Sistemi di congruenze lineari

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi di congruenze lineari"

Transcript

1 Sistemi di congruenze lineari Per sistema sistema di congruenze lineari si intende il problema di determinare, se esistono, tutti gli interi che soddisfano contemporaneamente ad un certo numero di assegnate congruenze lineari: a 1 x b 1 (mod n 1 ) a 2 x b 2 (mod n 2 ). a h x b h (mod n h )

2 Sistemi di congruenze lineari Per sistema sistema di congruenze lineari si intende il problema di determinare, se esistono, tutti gli interi che soddisfano contemporaneamente ad un certo numero di assegnate congruenze lineari: a 1 x b 1 (mod n 1 ) a 2 x b 2 (mod n 2 ). a h x b h (mod n h ) Osservazione 1) Ovviamente se anche una sola delle congruenze non è separatamente risolubile, allora il sistema non è risolubile. Pertanto, affinché un sistema di congruenze ammetta soluzioni, è necessario che MCD(a i, n i ) divida b i, per ogni i = 1,..., h.

3 2) Si dimostra che, se una congruenza lineare ax b (mod n) è compatibile, allora, posto d = MCD(a, n), essa ha le stesse soluzioni di a d x b d (mod n d ). Da notare che MCD( a d, n d ) = 1.

4 2) Si dimostra che, se una congruenza lineare ax b (mod n) è compatibile, allora, posto d = MCD(a, n), essa ha le stesse soluzioni di a d x b d (mod n d ). Da notare che MCD( a d, n d ) = 1. Pertanto, sostituendo in questo modo ogni singola congruenza lineare di un dato sistema con la sua equivalente, si ottiene un sistema di congruenze lineari avente le stesse soluzioni di quello di partenza. Esso è del tipo a 1 x b 1 (mod n 1 ) a 2 x b 2 (mod n 2 ) con MCD(a i, n i ) = 1.. a h x b h (mod n h ),

5 Teorema (Teorema Cinese del Resto) Un sistema di congruenze lineari a 1 x b 1 (mod n 1 ) a 2 x b 2 (mod n 2 ). a h x b h (mod n h ) dove i, j = 1,..., h, i j MCD(n i, n j ) = 1 e MCD(a i, n i ) = 1, ha sempre soluzioni. Inoltre vi è un unica soluzione modulo R = n 1... n h data da [x 0 ] R con x 0 una soluzione particolare. Si dimostra che una soluzione è data da: x 0 = R 1 x 1 + R 2 x R h x h dove per ogni i = 1,..., h R i = n 1 n 2... n h n i, mentre x i è una soluzione della congruenza lineare a i R i x b i (mod n i ).

6 Esempio Si vede facilmente che x 3(mod 5) x 4(mod 3) x 2(mod 7) x 5(mod 2) R 1 = 42, R 2 = 70, R 3 = 30, R 4 = 105. Si cercano le soluzioni delle congruenze lineari previste nel teorema: 42x 3(mod 5) ha soluzione x 1 = 6, (si trova eseguendo l algoritmo delle divisioni successive) 70x 4(mod 3) ha soluzione x 2 = 1 (70 4 = 66 che è multiplo di 3)

7 30x 2(mod 7) ha soluzione x 3 = 1 (30 2 = 28 che è multiplo di 7) 105x 5(mod 2) ha soluzione x 4 = 1 (105 5 = 100 che è multiplo di 2). Allora una soluzione del sistema è x = 42 ( 6) = 47, mentre la più piccola soluzione positiva è 163 e tutte le soluzioni del sistema sono h, h Z.

8 Il sistema crittografico RSA Prima di tutto le lettere vengono rappresentate da numeri in codice. Per esempio Nell American Standard Code for Information Interchange le lettere vengono rappresentate dai numeri da 065 a 090. Ogni utente B deve scegliere una coppia di numeri (n B, e B ) in modo che n B sia il prodotto di due numeri primi distinti molto grandi, n B = p B q B, e MCD(e B, p B 1) = 1, MCD(e B, q B 1) = 1. La coppia (n B, e B ) è pubblica, ma non è pubblica la scomposizione di n B. La segretezza di questo sistema sta proprio in questo: B deve costruire n B scegliendo due numeri primi p B e q B molto grandi e moltiplicandoli. Come si fa a trovare un numero primo? si prende un numero dispari m e si sottopone a certi tests di primalità: se un test viene superato va bene, altrimenti si prova con m + 2.

