Proprietà razionali per il prezzo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Proprietà razionali per il prezzo"

Transcript

1 Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere per le opzioni calleuropee e americane in un mercao in cui non si creino opporunià di arbiraggio e con invesiori razionali. τ 0 Consideriamo un mercao sul quale è disponibile un iolo azionario, il cui andameno di prezzo nel empo è indicao con S, e le opzioni calleuropee e americane che hanno ale iolo come soosane. Sia l epoca di scadenza delle opzioni. Indichiamo con (, τ, ) c S Il prezzo all epoca di una calleuropea con prezzo di esercizio e valore del soosane e con imeomauriy τ, menre il prezzo con lo sesso soosane ed alla sessa epoca per una opzione callamericana è indicao con (, τ, ) C S 8/09/0 Corso di Finanza quaniaiva S

2 Alla scadenza il valore dell opzione calleuropea e dell opzione americana (ovviamene se non ancora eserciaa) coincidono e sono dai dal payoffrealizzabile. In paricolare l opzione call sarà eserciaa in se il prezzo del iolo soosane S risulerà superiore al prezzo di esercizio, menre non verrà eserciaa in caso conrario. Il valore delle opzioni a scadenza è quindi: c S,, = C S,, = max[0, S ] S [ S ] max 0; S S 8/09/0 Corso di Finanza quaniaiva 3 Consideriamo un iolo a cedola nulla, con valore facciale pari ad, ed indichiamo con B ( τ ) Il suo prezzo quando il suo imeomauriyè τ Il prezzo del iolo sarà ovviamene sempre posiivo e minore di, e assumerà il valore alla scadenza del iolo. 0 < B τ < B ( 0) = Supponiamo che gli operaori possano prendere in presio e presare denaro al asso privo di rischio rispeivamene vendendo allo scopero e acquisando ioli a cedola nulla. Supponiamo inolre che il sisema dei prezzi sia ale da impedire ogni possibilià di arbiraggio, cioè la messa in opera in sraegie di acquiso e vendia che porino ad avere sempre degli incassi (almeno uno cero) e mai delle uscie. 8/09/0 Corso di Finanza quaniaiva 4

3 Dae quese ipoesi di mercao, vediamo una serie di relazioni che devono valere per i prezzi delle opzioni callamericane ed europee. Il prezzo di una opzione non può essere negaivo e superare il valore dell azione soosane. ( τ ) 0 c S,, S ( τ ) 0 C S,, S Se il prezzo della callnon fosse inferiore al valore dell azione, si aprirebbero opporunià di arbiraggio. 8/09/0 Corso di Finanza quaniaiva 5 Esempio:supponiamo non valga la proprieà appena enunciaa e dimosriamo come sia possibile cosruire un arbiraggio. Se fosse (,, ) c S τ > S sarebbe possibile vendere la calleuropea e acquisare il iolo soosane oenendo un flusso posiivo in enrambe le scadenze Vendo Acquiso (, τ, ) c ( S, τ, ) c S S S se S < : 0 se S : S +S Flussi di cassa c S, τ, S > 0 > 0 8/09/0 Corso di Finanza quaniaiva 6

4 Dao che l opzione americana presena ui i vanaggi di una opzione europea ed inolre può essere eserciaa prima della scadenza, il valore della callamericana deve essere superiore rispeo al valore della calla europea: c S C S Inolre, come già deo, il valore dell opzione callamericana ed europea alla scadenza devono coincidere. ( τ ) ( τ ) c S,, = C S,, = max[0, S ] Il prezzo di una opzione callal empo (sia europea che americana) ha due componeni: Prezzo dell opzione call al empo = Valore inrinseco + Valore emporale 8/09/0 Corso di Finanza quaniaiva 7 a) Il valore inrinseco (valore in he money ) è il valore che avrebbe l opzione se venisse eserciaa in quel momeno (). V.I.= max[0, S ] b) Il valore emporale (imevalue) è la differenza ra il prezzo dell opzione e il suo valore inrinseco ime value = c S, τ, max[0, S ] ime value = C S, τ, max[0, S ] Il valore emporale è il valore aribuibile al fao che l opzione deve ancora scadere. Può quindi ancora beneficiare di aumeni di prezzo del soosane. Per queso moivo, prima della scadenza l opzione calldeve avere un prezzo ceramene superiore al suo valore inrinseco, cioè deve avere un valore emporale posiivo. c S, τ, max[0, S ] C S, τ, max[0, S ] (Vedremo ra poco che, esaminando le proprieà, è possibile sabilire un limie inferiore 8/09/0 Corso di Finanza quaniaiva maggiore. ) 8

