 x 4 b) 4 0 6, x = x x b = x 4 x c) 0, x = x b = x 0 Esercizio.. Si dica per quali valori di k R il sistema Ax = b dove 0, x = x x b = k + x ammette soluzione. In caso positivo si determinino esplicitamente tali soluzioni. - Esercizio.. Date le matrici. Soluzioni 0 4 e dati λ = 5, µ =, calcolare AB, BA, A+B, B A, λa+µb. + ( ) A = +( ) ( ) 0+( ) ( ) 6 B = ( ) A+ = +( ) +4 0 B = 4 ( ) A+ + = Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ, µ R, calcolare A+B, B A, λa+µb, AB, BA, A : λ =, µ = λ =, µ = 0 0 0

4 4. OPERAZIONI TRA MATRICI E n-uple Comiciamo dalla prima coppia di matrici: 4 A+ 6 λa+µ A+0 [ 7 7 B 7 7 ] B 6 A 4 A = A 6 6 Analogamente per la seconda coppia di matrici: A+ 4 B λa+µ A A B 4 0 A = A Esercizio.. Date le seguenti matrici: A = ; A = ; A 4 = 4 5 ; A 4 = 0 ; A 5 = ; A 6 = ; calcolare, quando possibile, i prodotti A i A j per i,j =,,,4,5,6. Ricordiamo che una matrice è detta n m se ha n righe e m colonne. Inoltre è possibile moltiplicare due matrici A e B solamente se A è del tipo n m B è del tipo m k (cioè se il numero delle colonne di A è uguale al numero delle righe di B). Il risultato è una matrice C del tipo n k. Scriviamo solo i prodotti che è possibile effettuare: A A = A A = A 5 0 A 4 = A 0 A 5 = A A = A A 6 = A 4 A = A 4 A 6 = A 5 A = 0 A 5 A 4 = 4 0 A 5 A 5 = A 6 A = A A 4 = A A 5 = 4

5 . SOLUZIONI 5 Esercizio.4. Date le matrici [ 4 ] I 4 = calcolare i prodotti AI 4 e I 4 A T. Notiamo che la matrice quadrata I 4 è detta matrice identica di ordine 4. In generale le matrici identiche (dei differenti ordini) vengono indicate I. Esercizio.5. Date le matrici calcolare A B e AB T. AI 4 = [ 4 ] = A I 4 A T = I 4 = = AT 4 4 [ ] [ ] A [ 6 9 ] [ 4 6 ] = [ 5 8 AB T = [ ] = Notiamo che la matrice [ ] è detta matrice scalare. Esercizio.6. Calcolare la potenza A della matrice 0 0 ] Si tratta di eseguire due prodotti: A = A A = Esercizio.7. Data la matrice calcolare, se esiste, l inversa di A (cioè determinare se esiste la matrice B tale che A B I). Sia B la matrice cercata. Per potere effettuare i prodotti AB e BA, la matrice B deve essere. Sia quindi x y z w

6 6. OPERAZIONI TRA MATRICI E n-uple la generica matrice e calcoliamo il prodotto AB: x y x+z y +w A = z w x+z y +w Dalla condizione A I segue x+z = y +w = 0 x+z = 0 y +w = x = z y = w ( z)+z = 0 ( w)+w = Di conseguenza perché B verifichi la condizione A Ideve essere [ ] x = 5 y = 5 z = 5 w = 5 E immediato verificare che tale matrice B soddisfa anche la condizione B I, di conseguenza B è la matrice inversa di A cercata. Metodi più efficaci per calcolare l inversa di una matrice verranno introdotti successsivamente. Esercizio.8. Date le seguenti matrici A, calcolare, se esiste, l inversa di A (cioè determinare se esiste la matrice B tale che A B I). Consideriamo la matrice Per potere effettuare i prodotti AB e BA, la matrice B deve essere. Sia quindi x y z w la generica matrice. Si ha A Dalla condizione A I segue x+z = y +w = 0 x+z = 0 y +w = x y x+z y +w = z w x+z y +w x = z y = w ( z)+z = 0 ( w)+w = x = z y = w = 0 0 = La terza e la quarta equazione sono impossibili, di conseguenza tutto il sistema non ammette soluzione. Questo indica che la matrice A non ammette inversa. e sia Consideriamo ora la matrice la generica matrice. Si ha A x y z w x y x z y w = z w x+z y +w