9 La coppia (n B, e B ) dà a B la chiave segreta per decodificare i messaggi: si tratta del numero d B, soluzione della congruenza lineare e B x 1(mod ϕ(n B )) (1) e tale che 0 d B < ϕ(n B ). Sicuramente (1) ammette soluzione visto che ϕ(n B ) = (p B 1)(q B 1) e quindi MCD(e B, ϕ(n B )) = MCD(e B, (p B 1)(q B 1)) = 1. Inoltre questa soluzione è unica (mod ϕ(n B )). Quindi B è l unico che può conoscere la chiave d B tale che: e B d B 1(mod ϕ(n B )), 0 d B < ϕ(n B ) perchè soltanto B conosce ϕ(n B ).

10 Si supponga che l utente A debba inviare il messaggio M all utente B. Allora consulta gli elenchi ufficiali e trova la coppia (n B, e B ). Se il messaggio è più lungo di n B, A lo può spezzare in modo standard in più di uno. Quindi si può supporre che M < n B, e MCD(M, n B ) = 1. Il messaggio codificato che A invia a B è M tale che M M e B (mod n B ). Usando il Teorema di Eulero si dimostra che: M M d B (mod n B ) e quindi B, risolvendo questa congruenza (mod n B ) avrà decodificato il messaggio.

11 Esempio L utente A vuole inviare il messaggio M = 4 all utente B, la cui coppia identificativa è (n B = 221, e B = 7). Allora soltanto B sa che n B = e quindi ϕ(n B ) = ϕ(13)ϕ(17) = = 192. Pertanto la congruenza lineare 7x 1(mod 192) dà a B (e soltanto a lui) la chiave d B = 55 per la decodifica dei messaggi. L utente A invia a B il messaggio M = 30 perchè (mod 221). Allora B, facendo un pò di calcoli, ottiene che (mod 221).

RACCOLTA DI ALCUNI ESERCIZI TRATTI DA COMPITI D ESAME SUL SISTEMA CRITTOGRAFICO RSA

RACCOLTA DI ALCUNI ESERCIZI TRATTI DA COMPITI D ESAME SUL SISTEMA CRITTOGRAFICO RSA RACCOLTA DI ALCUNI ESERCIZI TRATTI DA COMPITI D ESAME SUL SISTEMA CRITTOGRAFICO RSA Attenzione: questi sono alcuni esercizi d esame, sugli argomenti di questa dispensa. Non sono una selezione di quelli

Dettagli

Piccolo teorema di Fermat

Piccolo teorema di Fermat Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod

Dettagli

623 = , 413 = , 210 = , 203 =

623 = , 413 = , 210 = , 203 = Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide

Dettagli

M.C.D.(3522, 321) = 3 = ( 36) (395) 321

M.C.D.(3522, 321) = 3 = ( 36) (395) 321 Capitolo 1 Congruenze Lineari 1.1 Prerequisiti Identita di Bezout: M.C.D.(a, b) = αa + βb con α e β opportuni interi. In altre parole il M.C.D.(a, b) é combinazione lineare di a e b. Quando la combinazione

Dettagli

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se

NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se NUMERI PRIMI E TEORMA FONDAMENTALE DELL ARITMETICA Definizione 1. Sia p Z, p ±1. Si dice che p è primo se ( a, b Z) (p ab = (p a p b). Teorema 1. Sia p Z, p ±1. Allora p è primo se e solo se ( a, b Z)

Dettagli

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica

m = a k n k + + a 1 n + a 0 Tale scrittura si chiama rappresentazione del numero m in base n e si indica G. Pareschi COMPLEMENTI ED ESEMPI SUI NUMERI INTERI. 1. Divisione con resto di numeri interi 1.1. Divisione con resto. Per evitare fraintendimenti nel caso in cui il numero a del Teorema 0.4 sia negativo,