5 Vediamo ora le relazioni con le 3 variabili espliciae: 3 Relazione con la maurià (solo per le americane) L opzione con scadenza più lonana presena ui i vanaggi dell opzione con scadenza più ravvicinaa ed inolre può essere eserciaa anche dopo la scadenza dell opzione con duraa più breve. Il prezzo quindi di due opzioni callsullo sesso iolo e con lo sesso presso di esercizio deve essere: τ > τ se C S C S Per le europee non avviene lo sesso, dao che possono essere eserciae solo a scadenza. Si può verificare che se vale la disuguaglianza opposa si creano possibilià di arbiraggio. 8/09/0 Corso di Finanza quaniaiva 9 Esempio:supponiamo non valga la proprieà appena enunciaa e dimosriamo come sia possibile cosruire un arbiraggio. Se fosse C ( S, τ, ) C ( S, τ, ) < τ > τ Vendendo la callamericana con scadenza più prossima ed acquisando quella con scadenza più lonana, si oerrebbero flussi mai negaivi. + τ (O nel momeno in cui la callvendua viene eserciaa, se l esercizio avviene prima della scadenza) Vendo Acquiso Flussi di cassa + τ (, τ, ) + C ( S, τ, ) se S+ τ : ( S+ τ ) C S C S C S + C S,, C S,, > 0 8/09/0 Corso di Finanza quaniaiva Se viene eserciaa: Se non viene eserciaa vale almeno il Valore Imp: = 0 se S < : 0 ( S +τ ) + max[0, S ] + τ oppure 0 0

6 4 Relazione con il prezzo di esercizio (per europee e per americane) Al crescere del prezzo di esercizio diminuisce il payofffinale [ S ] max 0; Per cui deve diminuire anche il prezzo dell opzione. > se (, τ, ) (, τ, ) C S C S c S c S Anche in queso caso la proprieà è verificabile con l applicazione del principio di non arbiraggio. 8/09/0 Corso di Finanza quaniaiva Esempio:supponiamo non valga la proprieà appena enunciaa e dimosriamo come sia possibile cosruire un arbiraggio. Se fosse c S c S > Vendendo la callcon prezzo di esercizio più basso ed acquisando quella con prezzo di esercizio più alo, si oerrebbero flussi mai negaivi, ed una enraa cera. Vendo c S Acquiso Flussi di cassa c S + c S τ + = c S + c S,, c S,, > 0 8/09/0 Corso di Finanza quaniaiva se S < : 0 se S < : 0 se S : S se S < : 0 se S < : S se S : S se S < : 0 se S < : S > 0 se S : > 0

7 5 Relazione con il valore del soosane (per europee e per americane) Il prezzo della call è una funzione crescene del valore del soosane perché il payoff aumena al crescere del valore del soosane, quindi aumena il suo valore inrinseco. (, τ, ) S c S S C S 8/09/0 Corso di Finanza quaniaiva 3 6 Limie inferiore al prezzo dell opzione (vale per le europee e di conseguenza per le americane) Il prezzo dell opzione call europea ad un qualunque empo con ime o mauriy deve essere superiore al prezzo di un porafoglio composo da un azione e zero coupon bond con imeomauriy (vendui allo scopero). Supponiamo che (dao che se fosse la relazione divenerebbe τ ( τ ) ( τ ) c S,, max[0, S B ] max[0, S B ] = S B ( τ ) c S,, 0 max[0, S B τ ] = 0, ovviamene valida.) Anche in queso caso la proprieà è verificabile con l applicazione del principio di non arbiraggio. 8/09/0 Corso di Finanza quaniaiva 4 τ

8 Esempio:supponiamo non valga la proprieà appena enunciaa e dimosriamo come sia possibile cosruire un arbiraggio. Se fosse < ( τ ) c S S B Vendendo il porafoglio indicao nella pare desra della relazione (cioè vendendo allo scopero un azione e acquisando ioli zero coupon bond) ed acquisando l opzione call si oerrebbero flussi mai negaivi, ed una enraa cera. Vendo Acquiso Compro S B ( τ ) c S + τ = + S S B ( τ ) c S + se S < : 0 se S : S Flussi di cassa S B c S,, > 0 8/09/0 Corso di Finanza quaniaiva se S < : - S + > 0 se S : - S + + S = 0 5 La relazione deve valere anche per il prezzo dell opzione americana dao che Per cui: c S C S ( τ ) ( τ ) ( τ ) C S,, c S,, max[0, S B ] Da ques ulima relazione risula evidene come varia il prezzo della callall aumenare del asso privo di rischio: r B max[0, S B ] C, c Ed inolre risula chiaro che in assenza di dividendi una callamericana non verrà mai eserciaa prima della scadenza perché vale di più del payoffche si oerrebbe eserciandola: C S,, max[0, S B ] > max[0, S ] Nel caso di dividendi può risulare vanaggioso eserciare l opzione prima della scadenza per poere reinvesire i dividendi. 8/09/0 Corso di Finanza quaniaiva 6

9 7 Convessià del valore della callal empo rispeo al prezzo di esercizio (sia per europee che americane) Il grafico del payoffa scadenza in funzione del prezzo di esercizio (NB: prima avevamo viso il grafico del payoff in funzione del valore del soosane!) c S,, = C S,, = max[0, S ] S S max[0, S ] S 8/09/0 Corso di Finanza quaniaiva 7 La funzione è convessa, quindi dai due prezzi di esercizio e e 0 < λ <,vale la relazione: ( λ ( λ) ) λ [ ] ( λ ) [ ] max 0, S + max 0, S + max 0, S Quindi anche per i valori al empo deve avere la sessa relazione: (, τ, λ + ( λ) ) λ (, τ, ) + ( λ ) (, τ, ) c S c S c S In definiiva: la convessià rispeo al prezzo di esercizio della funzione payoffa scadenza fa discendere la convessià rispeo al prezzo di esercizio della funzione valore al empo. 8/09/0 Corso di Finanza quaniaiva 8