7 . SOLUZIONI 7 Dalla condizione A I segue x z = x = +z x = +z x = y w = 0 y = w y = w y = x+z = 0 (+z)+z = 0 z = z = y +w = w+w = w = w = Di conseguenza deve essere E immediato verificare che tale matrice B soddisfa anche la condizione B I, di conseguenza B è la matrice inversa di A cercata. Una tale matrice B inversa di A viene normalmente indicata con A. Esercizio.9. Date le matrici 0 0 calcolare AB, BA, BC e CB. 0 C = A BC = B C 0 9 Notiamo che AB BA, mentre BC = CB. Infatti il prodotto tra matrici non è in generale commutativo; nel secondo caso si presenta questa situazione particolare in quanto C = I. Esercizio.0. Si consideri il seguente insieme (matrici triangolari superiori di M (R)) { } a b I = a,b,c R 0 c Si verifichi che I è chiuso rispetto al prodotto e alla somma di matrici, ovvero che presi due elementi di I anche il loro prodotto e la loro somma sono elementi di I. Siano a b 0 c x y 0 z due generici elementi di I. Dobbiamo verificare che A+B e AB sono ancora elementi di I: a b x y a+x b+y A+ + = I 0 c 0 z 0 c+z ax ay +bz A I 0 cz Notiamo che l unica condizione per l appartenenza a I è che l elemento di posizione, si annulli. Esercizio.. Mostrare attraverso un esempio che esistono matrici A,B non nulle tali che A 0. Possiamo prendere per esempio Infatti A e B sono non nulle e A

8 8. OPERAZIONI TRA MATRICI E n-uple Esercizio.. Sia e B una matrice tale che A BA. Si dimostri che dove λ, x R. λi x 0 0 Sia b b b b la generica matrice. Si ha b b A b +b = b +b 0 b b b b b b B b b = +b b b 0 b b +b Dalla condizione A BA segue b +b = b b +b = b +b b = b b = b +b Di conseguenza B deve essere del tipo t s = 0 t Abbiamo quindi ottenuto che dove λ, x R. b = 0 b = b 0 = 0 b = 0 t t λi + 0 s = t x 0 0 b = t b = s b = 0 b = t s 0 0 Esercizio.. Date le matrici e C = 5 4 determinare la matrice B tale che A+ C. E sufficiente osservare che se Quindi Esercizio.4. Date le matrici, A+ C A+A+ A+C C A stabilire se D è combinazione lineare di A, B, C = , C =, D = s,t R 0

9 . SOLUZIONI 9 Si tratta di determinare se esiste soluzione dell equazione Esplicitando tale equazione otteniamo: x x Ax+By +Cz = + x x Ax+By +Cz = D y y z z x+y z x+y +z + = y y z z x+y +z x+y +z Quindi: x+y z = 0 x+y z x+y +z 0 x+y +z = = x+y +z x+y +z x+y +z = x+y +z = Dobbiamo quindi risolvere il sistema lineare non omogeneo di quattro equazioni i tre incognite. Procedendo per sostituzione otteniamo x = y +z x = y +z y +z = y +z = y +z = z = y 6y +6z = y +z = Anche senza procedere ulteriormente vediamo che la seconda e quarta equazione sono in contraddizione, quindi il sistema non ammette soluzione e D non è combinazione lineare di A,B e C. Esercizio.5. Date le matrici k 6,, C = 0 stabilire se esistono valori di k per cui C è combinazione lineare di A, B. In caso positivo esprimere tale combinazione lineare. Analogamente all esercizio precedente si tratta di determinare se esiste soluzione dell equazione Ax+By = C Esplicitando tale equazione otteniamo: x kx y y x+y kx+y Ax+By = + = 0 x y y y x+y Quindi: x+y = x+ = x = x = x+y kx+y 6 kx+y = 6 kx+ = 6 kx = k = = y x+y y = y = y = y = x+y = x+ = x = x = Quindi Se k = il sistema ammette la sola soluzione x = y = e A+ C. Se k il sistema non ammette soluzione e C non è combinazione di A e B. Esercizio.6. Si considerino le seguenti n-uple di numeri reali, con n =, o 4: ( ) u = (,0) u =, u = (, 4 ), 5 u 4 = (0, ), u 5 = (,,, ) u 6 = (0,0, ),