Dettagli

Aritmetica modulare, numeri primi e crittografia

Aritmetica modulare, numeri primi e crittografia Università di Pavia 14 Giugno 2016 Numeri primi Definizione Un intero n > 1 è un numero primo se non esistono due interi a, b > 1 tali che n = ab. Sono dunque numeri primi: 2, 3, 5, 7, 11, 13, 17, 19,

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 10 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Dal messaggio a sequenze di numeri

Dal messaggio a sequenze di numeri Dal messaggio a sequenze di numeri Le classi resto modulo n := Z n Due numeri interi a, b, si dicono congrui modulo n (con n intero >1) se divisi per n hanno lo stesso resto: a=bmodn a= kn+b a-b = kn con

Dettagli

II Esonero di Matematica Discreta - a.a. 06/07. Versione B

II Esonero di Matematica Discreta - a.a. 06/07. Versione B II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura

Dettagli

Università del Piemonte Orientale

Università del Piemonte Orientale Compito di Algebra del 13 Gennaio 2009 1) Trovare l ordine di [11] 112 in Z 112. Si dica poi per quali valori di k si ha [11] k 112 [34] 112 = [31] 112. Soluzione. L ordine di [11] 112 è 12. k 12 8. 2)

Dettagli

RSA e firma digitale

RSA e firma digitale Università degli Studi di Cagliari Corso di Laurea in Matematica RSA e firma digitale Mara Manca Relatore: prof. Andrea Loi Anno Accademico 2015-2016 Mara Manca Relatore: prof. Andrea Loi RSA e firma digitale

Dettagli

Lo stesso procedimento ci permette di trovare due interi x, y tali che M.C.D. = ax + by. Ma quando esistono x, y soluzioni dell equazione diofantea

Lo stesso procedimento ci permette di trovare due interi x, y tali che M.C.D. = ax + by. Ma quando esistono x, y soluzioni dell equazione diofantea 1. Massimo comun divisore tra due interi; soluzione di alcune equazioni diofantee Definizione Siano a, b Z non entrambi nulli; si dice che d Z è un Massimo Comun Divisore tra a e b se sono verificate le

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

nota 1. Aritmetica sui numeri interi.

nota 1. Aritmetica sui numeri interi. nota 1. Aritmetica sui numeri interi. Numeri interi. Numeri primi. L algoritmo di Euclide per il calcolo del mcd. Equazioni diofantee di primo grado. Congruenze. Il Teorema Cinese del Resto. 1 0. Numeri

Dettagli

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c).

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c). I numeri interi Teorema 1 (divisione in Z) Siano a, b Z, b 0 Allora esistono e sono unici q, r Z tali che (1) a = bq + r () 0 r < b Si dice che q è il quoziente e r è il resto della divisione di a per

Dettagli

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari:

Nome. Esercizio 2. Risolvere il seguente sistema di congruenze lineari: Università degli Studi Roma Tre Corso di Laurea Triennale in Matematica, a.a. 2006/2007 AL1 - Algebra 1, fondamenti Seconda prova di valutazione intermedia 11 Gennaio 2006 Cognome Nome Numero di matricola

Dettagli

Un po di teoria dei numeri

Un po di teoria dei numeri Un po di teoria dei numeri Applicazione alla crittografia RSA Christian Ferrari Liceo di Locarno Matematica Sommario 1 L aritmetica modulare di Z n Le congruenze L anello Z n Le potenze in Z n e algoritmo

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Risposte non motivate non verranno giudicate

Risposte non motivate non verranno giudicate Istituzioni di Matematiche 12/01/2016 Ver.1 SECONDO PARZIALE Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5 e gli studenti della laurea quinquennale gli esercizi 1,2,3,4 1. 2. 3.

Dettagli

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza:

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza: Dipartimento di Matematica e Informatica Anno Accademico 05-06 Corso di Laurea in Informatica (L-) Prova in itinere di Matematica Discreta ( CFU) Febbraio 06 A Tempo a disposizione. 90 minuti [6 punti]

Dettagli

PRIMAVERA IN BICOCCA

PRIMAVERA IN BICOCCA PRIMAVERA IN BICOCCA 1. Numeri primi e fattorizzazione Una delle applicazioni più rilevanti della Teoria dei Numeri si ha nel campo della crittografia. In queste note vogliamo delineare, in particolare,