10 8 Convessià del valore della callal empo rispeo al prezzo del soosane (sia per europee che americane) Dobbiamo dimosrare che la funzione prezzo: c S È convessa rispeo al prezzo del soosane. ralasciamo per semplicià di noazione l indicazione emporale S : = S : = c S c S Consideriamo due prezzi dell azione e la loro combinazione lineare convessa S S S = γ S + γ S 0 γ 3 8/09/0 Corso di Finanza quaniaiva 9 Abbiamo appena verificao la relazione di convessià rispeo al prezzo di esercizio (pag 8): c S, τ, λ + λ λc S, τ, + λ c S, τ, ale relazione vale comunque si scelgano i prezzi dei soosani, e. Poniamo allora si ha dao che. 0 λ S < S3 S = = λ = γ S S S 3 0 λ Poniamo pari ad il soosane e moliplichiamo enrambi i membri ella disuguaglianza per S 3 { + ( ) ( γ ) S c, τ, λs c, τ, λ S c, τ, γ S ( ) λ S = S λs = S γ S ( ) ( ) S = γ S + γ S S γ S = γ S 3 3 8/09/0 Corso di Finanza quaniaiva S 0

11 (, τ, ) γ (, τ, ) + ( γ ) (, τ, ) S c S c S c 3 3 Ipoizzando che la disribuzione dei rendimeni del iolo azionario sia indipendene dal livello del prezzo azionario, le funzioni di prezzo dell opzione sono omogenee di grado in S e, per cui: { c S3, τ, S3 3 γ c S, τ, S + γ c S, τ, S { λ λ }} } } S S S3 3 = S3 λ + ( λ ) = S3 γ + γ = S3 S S 3 S S S S S γ γ S S γ γ S S 3 3 = + = + = S γ S + γ S + ( γ ) S γ S γ S + ( γ ) S = = = S S 8/09/0 Corso di Finanza quaniaiva S = 3 3 γ ( γ ) c S c S + c S 3 γ è sao scelo arbirariamene, per cui la relazione vale per qualunque. 0 γ Si può adesso rappresenare la forma generale del prezzo della callal empo in funzione del prezzo azionario osservao al empo sesso. 8/09/0 Corso di Finanza quaniaiva

12 Riassumeno, abbiamo viso che: ( τ ) S = 0 c S,, = 0 S c S c S è convessa (,, ) c S τ < S S ( τ ) c S S B c S S S B τ B τ 8/09/0 Corso di Finanza quaniaiva S 3 Se il imeomauriyaumena, la rea che rappresena il limie inferiore della zona in cui si rova la funzione prezzo, si sposa verso sinisra. B τ B τ τ c S S S B τ 3 S B τ S B τ τ < τ < τ 3 B ( τ ) B ( τ ) 8/09/0 3 Corso di Finanza quaniaiva B τ S 4

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1- soluzioni - Leggi finanziarie, rendite ed ammortamenti Esercizi di Maemaica Finanziaria - Corso Par Time scheda - soluzioni - Leggi finanziarie, rendie ed ammorameni. Le soluzioni sono: (a) M 3 = 00 ( + 3) = 5, M 8 = 5 ( + 5) = 43.75. (b) Va risola l equazione

Dettagli

La struttura a termine dei tassi d interesse. Benedetto Matarazzo

La struttura a termine dei tassi d interesse. Benedetto Matarazzo La sruura a ermine dei assi d ineresse Benedeo Maarazzo Corso di Maemaica Finanziaria Sruura per scadenza dei assi di ineresse Generalià sul mercao dei capiali La sruura per scadenza dei assi d ineresse

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

MQ per la finanza (pre-corso) Semplici esempi numerici sulle obbligazioni

MQ per la finanza (pre-corso) Semplici esempi numerici sulle obbligazioni MQ per la finanza (pre-corso) Semplici esempi numerici sulle obbligazioni Riepilogo ipologie ioli di sao ialiani 2 BT Ialia 3 Sruura del debio e via media 4 . Rendimeno a scadenza di un iolo zero coupon

Dettagli

MATEMATICA FINANZIARIA A.A Prova del 22 febbraio Esercizio 1 (4 punti)

MATEMATICA FINANZIARIA A.A Prova del 22 febbraio Esercizio 1 (4 punti) MATEMATICA FINANIARIA A.A. 007 00 Prova del febbraio 00 Esercizio (4 puni) La vendia raeale di un bene di valore 30 000 prevede il pagameno di 30 rae mensili posicipae cosani differie di 6 mesi, di imporo

Dettagli

Processi stocastici e affidabilità

Processi stocastici e affidabilità Processi socasici e affidabilià ω Dao un esperimeno casuale, si assuma di associare ad ogni ( ω ) esio ω una funzione x, di. Risula così definio un insieme di funzioni del empo, deo processo socasico,

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

Stabilità dell equilibrio (parte II)

Stabilità dell equilibrio (parte II) Appuni di Teoria dei sisemi - Capiolo 5 Sabilià dell equilibrio (pare II) Cenni sui crieri di insabilià... Cenni sulla sabilià dell equilibrio nei sisemi discrei... 3 Crieri di sabilià del movimeno...