10 0. OPERAZIONI TRA MATRICI E n-uple Si calcoli quando possibile u i +u j, u i u T j, λ u i, con λ = 0,,, i,j =,...6 Cominciamo a calcolare le somme. Notiamo innazittutto che si possono sommare solo n-uple dello stesso tipo: u +u = (+ ) ( ),0+( ) =, = u +u u +u 4 = (, 4 ) 7 = u 4 +u u 5 +u 6 = (,, 5 ), 5 = u 6 +u 5 Notiamo che la somma di due n-uple è ancora una n-upla, e che la somma gode della proprietà commutativa. Calcoliamo ora i prodotti. Notiamo che si può solo moltiplicare una n-upla per la trasposta di una n-upla dello stesso tipo: ) u u T = (,0) ( = = u u T u u T 4 = (, 4 ) 0 5 = 79 8 = u 4 u T u 5 u T 6 = (,,, ) 0 0 = 6 = u 6 u T 5 Notiamo che il prodotto tra una n-upla e la trasposta di una n-upla da come risultato un numero (uno scalare). Calcoliamo infine i prodotti per scalare. 0u = 0u = (0,0), 0u = 0u 4 = (0,0,0), 0u 5 = 0u 6 = (0,0,0,0), u = (,0), u = (, 4), u = ( 6, ), 0, u 4 = (0,, 4), u 5 = (,,4, 4), u 6 = (0,0, ), 6 u = (,0), u = (,4), u = (6, ),0, u 4 = (0,,4), u 5 = (,, 4,4), u 6 = (0,0, ),6 Notiamo che il prodotto tra uno scalare e una n-upla si può sempre calcolare e da come risultato una n-upla. Esercizio.7. Dimostrare (utilizzando le matrici) che un numero complesso coincidente con il proprio coniugato è necessariamente reale. Sia Z = ai +bj un generico complesso, dove 0 I =, J = 0 0, 0 Sappiamo che il suo coniugato è Z = ai bj. Notiamo che a b a b Z =, Z =, b a b a

11 . SOLUZIONI Di conseguenza dall uguaglianza Z = Z segue a = a b = b b = b a = a Quindi Z = ai ed è un numero reale. Esercizio.8. Si risolva il sistema Ax = b dove, x = 4 b = 0 b = 0 [ x x ] b = Quindi Ax = b implica { x +x = x +4x = Ax = 4 [ x x ] x +x = x +4x { x = x 4 6x +4x = { x = 7 x = La matrice A è detta matrice dei coefficienti e la matrice b matrice o colonna dei termini noti del sistema { x +x = x +4x = Si dice anche più semplicemente che A e b (oppure A b) sono le matrici associate al sistema. Notiamo che si può passare da A al sistema o viceversa semplicemente aggiungendo o togliendo le incognite. Esercizio.9. Siano A e B matrici tali che Si dimostri che deve necessariamente essere: Sia A BA B M λi a a a a a a a a a per qualche λ R la generica matrice. Poichè A BA per ogni matrice B, in particolare deve valere per Di conseguenza: a 0 0 a a a A a 0 0 = = BA a = a = a = a = 0. a La nostra matrice A deve quindi essere del tipo a a a 0 a a