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Temi di Aritmetica Modulare

Temi di Aritmetica Modulare Temi di Aritmetica Modulare Incontri Olimpici 013 SALVATORE DAMANTINO I.S.I.S. MALIGNANI 000 - CERVIGNANO DEL FRIULI (UD) 15 Ottobre 013 1 Relazione di congruenza modulo un intero Definizione 1.1. Sia

Dettagli

3 Il piccolo Teorema di Fermat

3 Il piccolo Teorema di Fermat 3 Il piccolo Teorema di Fermat Pierre de Fermat, francese, giudice presso il tribunale di Tolosa, è considerato uno dei padri fondatori della moderna teoria dei numeri. L interesse per questa teoria fu

Dettagli

Teoria dei numeri e Crittografia: lezione del 2 novembre Congruenze aritmetiche.

Teoria dei numeri e Crittografia: lezione del 2 novembre Congruenze aritmetiche. Teoria dei numeri e Crittografia: lezione del 2 novembre 2011 Congruenze aritmetiche. Ricordiamo la teoria delle congruenze aritmetiche. La nozione di divisore (e simmetricamente quella di multiplo si

Dettagli

COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016

COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016 COMPITO DI ALGEBRA TRENTO, 13 GENNAIO 2016 Istruzioni: (1) Questo compito consiste di sei facciate e ventidue esercizi. (2) Risolvete tutti gli esercizi seguenti. (3) Giustificate, possibilmente in modo

Dettagli

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23)

1. DOMANDA SULLA CONGRUENZA E IL TEOREMA DI FERMAT : (MOD 23) Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Equazioni lineari con due o più incognite

Equazioni lineari con due o più incognite Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

z =[a 4 a 3 a 2 a 1 a 0 ] 10

z =[a 4 a 3 a 2 a 1 a 0 ] 10 Esercizio 1. Sia z =[a 4 a 3 a 2 a 1 a 0 ] 10 un numero intero (la notazione significa che le cifre con cui rappresento z in base 10 sono a 4,..., a 0 {0, 1,..., 9}, ecioè z = a 4 10 4 + a 3 10 3 + a 2

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

Studieremo le congruenze lineari, cioe le equazioni del tipo

Studieremo le congruenze lineari, cioe le equazioni del tipo Congruenze lineari 1. Oggetto di studio - Definizione 1. Studieremo le congruenze lineari, cioe le equazioni del tipo dove ax b (mod n) (1) n, il modulo della congruenza, e un intero positivo fissato x,

Dettagli

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9

Prova scritta di Algebra 9 settembre x 5 mod 7 11x 1 mod 13 x 3 mod 9 Prova scritta di Algebra 9 settembre 2016 1. Si risolva il seguente sistema di congruenze lineari x 5 mod 7 11x 1 mod 13 x 3 mod 9 Si determini la sua minima soluzione positiva. 2. In S 9 sia α = (4, 9)(9,

Dettagli

Il Ricevente comunica pubblicamente una chiave e. Il Mittente codifica il messaggio usando la funzione f(m, e) = C e

Il Ricevente comunica pubblicamente una chiave e. Il Mittente codifica il messaggio usando la funzione f(m, e) = C e Crittografia a chiave pubblica. Il problema della crittografia è semplice da enunciare: vi sono due persone, il Mittente e il Ricevente, che vogliono comunicare fra loro senza che nessun altro possa leggere

Dettagli

Algebra Numeri Interi (Unimib)

Algebra Numeri Interi (Unimib) Algebra Numeri Interi (Unimib) 20 novembre 2017 This book is the result of a collaborative effort of a community of people like you, who believe that knowledge only grows if shared. We are waiting for

Dettagli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli

Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Elementi di Algebra e di Matematica Discreta Strutture algebriche: anelli Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica Discreta 1 / 29 index

Dettagli

Crittografia Aritmetica modulare

Crittografia Aritmetica modulare Crittografia Aritmetica modulare Ottavio G. Rizzo Ottavio.Rizzo@mat.unimi.it Università di Milano Progetto lauree scientifiche p.1/16 Massimo comun divisore Definizione. Dati a, b N, il massimo comun divisore

Dettagli

I Numeri Primi. Università degli Studi di Milano Polo Didattico e di Ricerca di Crema. Prof.ssa Laura Citrini