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Il Value at Risk secondo l approccio parametrico: un esempio semplificato

Il Value at Risk secondo l approccio parametrico: un esempio semplificato Universià degli Sudi di Napoli Federico II Caedra di Economia delle Aziende di Assicurazione Il Value a Risk secondo l approccio paramerico: un esempio semplificao Domenico Curcio, Ph. D. Value a Risk

Dettagli

Cinematica del punto materiale 1. La definizione di cinematica.

Cinematica del punto materiale 1. La definizione di cinematica. Cinemaica del puno maeriale 1. La definizione di cinemaica. 2. Posizione e Sposameno 3. Equazione oraria del moo 4. Traieoria 5. Moo in una dimensione. 6. Velocià media e velocià isananea. 7. Moo reilineo

Dettagli

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale

ed interpretare geometricamente il risultato ottenuto. Esprimere, per t 2, l integrale Fisica Prova d esempio per l esame (MIUR, aprile 019) Problema 1 Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani 1 m l uno dall alro e di lunghezza indefinia, sono percorsi

Dettagli

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5

L andamento del livello e della posizione d inventario indicativamente è il seguente. L = 0,5 L = 0,5 Esercizio 1 Ricapioliamo i dai a nosra disposizione (o ricavabili da quesi): - asso di domanda aeso: đ = 194 unià/mese - deviazione sandard asso di domanda: σ d = 73 - coso fisso emissione ordine (approvvigionameno):

Dettagli

Affidabilità dei sistemi

Affidabilità dei sistemi dei sisemi Un sisema (o uno qualsiasi dei suoi componeni) può essere soggeo a sress casuali. Es: un fusibile in un circuio; una rave di acciaio soo carico; l ala di un aereo soo l influenza di forze Collasso

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

1 Catene di Markov a stati continui

1 Catene di Markov a stati continui Caene di Markov a sai coninui In queso caso abbiamo ancora una successione di variabili casuali X 0, X, X,... ma lo spazio degli sai è un insieme più che numerabile. Nel seguio supporremo che lo spazio

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Introduzione ai Modelli di Durata: Stime Non-Parametriche. a.a. 2009/ Quarto Periodo Prof. Filippo DOMMA

Introduzione ai Modelli di Durata: Stime Non-Parametriche. a.a. 2009/ Quarto Periodo Prof. Filippo DOMMA Inroduzione ai Modelli di Duraa: ime Non-Parameriche cenni a.a. 2009/2010 - Quaro Periodo Prof. Filippo DOMMA Corso di Laurea pecialisica/magisrale in Economia Applicaa Facolà di Economia UniCal F. DOMMA

Dettagli

Geometria analitica del piano pag 1 Adolfo Scimone

Geometria analitica del piano pag 1 Adolfo Scimone Geomeria analiica del piano pag Adolfo Scimone GEOMETRIA ANALITICA Lo scopo della geomeria analiica è quello di individuare i puni di una rea, di un piano, dello spazio, o più in generale gli eni geomerici

Dettagli

Circuito RC. Una resistenza R collegata ad una sorgente di tensione in una maglia circuitale limita il flusso di carica => V = RI

Circuito RC. Una resistenza R collegata ad una sorgente di tensione in una maglia circuitale limita il flusso di carica => V = RI Circuio Una resisenza R collegaa ad una sorgene di ensione in una maglia circuiale limia il flusso di carica => V = RI Un condensaore collegao ad una sorgene di ensione in una maglia circuiale immagazzina

Dettagli

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r!

Posizione-Spostamento-velocità media. t 3. x 3. x ( t 3 ) = x 3. x ( t 4 ) = x 4. caso particolare di moto unidimensionale. r! Posizione-Sposameno-velocià media Consideriamo un puno maeriale che si muove nel empo lungo una rea (moo unidimensionale) 5 1 5 1 2 2 4 ( 1 ) = 1 ( 2 ) = 2 ( 3 ) = 3 ( 4 ) = 4 ( 5 ) = 5 v, ʹ < 1 < 2

Dettagli

Laboratorio di Ricerca Operativa Un problema di produzione

Laboratorio di Ricerca Operativa Un problema di produzione Laboraorio di Ricerca Operaiva Un problema di produzione Andrea Manno e Simone Sagraella (revisione per MMER di Laura Palagi) 31 oobre 2014 S on o i l p r es i d en e d e l l a M a r in e r o S. r. l.

Dettagli

Geometria BAER A.A Foglio esercizi 1

Geometria BAER A.A Foglio esercizi 1 Geomeria BAER A.A. 16-17 Foglio esercii 1 Eserciio 1. Risolvere le segueni equaioni lineari nelle variabili indicae rovando una parameriaione dell insieme delle soluioni. a) + 5y = 3 nelle incognie, y.