12 . OPERAZIONI TRA MATRICI E n-uple Analogamente la relazione A BA deve valere in particolare per Di conseguenza: A 0 0 a = = BA a = a = a 0 a a La nostra matrice A deve quindi essere del tipo a a a Ripetiamo lo stesso ragionamento con ottenendo A a a = a a = BA a = a La nostra matrice A deve quindi essere del tipo a a a Utilizzando infine otteniamo a a 0 a a A = = BA a = a La nostra matrice A deve quindi essere del tipo a a 0 = a 0 0 = λi 0 0 a 0 0 Esercizio.0. Si risolva il sistema Ax = b nei seguenti casi x a) 0 6, x = x b = x per qualche λ R 4 x b) 0 6, x = x b = x 4 x c) 0, x = x b = x 0

13 . SOLUZIONI a) Calcoliamo il prodotto x x +x +x Ax = 0 6 x = x +6x 0 0 x x Quindi la condizione Ax = b implica x +x +x = x +x +x = x +6x = x = 6 x = 4 x = x = ( 5) + = x = x = 5 x = 5 x = x = b) Scriviamo direttamente il sistema associato a A e b aggiungendo le incognite: 4x +x +x = x +6x = 4 0 = 4 Notiamo subito che l ultima equazione è impossibile, quindi il sistema non ammette soluzione. c) Scriviamo direttamente il sistema associato a A e b aggiungendo le incognite: x +x +x = x +x = 4 0 = 0 Notiamo che il sistema ha tre incognite, ma solamente due equazioni (significative). Abbiamo quindi una variabile libera. Partiamo dall ultima equazione (significativa) aggiungendo un parametro. Poniamo per esempio x = t (Potevamo equivalentemente porre x = t): x +x +x = x = ( t+4)+t = t+9 x = t+4 x = t+4 x = t x = t x = t+9 x = t+4 t R x = t Notiamo che in questo caso il sistema ammette infinite soluzione: ogni valore assegnato a t permette di trovare una delle infinite soluzioni. Esercizio.. Si dica per quali valori di k R il sistema Ax = b dove k +, x = x x x b = ammette soluzione. In caso positivo si determinino esplicitamente tali soluzioni. 0 Il sistema associato a A e b è x x +x = 0 x +x = (k +)x = Cercando le soluzioni dell ultima equazione incontriamo subito una difficoltà: dovendo dividere per (k + ) dobbiamo imporre la condizione k + 0. Dobbiamo quindi distinguere due casi:

14 4. OPERAZIONI TRA MATRICI E n-uple Se k, otteniamo le soluzioni x x +x = 0 x x +x = 0 x = k+ x +x = x = + k+ = k+ k+ x = k+ k+ x = k+ x = k+ x = k+ Quindi per ogni k il sistema ammette la sola soluzione x = k+4 k+ x = k+ k+ x = k+ Se k =, sostituendo tale valore nel sistema otteniamo x x +x = 0 x +x = 0 = Quindi in questo caso il sistema è impossibile. k+ + k+ = k+4 k+

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo. Operazioni tra matrici e n-uple. Soluzioni 3 Capitolo 2. Rette e piani 5. Suggerimenti 9 2. Soluzioni 20 Capitolo 3. Gruppi, spazi e sottospazi

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

La riduzione a gradini e i sistemi lineari (senza il concetto di rango)

La riduzione a gradini e i sistemi lineari (senza il concetto di rango) CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Geometria BIAR Esercizi 2

Geometria BIAR Esercizi 2 Geometria BIAR 0- Esercizi Esercizio. a Si consideri il generico vettore v b R c (a) Si trovi un vettore riga x (x, y, z) tale che x v a (b) Si trovi un vettore riga x (x, y, z) tale che x v kb (c) Si