I Numeri Primi. Università degli Studi di Milano Polo Didattico e di Ricerca di Crema. Prof.ssa Laura Citrini Università degli Studi di Milano Polo Didattico e di Ricerca di Crema I Numeri Primi Prof.ssa Laura Citrini Filippo Gandaglia 657228 Massimo Manara 656814 Andrea Gardoni 656751 Luigi Margheritti 660216

Dettagli

una possibile funzione unidirezionale

una possibile funzione unidirezionale una possibile funzione unidirezionale moltiplicare due interi a n bit è facile (in O(n 2 ) con l algoritmo usuale) trovare un primo a n bit, e verificare che è primo, è facile (vedremo poi) fattorizzare

Dettagli

Lezioni di Aritmetica Modulare

Lezioni di Aritmetica Modulare Lezioni di Aritmetica Modulare Antonino Salibra Università Ca Foscari Venezia 2 Novembre 2016 Nel seguito scriveremo talvolta a b al posto di a divide b. Ricordiamo che, dati due interi a e b con b 0,

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione

TEORIA DEI NUMERI. 1. Numeri naturali, interi relativi e principi d induzione TEORIA DEI NUMERI. Numeri naturali, interi relativi e principi d induzione Le proprietà dell insieme N = {0,, 2, } dei numeri naturali possono essere dedotte dai seguenti assiomi di Peano:. C è un applicazione

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

1 (a) [3 punti] Si consideri la successione (a n ) n N definita per ricorrenza nel modo seguente: a 0 = 1 2 a n = a n

1 (a) [3 punti] Si consideri la successione (a n ) n N definita per ricorrenza nel modo seguente: a 0 = 1 2 a n = a n Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova in itinere di Matematica Discreta (12 CFU) 5 Dicembre 2016 A1 Compito A Tempo a disposizione

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n.

CONGRUENZE. 2 La formula risulta vera anche per n+1. Per induzione è allora vera per ogni n. CONGRUENZE 1. Cosa afferma il principio di induzione? Sia P(n) una proposizione definita per ogni n n 0 (n 0 =naturale) e siano dimostrate le seguenti proposizioni: a) P(n 0 ) è vera b) Se P(n) è vera

Dettagli

Introduzione alla Crittografia

Introduzione alla Crittografia Liceo Scientifico N. Tron, 6 febbraio 2006 Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di elementi < n e coprimi con n. Riassunto Dato n > 1, la funzione di Eulero ϕ(n) è il numero di

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

FUNZIONI TRA INSIEMI. Indice

FUNZIONI TRA INSIEMI. Indice FUNZIONI TRA INSIEMI LORENZO BRASCO Indice. Definizioni e risultati.. Introduzione.. Iniettività e suriettività.3. Composizione di funzioni 4.4. Funzioni inverse 5. Esercizi 5.. Esercizi svolti 5.. Altri

Dettagli

Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1

Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1 Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente

Dettagli

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni

ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni ALGEBRA 1 Secondo esonero 15 Giugno 2011 soluzioni (1) Verificare che l anello quoziente Z 5 [x]/(x 3 2) possiede divisori dello zero, e determinare tutti i suoi ideali non banali. Soluzione: Il polinomio

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2

Prova scritta di Algebra 4 Luglio Si risolva il seguente sistema di congruenze lineari x 2 mod 3 2x 1 mod 5 x 3 mod 2 Prova scritta di Algebra 4 Luglio 013 1. Si risolva il seguente sistema di congruenze lineari x mod 3 x 1 mod 5 x 3 mod. In S 9 sia α (1, 3(3, 5, 6(5, 3(4,, 7(, 1, 4, 7(8, 9 a Si scriva α come prodotto

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

SCOMPOSIZIONE IN FATTORI PRIMI:

SCOMPOSIZIONE IN FATTORI PRIMI: SCOMPOSIZIONE IN FATTORI PRIMI: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229

Dettagli

LE EQUAZIONI DI SECONDO GRADO

LE EQUAZIONI DI SECONDO GRADO LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi:

Corso PAS Anno 2014. ESEMPIO. Per n = 3, Z 3 contiene 3 elementi: Corso PAS Anno 2014 Matematica e didattica 3 Correzione esercizi 1. Definizione. Sia n un fissato intero maggiore di 1. Dati due interi a, b si dice che a è congruo a b modulo n, e si scrive a b (mod n),