Dettagli

3.13 Accelerazione vettoriale 1. L accelerazione vettoriale media di un punto nell intervallo di tempo tra t' e t" è la grandezza

3.13 Accelerazione vettoriale 1. L accelerazione vettoriale media di un punto nell intervallo di tempo tra t' e t è la grandezza Capiolo 3 Cinemaica generale (pare prima) 87 48 (a) Dao che a ds = v dv (vedi precedene risp.44), e al empo sesso a = k v (dao del problema), possiamo scrivere k v ds = v dv, ovvero k ds = (dv) /v. er

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA SISTEMI LTI Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale complesso, l

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e veoriali Esempio veore sposameno: Esisono due ipi di grandezze fisiche. a)grandezze scalari specificae da un valore numerico (posiivo negaivo o nullo) e (nel caso di grandezze dimensionae)

Dettagli

), dove K è una costante positiva della quale si richiede l unità di

), dove K è una costante positiva della quale si richiede l unità di Simulazione di prova scria di MATEMATICA-FISICA - MIUR -..019 PROBLEMA 1 - soluzione con la calcolarice grafica TI-Nspire CX della Texas Insrumens Soluzione a cura di: Formaori T Ialia - Teachers Teaching

Dettagli

TRASFORMATA DI FOURIER DI DISTRIBUZIONI

TRASFORMATA DI FOURIER DI DISTRIBUZIONI TRASFORMATA DI FOURIER DI DISTRIBUZIONI Tue le proprieà vise per la rasformaa di Fourier sono applicabili alle funzioni dello spazio S. Queso permee di rasferire le sesse proprieà alle disribuzioni di

Dettagli

Soluzione degli esercizi del Capitolo 1

Soluzione degli esercizi del Capitolo 1 Soluzione degli esercizi del Capiolo Soluzione dell Esercizio. Il valore più opporuno ū di u è quello per cui, in condizioni nominali, la variabile conrollaa assume il valore desiderao; perciò si rova

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t)

SEGNALI E SISTEMI (a.a ) Prof. M. Pavon Esercizi risolti 6 Attenzione: u(t) = 1l(t) SEGNALI E SISTEMI (a.a. 9-) Prof. M. Pavon Esercizi risoli 6 Aenzione: u() = l(). Si deermini il periodo fondamenale T e i coefficieni di Fourier a k del segnale a empo coninuo sen + 4 cos + cos(6 π 4

Dettagli

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3

10 ESERCITAZIONE. Esercizi svolti: Capitolo 15 Curva di Phillips Esercizio 2. Capitolo 16 Disinflazione, disoccupazione e crescita Esercizio 3 10 SRCITAZION sercizi svoli: Capiolo 15 Curva di Phillips sercizio 2 Capiolo 16 Disinflazione, disoccupazione e crescia sercizio 3 1 CAPITOLO 15 CURVA DI PHILLIPS Curva di Phillips Relazione che lega inflazione

Dettagli

Lezione Maggio Filtro con buer a guadagni costanti con perdita di pacchetti e ritardo

Lezione Maggio Filtro con buer a guadagni costanti con perdita di pacchetti e ritardo PSC: Progeazione di sisemi di conrollo III Trim 2007 Lezione 11 14 Maggio 2007 Docene: Luca Schenao Sesori: P D'Errico, A Agnoli, A Pegoraro 111 Filro con buer a guadagni cosani con perdia di pacchei e

Dettagli

*5$1'(==(3(5,2',&+( W GW

*5$1'(==(3(5,2',&+( W GW *51'((3(5'&+( 3UQFSDOGQ]RQ Una grandezza empodipendene D) si definisce SURGFD quando ad uguali inervalli T assume valori uguali cioè quando vale la relazione (con n inero qualsiasi): ( ) D( Q) D + (1)

Dettagli

Il modello del duration gap

Il modello del duration gap Slides rae da: Andrea Resi Andrea Sironi Rischio e valore nelle banche Misura, regolamenazione, gesione Egea, 2008 AGENDA Una conabilià a valori di mercao La duraion Il duraion Gap I limii del modello

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

OBBLIGAZIONI A CEDOLA FISSA

OBBLIGAZIONI A CEDOLA FISSA OBBLGAZON A EDOLA FSSA L acquiso di una obbligazione sul mercao finanziario è un esempio di operazione finanziaria, precisamene si raa di una operazione di puro invesimeno, in quano si ha una sola uscia

Dettagli

e sostituendo il valore =6 si ottiene che:

e sostituendo il valore =6 si ottiene che: ESAME DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 011 CORSO DI ORDINAMENTO Quesionario Quesio 1 Poniamo = con i limii geomerici 0

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

LEZIONE 2.2 LE VARIABILI MACROECONOMICHE

LEZIONE 2.2 LE VARIABILI MACROECONOMICHE LEZIONE 2.22 LE VARIABILI MACROECONOMICHE 1 Le variabili macroeconomiche Livello generale dei prezzi, P Tasso d inflazione, f Gap di produzione (Oupu gap), δ Tasso di crescia del PIL reale, γ Tasso di

Dettagli

Struttura dei tassi per scadenza

Struttura dei tassi per scadenza Sruura dei assi per scadenza /45-Unià 7. Definizione del modello ramie gli -coupon bonds preseni sul mercao Ipoesi di parenza Sul mercao sono preseni all isane ZCB che scadono fra,2,,n periodi Periodo:

Dettagli

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona

La cicloide. Flaviano Battelli Dipartimento di Scienze Matematiche Università Politecnica delle Marche, Ancona La cicloide Flaviano Baelli Diparimeno di Scienze Maemaiche Universià Poliecnica delle Marche, Ancona In una circonferenza γ di raggio r che poggia su una rea fissiamo un puno P e facciamo roolare senza

Dettagli

IL COORDINAMENTO MONETARIO INTERNAZIONALE: IL MODELLO MUNDELL-FLEMING

IL COORDINAMENTO MONETARIO INTERNAZIONALE: IL MODELLO MUNDELL-FLEMING CORSO DI POLITICA CONOMICA INTRNAZIONAL AA 2017-2018 IL COORDINAMNTO MONTARIO INTRNAZIONAL: IL MODLLO MUNDLL-FLMING DOCNT PIRLUIGI MONTALBANO pierluigi.monalbano@uniroma1.i Il Modello Mundell-Fleming Ci

Dettagli

Il modello di crescita deriva dalla logica del tasso di interesse semplice

Il modello di crescita deriva dalla logica del tasso di interesse semplice Eserciazione 7: Approfondimeni sui modelli di crescia. Crescia arimeica, geomerica, esponenziale. Calcolo del asso di crescia e del empo di raddoppio. Viviana Amai 03/06/2009 Modelli di crescia Nella prima

Dettagli

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI

AA. 2012/13 50011-CLMG Esercitazione - IRPEF TESTO E SOLUZIONI AA. 2012/13 50011-CLMG Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Economia Politica H-Z Lezione 9

Economia Politica H-Z Lezione 9 Blanchard, Macroeconomia, Il Mulino 2009 Economia Poliica H-Z Lezione 9 Sergio Vergalli vergalli@eco.unibs.i Sergio Vergalli - Lezione 4 1 Blanchard, Macroeconomia, Il Mulino 2009 Capiolo XIII. Le aspeaive:

Dettagli

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235

9.4.4 Filtro adattato 9.4. FILTRAGGIO DI SEGNALI E PROCESSI 235 9.4. FILRAGGIO DI SEGNALI E PROCESSI 35 Rispose ) Calcoliamo la media emporale: P x = ; / / x () d = /4 /4 () d = 4 = ) Sappiamo che P y = Py (f) df, in cui Py (f) = Y (f), ed a sua vola Y (f) = X (f)

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

Prova Scritta di Robotica I B: preferibile per 5 crediti 12 Gennaio 2010

Prova Scritta di Robotica I B: preferibile per 5 crediti 12 Gennaio 2010 Prova Scria di Roboica I B: preferibile per 5 credii Gennaio Esercizio Si consideri il cammino caresiano paramerico x(s) p p(s) y(s) z(s) R cos s R sin s h s, s [, + ) dove R > e h >. Tale cammino è una

Dettagli

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1

f v, lim allora x, y x, y e analogamente se 0,1 Osserviamo che la derivata direzionale esiste per ogni punto x y e ogni vettore,2 0,0 cos 2 1 DERIVATA DIREZIONALE La definizione di derivaa direzionale è y, lim,, f v y v f y v, v Se v, allora, y, y e analogamene se,, y, y f, y y Calcolare la derivaa direzionale della funzione dove v allora dom

Dettagli

Il MODELLO MUNDELL-FLEMING

Il MODELLO MUNDELL-FLEMING CORSO DI POLITICA ECONOMICA AA 2015-2016 2016 Il MODELLO MUNDELL-FLEMING DOCENTE PIERLUIGI MONTALBANO pierluigi.monalbano@uniroma1.i Il Modello Mundell-Fleming Ci permee di analizzare gli effei della poliica

Dettagli

Risk Management: strategie di hedging. Econofisica Doc. Anna Pastorello

Risk Management: strategie di hedging. Econofisica Doc. Anna Pastorello Risk Managemen: sraegie di hedging Econofisica Doc. Anna Pasorello Consan Proporion Porfolio Insurance (CPPI) Sraegia di assicurazione di porafoglio che garanisce in un empo fuuro un valore minimo (deo

Dettagli

Funzione finanziaria, gestione dell impresa e mercato dei capitali

Funzione finanziaria, gestione dell impresa e mercato dei capitali Funzione finanziaria, gesione dell impresa e mercao dei capiali La funzione finanziaria e i mercai dei capiali Relazioni ra l impresa e i mercai dei capiali Tassi di ineresse ed efficienza dei mercai Il

Dettagli

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy.