Dettagli

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

Prodotto scalare, ortogonalitá e basi ortonormali

Prodotto scalare, ortogonalitá e basi ortonormali CAPITOLO 0 Prodotto scalare, ortogonalitá e basi ortonormali Esercizio 0.. Dati i seguenti vettori di R si calcoli il prodotto scalare (v i,v j per i,j =,,...,6: v = (6,3 v = (,0 v 3 = (, v 4 = (,0 v 5

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Dipendenza e indipendenza lineare

Dipendenza e indipendenza lineare Dipendenza e indipendenza lineare Luciano Battaia Questi appunti () ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia campus

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b,

Per equazione lineare nelle incognite x, y intendo un equazione del tipo. ax = b, Matematica II 161110 1 Equazioni lineari in una incognita Per equazione lineare nell incognita x intendo un equazione del tipo ax = b dove a b sono due costanti reali a e il coefficiente e b e il termine

Dettagli

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri,

ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 2015/2016 docente: Elena Polastri, ALGEBRA E GEOMETRIA Esercizi Corso di Laurea in Chimica - anno acc. 05/06 docente: Elena Polastri, plslne@unife.it Esercizi 3: SPAZI VETTORIALI e MATRICI Combinazioni lineari di vettori.. Scrivere il vettore

Dettagli

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z

GEOMETRIA LINEARE E CONICHE - GIUGNO 2002. 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: x = z 2 y = z GEOMETRIA LINEARE E CONICHE - GIUGNO 2002 1. Nello spazio ordinario, assegnato un riferimento ortonormale si considerino le rette: r : x = z y = 0 x = z 2, s : y = z. Dopo aver provato che r ed s sono

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale

Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque

Dettagli

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente.

CAPITOLO 14. Quadriche. Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. CAPITOLO 4 Quadriche Alcuni esercizi di questo capitolo sono ripetuti in quanto risolti in maniera differente. Esercizio 4.. Stabilire il tipo di quadrica corrispondente alle seguenti equazioni. Se si

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.

SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5. SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI

STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE

MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE DIAGONALIZZAZIONE 1 MATRICI ORTOGONALI. MATRICI SIMMETRICHE E FORME QUADRATICHE Matrici ortogonali e loro proprietà. Autovalori ed autospazi di matrici simmetriche reali. Diagonalizzazione mediante matrici

Dettagli

Esercizi di Algebra Lineare. Claretta Carrara

Esercizi di Algebra Lineare. Claretta Carrara Esercizi di Algebra Lineare Claretta Carrara Indice Capitolo 1. Operazioni tra matrici e n-uple 1 1. Soluzioni 3 Capitolo. Rette e piani 15 1. Suggerimenti 19. Soluzioni 1 Capitolo 3. Gruppi, spazi e

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1 APPLICAZIONI LINEARI Applicazioni lineari tra spazi R n spazi di matrici spazi di polinomi e matrice associata rispetto ad una coppia di basi Endomorismi e matrice associata rispetto

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 4-10 Ottobre 2005 INDICE 1. ALGEBRA................................. 3 1.1 Equazioni

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

7. Equazioni differenziali

7. Equazioni differenziali 18 Sezione 7. Equazioni differenziali 7. Equazioni differenziali [versione: 25/5/2012] Richiamo delle nozioni fondamentali In un equazione differenziale l incognita da determinare è una funzione (e non

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

Appunti di matematica per le Scienze Sociali Parte 1

Appunti di matematica per le Scienze Sociali Parte 1 Appunti di matematica per le Scienze Sociali Parte 1 1 Equazioni 1.1 Definizioni preliminari 1.1.1 Monomi Si definisce monomio ogni prodotto indicato di fattori qualsiasi, cioè uguali o diseguali, numerici

Dettagli

Equazioni di primo grado

Equazioni di primo grado Equazioni di primo grado 15 15.1 Identità ed equazioni Analizziamo le seguenti proposizioni: a ) cinque è uguale alla differenza tra sette e due ; b ) la somma di quattro e due è uguale a otto ; c ) il

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 7 - CALCOLO NUMERICO CON MATRICI Richiami teorici Operazioni fondamentali Siano A = {a ij } e B = {b ij }, i = 1,..., m, j = 1,..., n due

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

Lezione 7: Il Teorema di Rouché-Capelli

Lezione 7: Il Teorema di Rouché-Capelli Lezione 7: Il Teorema di Rouché-Capelli In questa lezione vogliamo rivisitare i sistemi lineari e dare alcuni risultati che ci permettono di determinare dato un sistema lineare se ammette soluzioni e da

Dettagli

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof.

Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A ESERCIZI DA CONSEGNARE prof. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria A.A. 2015-2016 ESERCIZI DA CONSEGNARE prof. Cigliola Consegna per Martedì 6 Ottobre Esercizio 1. Una matrice quadrata A si

Dettagli

Richiami di algebra delle matrici a valori reali

Richiami di algebra delle matrici a valori reali Richiami di algebra delle matrici a valori reali Vettore v n = v 1 v 2. v n Vettore trasposto v n = (v 1, v 2,..., v n ) v n = (v 1, v 2,..., v n ) A. Pollice - Statistica Multivariata Vettore nullo o

Dettagli

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi

Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il

Dettagli

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x.

3x + x 5x = x = = 4 + 3x ; che equivale, moltiplicando entrambi i membri per 2, a risolvere. 4x + 6 x = 4 + 3x. 1 Soluzioni esercizi 1.1 Equazioni di 1 e grado Risolvere le seguenti equazioni di 1 grado: 1) 3x 5x = 1 x. Abbiamo: 3x + x 5x = 1 + x = 1 + 4 x = 5. ) x + 3 x = + 3x. Facciamo il m.c.m. : 4x + 6 x = 4

Dettagli

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0

CAPITOLO 2. Rette e piani. y = 3x+1 y x+z = 0 CAPITOLO Rette e piani Esercizio.1. Determinare l equazione parametrica e Cartesiana della retta del piano (a) Passante per i punti A(1,) e B( 1,). (b) Passante per il punto C(,) e parallela al vettore

Dettagli

Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1

Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1 Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Inversa. Inversa. Elisabetta Colombo

Inversa. Inversa. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 00-0, http://users.mat.unimi.it/users/colombo/programmabio.html e 3 con i Matrici inverse di matrici quadrate e con i Sia A una

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A = Esercizio 1. Risolvere il sistema lineare 2x 5y +4z = x 2y + z =5 x 4y +6z =10 (1) Soluz. La matrice dei coefficienti è 1 4 6, calcoliamone il rango. Il determinante di A è (applico la regola di Sarrus):

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

Algebra lineare Geometria 1 11 luglio 2008

Algebra lineare Geometria 1 11 luglio 2008 Algebra lineare Geometria 1 11 luglio 2008 Esercizio 1. Si considerino la funzione: { R f : 3 R 3 (α, β, γ) ( 2β α γ, (k 1)β + (1 k)γ α, 3β + (k 2)γ ) dove k è un parametro reale, e il sottospazio U =

Dettagli

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo

Algebra Lineare (Matematica C.I.), 12.11.13. Sistemi di equazioni lineari. 1. Un equazione lineare in una incognita reale x e un equazione del tipo Algebra Lineare (Matematica C.I.), 12.11.13 Sistemi di equazioni lineari 1. Un equazione lineare in una incognita reale x e un equazione del tipo ax = b, dove a e b sono numeri reali dati; a e il coefficiente

Dettagli

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi:

SPAZI VETTORIALI. Esercizi Esercizio 1. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: SPAZI VETTORIALI Esercizi Esercizio. Sia V := R 3. Stabilire quale dei seguenti sottoinsiemi di V sono suoi sottospazi: V := { (a, a, a) V a R }, V 2 := { (a, b, a) V a, b R }, V 3 := { (a, 2a, a + b)

Dettagli

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

I sistemi di equazioni di primo grado

I sistemi di equazioni di primo grado I sistemi di equazioni di primo grado RIPASSIAMO INSIEME SISTEMI DI EQUAZIONI DI PRIMO GRADO Un sistema di equazioni di primo grado in due (o più) incognite è l insieme di due (o più) equazioni di primo

Dettagli

SISTEMI LINEARI, METODO DI GAUSS

SISTEMI LINEARI, METODO DI GAUSS SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti

Dettagli

Giuseppe Accascina. Note del corso di Geometria e Algebra

Giuseppe Accascina. Note del corso di Geometria e Algebra Giuseppe Accascina Note del corso di Geometria e Algebra Corso di Laurea Specialistica in Ingegneria Gestionale Anno Accademico 26-27 ii Istruzioni per l uso Faremo spesso riferimento a ciò che è stato

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

ESERCIZI SULLE MATRICI

ESERCIZI SULLE MATRICI ESERCIZI SULLE MATRICI Consideriamo il sistema lineare a, x + a, x + + a,n x n = b a, x + a, x + + a,n x n = b a m, x + a m, x + + a m,n x n = b m di m equazioni in n incognite che ha a, a,n A = a m, a

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R.

1 Introduzione alle matrici quadrate 2 2 a coefficienti in R. 1 Introduzione alle matrici quadrate 2 2 a coefficienti in R Per introdurre il concetto di matrice, a 2 righe e 2 colonne, iniziamo col considerare griglie o tabelle di numeri Gli elementi della griglia,

Dettagli

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1 . Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo

Dettagli

Equazioni di secondo grado

Equazioni di secondo grado Equazioni di secondo grado Un equazione di secondo grado può sempre essere ridotta nella forma: a + bx + c 0 forma normale con a 0. Le lettere a, b, c sono rappresentano i coefficienti. Solo b e c possono

Dettagli

Testi consigliati e contatti

Testi consigliati e contatti Testi consigliati e contatti P.Bonacini, M. G. Cinquegrani, L. Marino, Algebra lineare: esercizi svolti, Cavallotto Edizioni, Catania P. Bonacini, M. G. Cinquegrani, L. Marino, Geometria analitica: esercizi

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire

Dettagli

Coordiante omogenee e proiezioni

Coordiante omogenee e proiezioni CAPITOLO 15 Coordiante omogenee e proiezioni Esercizio 15.1. Utilizzando le coordinate omogenee, determinare l equazione della retta r passante per i punti A(2,) e B( 1,0) e della retta s passante per

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente:

Se la base è 10, il risultato della potenza è una potenza di 10 con tanti zeri quante sono le unità dell esponente: Definizione di potenza Si definisce potenza ennesima di A, con n intero maggiore di 1, il prodotto di A per se stesso eseguito n volte A n =(AxAxAx A) n volte 2 5 = 2 2 2 2 2=32 Se la base è 10, il risultato

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

1 Disquazioni di primo grado

1 Disquazioni di primo grado 1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

ESERCIZI MATEMATICA GENERALE - Canale III

ESERCIZI MATEMATICA GENERALE - Canale III ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare

Dettagli

LEZIONE 1 C =

LEZIONE 1 C = LEZIONE 1 11 Matrici a coefficienti in R Definizione 111 Siano m, n Z positivi Una matrice m n a coefficienti in R è un insieme di mn numeri reali disposti su m righe ed n colonne circondata da parentesi

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2

DIPARTIMENTO DI MATEMATICA A.S EQUAZIONI DI GRADO SUPERIORE AL 2 DIPARTIMENTO DI MATEMATICA A.S. 00-05 EQUAZIONI DI GRADO SUPERIORE AL 1. EQUAZIONI RISOLVIBILI MEDIANTE SCOMPOSIZIONE. EQUAZIONI BINOMIE. EQUAZIONI TRINOMIE. EQUAZIONI RECIPROCHE 1. EQUAZIONI RISOLVIBILI

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Esempi Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI) Osservazioni per le matrici quadrate a) Data A M n (K) è possibile definire ricorsivamente

Dettagli