1) Determinare la soluzione massimale del problema di Cauchy. 2) Determinare la soluzione massimale del problema di Cauchy. Capiolo 3 Equazioni differenziali Esercizi ) Deerminare la soluzione massimale del problema di Cauchy y ()= y() 4 3 y()= ) Deerminare la soluzione massimale del problema di Cauchy y ()= 4 + 6 y()+ 8 (

Dettagli

OBBLIGAZIONI A CEDOLA FISSA

OBBLIGAZIONI A CEDOLA FISSA OBBLGAZON A EDOLA FSSA L acquiso di una obbligazione sul mercao finanziario è un esempio di operazione finanziaria, precisamene si raa di una operazione di puro invesimeno, in quano si ha una sola uscia

Dettagli

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani)

( ) ( ) Esempio di Prova di MATEMATICA E FISICA - MIUR PROBLEMA 1 (traccia di soluzione di S. De Stefani) Esempio di Prova di MATEMATICA E FISICA - MIUR - 8..9 PROBLEMA (raccia di soluzione di S. De Sefani) Assegnae due cosani reali a e (con >), si consideri la funzione ) così definia: )=. A seconda dei possiili

Dettagli

La valutazione della congruità del contributo pubblico in un operazione di Finanza di Progetto

La valutazione della congruità del contributo pubblico in un operazione di Finanza di Progetto Srumeni di Finanza Innovaiva negli EL La valuazione della congruià del conribuo pubblico in un operazione di Finanza di Progeo Roma, 8 Maggio 2006 Gabriele FERRANTE Pasquale MARASCO Unià ecnica Finanza

Dettagli

Operazioni finanziarie. Operazioni finanziarie

Operazioni finanziarie. Operazioni finanziarie Operazioni finanziarie Una operazione finanziaria è uno scambio di flussi finanziari disponibili in isani di empo differeni. Disinguiamo ra: operazioni finanziarie in condizioni di cerezza, quando ui gli

Dettagli

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

Generatore di clock mediante NE 555

Generatore di clock mediante NE 555 Generaore di clock mediane NE 555 onsideriamo la seguene figura inegrao NE555 è quello racchiuso dalla linea raeggiaa. i noa, all inerno dell inegrao, un lach di ipo R. Un lach di ipo R è un circuio sequenziale

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica

at e segue q ' t ae 1 bt 0 1 bt 0 t se b 0 b eb a 4 eb e q t 4t e t e e Simulazione ministeriale dell Esame di Stato 2019_2 Matematica e Fisica Simulazione miniseriale dell Esame di Sao 09_ Maemaica e Fisica Problema n. q a e segue Daa la funzione b b q ' ae b Il cui segno è dao da se b 0 b b q ' ae b 0 b 0 se b 0 se b 0 b a Perano il puno di

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Probabilià e Saisica 26-7 PBaldi, GTerenzi Tuorao 5, 2 aprile 27 Corso di Laurea in Maemaica Esercizio Dire se esisono delle cosani c ali che le funzioni a) f (x)

Dettagli

I metodi quantitativi per la detection. di Abusi di Mercato

I metodi quantitativi per la detection. di Abusi di Mercato Marcello Minenna I meodi quaniaivi per la deecion di Abusi di Mercao 1 I meodi quaniaivi per la deecion Abusi di Mercao Insider Trading Aggioaggio 2 Mare Abuse: Insider Trading Definizione: Abuso sul mercao

Dettagli

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica

Velocità istantanea. dx dt. Università degli Studi di Bari Aldo Moro Dip. DiSAAT - Ing. Francesco Santoro Corso di Fisica Velocià isananea Al diminuire dell inerallo di empo Δ, fissao il empo, la elocià ende ad un alore limie. Riducendo a zero l ampiezza dell inerallo di empo equiarrebbe a deerminare la elocià del puno maeriale

Dettagli

1.7. Il modello completo e le sue proprietà

1.7. Il modello completo e le sue proprietà La Teoria Generale 1 1.7. Il modello compleo e le sue proprieà Il ragionameno svolo fino a queso puno è valido per un livello dao del salario nominale e dei prezzi. Le grandezze preseni nel modello, per

Dettagli

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1

SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE Tema di MATEMATICA e FISICA PROBLEMA 1 www.maefilia.i SIMULAZIONE SECONDA PROVA SCRITTA 02 APRILE 209 Tema di MATEMATICA e FISICA PROBLEMA Due fili reilinei paralleli vincolai a rimanere nella loro posizione, disani m l uno dall alro e di lunghezza

Dettagli

Modelli stocastici per la volatilità

Modelli stocastici per la volatilità Modelli socasici per la volailià Dai modelli di volailià a media mobile ai modelli GARCH I modelli di volailià con medie mobili assumono ce i rendimeni siano i.i.d. la volailià è cosane nel empo: forniscono

Dettagli

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni

SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 24/06/08. C.L. in Matematica e Matematica per le Applicazioni SOLUZIONI SCRITTO DI ANALISI MATEMATICA II - 4/06/08 C.L. in Maemaica e Maemaica per le Applicazioni Prof. K. R. Payne e Do. M. Calanchi, C. Tarsi, L. Vesely Soluzione esercizio. (a) Sia f definia da f(x)

Dettagli

Qualunque sia il valore iniziale della popolazione, a lungo termine essa si assesterà alla capacità portante

Qualunque sia il valore iniziale della popolazione, a lungo termine essa si assesterà alla capacità portante popolazione popolazione.25 Modello di Beveron-Hol y=.2 y=.1 1.8 Modello di Beveron-Hol y=.2 y=.1 y=1.2.15 lambda=1.5 alpha=2 Capacià porane K=(lambda-1)/alpha =.25.6.4 lambda=1.5 alpha=2 Capacià porane

Dettagli

Lezione 2. Appendice 1. Il livello di inquinamento efficiente quando siamo in presenza di uno stock-damage pollution : un analisi di steady-state.

Lezione 2. Appendice 1. Il livello di inquinamento efficiente quando siamo in presenza di uno stock-damage pollution : un analisi di steady-state. 1 Lezione 2 Appendice 1 Il livello di inquinameno efficiene quando siamo in presenza di uno sock-damage polluion : un analisi di seady-sae. Quesa analisi è complicaa dal fao che i singoli isani emporali

Dettagli

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2.

4 appartengono alla traiettoria di γ. 1, C = 2. ( v) Determinare in quali punti il piano normale alla curva è parallelo all asse z. π cos π 2. Soluzioni Esercizi 6. () Sia γ: R R 3 la curva definia da γ() = cos. e (i) Deerminare se A =, B =, C = 4 apparengono alla raieoria di γ. 8 (ii) Deerminare re puni P, Q, R sulla raieoria di γ. (iii) Deerminare

Dettagli

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO)

STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) 3 Capiolo STABILITÀ DI SISTEMI DINAMICI STABILITÀ INGRESSO-USCITA (BIBO) Un generico sisema è deo sabile se, ecciao da una qualsiasi funzione di enraa ale da essere sempre limiaa, risponde con una uscia

Dettagli

Introduzione alla cinematica

Introduzione alla cinematica Inroduzione alla cinemaica La cinemaica si pone come obieivo lo sudio del moo, ovvero lo sudio degli sposameni di un corpo in funzione del empo A ale fine viene inrodoo un conceo asrao: il puno maeriale

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Teoria dei segnali terza edizione

Teoria dei segnali terza edizione eoria dei segnali Capiolo 4 Sisemi monodimensionali a empo coninuo SOLUZIONI DEGLI ESERCIZI Soluzione dell esercizio 4. Il segnale x () coniene le requenza = and = 7 / ( ) = 3.5 / quindi, disorsioni di

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico

Blanchard, Macroeconomia, Il Mulino 2009 Capitolo XXII. Elevato debito pubblico. Capitolo XXII. Elevato debito pubblico Capiolo XXII. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = rb 1 + G T B -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse

Dettagli

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero

Modelli ARMA, regressione spuria e cointegrazione Amedeo Argentiero Modelli ARMA, regressione spuria e coinegrazione Amedeo Argeniero amedeo.argeniero@unipg.i Definizione modello ARMA Un modello ARMA(p, q) (AuoRegressive Moving Average of order p and q) ha la seguene sruura:

Dettagli

Capitolo XXI. disavanzo. Elevato debito pubblico 20/05/ Il vincolo di bilancio del governo. Il disavanzo di bilancio nell anno t è:

Capitolo XXI. disavanzo. Elevato debito pubblico 20/05/ Il vincolo di bilancio del governo. Il disavanzo di bilancio nell anno t è: Capiolo XXI. Elevao debio pubblico 1. Il vincolo di bilancio del governo Il disavanzo di bilancio nell anno è: disavanzo = r 1 + G T -1 = debio pubblico alla fine dell anno -1 r = asso di ineresse reale

Dettagli

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come

Fondamenti di Automatica Test di autovalutazione n.1 (test di ingresso) può anche essere rappresentato come Fondameni di Auomaica Tes di auovaluazione n. (es di ingresso). Il numero complesso [a] 2 j2 3 [b] 2 3 j2 [c] 8 3 j [d] 2 + j2 3 /6 4e jπ può anche essere rappresenao come 2. L argomeno, espresso in radiani,

Dettagli

6061-CLMG Prima Esercitazione (Irpef) TESTO E SOLUZIONI

6061-CLMG Prima Esercitazione (Irpef) TESTO E SOLUZIONI 6061-CLMG Prima Eserciazione (Irpef) TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso del 2008, i segueni reddii: - Reddii da lavoro dipendene 30000

Dettagli

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio;

2. Determinare la velocità v di impatto al suolo del sasso, e commentare se è maggiore o minore di quella di lancio; 1 Esercizio Un uomo lancia in alo, vericalmene luno l asse z, un sasso da un alezza h 0 = m dal suolo, con una velocià di 10 m/s. Il sasso si muove di moo uniformemene accelerao, con un accelerazione di

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del log 1 + x2 y 2 Analisi Maemaica II Corso di Ingegneria Gesionale Compio del 5-7-7 - È obbligaorio consegnare ui i fogli, anche la brua e il eso. - Le rispose senza giusificazione sono considerae nulle. Esercizio. puni

Dettagli

Moto in una dimensione

Moto in una dimensione INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moo in una dimensione Sposameno e velocià Sposameno Il moo di un puno maeriale è deerminao se si conosce, isane

Dettagli

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari L'imporanza delle resrizioni economeriche nell'uilizzo dei modelli GARCH per la valuazione del rischio di prodoi finanziari Giusj Carmen Sanangelo (MeodiaLab) Robero Reno (Universià di Siena e MeodiaLab)

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi

Dettagli