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

Corso di preparazione ai Giochi di Archimede Aritmetica, algebra e teoria dei numeri

Corso di preparazione ai Giochi di Archimede Aritmetica, algebra e teoria dei numeri Corso di preparazione ai Giochi di Archimede Aritmetica, algebra e teoria dei numeri 1) Il numero reale a è tale che l equazione x 2 + 2ax + 1 = 0 Ammette due soluzioni reali coincidenti. Quanti sono i

Dettagli

1 Proprietà elementari delle congruenze

1 Proprietà elementari delle congruenze 1 Proprietà elementari delle congruenze Un altro metodo di approccio alla teoria della divisibilità in Z consiste nello studiare le proprietà aritmetiche del resto della divisione euclidea, o, come si

Dettagli

Number Theory. Teoria dei numeri. Teorema della divisione. Congruenze mod n

Number Theory. Teoria dei numeri. Teorema della divisione. Congruenze mod n Number Theory Alfredo De Santis Dipartimento di Informatica ed Applicazioni Università di Salerno Marzo 2012 adsi@dia.unisa.it http://www.dia.unisa.it/professori/ads Teoria dei numeri Concetti preliminari

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

+ 1)... (e k + 1). Si indica con (n), chiamato numero di Eulero di n, il numero dei numeri naturali minori di n e primi con n.

+ 1)... (e k + 1). Si indica con (n), chiamato numero di Eulero di n, il numero dei numeri naturali minori di n e primi con n. "Come si fa" a svolgere vari tipi di esercizi 1 numeri e congruenze (algoritmi avvertenze casi speciali esempi) Attenzione gli argomenti non sono in ordine Alcuni degli esercizi presentati erano parte

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

A lezione sono stati presentati i seguenti passi per risolvere un problema:

A lezione sono stati presentati i seguenti passi per risolvere un problema: Calcolo delle radici di un polinomio Problema: Dati i coefficienti a,b,c di un polinomio di 2 grado della forma: ax^2 + bx + c = 0, calcolare le radici. A lezione sono stati presentati i seguenti passi

Dettagli

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011

SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 2011 1 SCUOLA GALILEIANA DI STUDI SUPERIORI CLASSE DI SCIENZE NATURALI ESAME DI AMMISSIONE, PROVA DI MATEMATICA 13 SETTEMBRE 011 Problema 1. Sia Z l insieme dei numeri interi. a) Sia F 100 l insieme delle funzioni

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

4 Sistemi di equazioni.

4 Sistemi di equazioni. 4 Sistemi di equazioni. Risolvere un sistema significa erminare le soluzioni comuni a tutte le equazioni che lo compongono. Il grado di un sistema è il prodotto dei gradi di tali equazioni. 4. Sistemi

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R

MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PRIMA PARTE. Esercizio 1. (Testo B) Determina, motivando la risposta, se la funzione f : R R ANNO ACCADEMICO 25 6 SCIENZE GEOLOGICHE E SCIENZE NATURALI E AMBIENTALI MATEMATICA PRIMO COMPITINO SOLUZIONE DI ALCUNI ESERCIZI PROFF MARCO ABATE E MARGHERITA LELLI-CHIESA PRIMA PARTE Esercizio (Testo

Dettagli

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora:

Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: Iniziamo con un esercizio sul massimo comun divisore: Esercizio 1. Sia d = G.C.D.(a, b), allora: G.C.D.( a d, b d ) = 1 Sono state introdotte a lezione due definizioni importanti che ricordiamo: Definizione

Dettagli

nota 2. Gruppi, anelli, campi. Gruppi. Anelli. Campi. Applicazioni: il test di primalità di Miller-Rabin.

nota 2. Gruppi, anelli, campi. Gruppi. Anelli. Campi. Applicazioni: il test di primalità di Miller-Rabin. nota 2. Gruppi, anelli, campi. Gruppi. Anelli. Campi. Applicazioni: il test di primalità di Miller-Rabin. 1 1. Gruppi. In questo paragrafo introduciamo i gruppi. Diamo diversi esempi importanti di gruppi

Dettagli

logaritmo discreto come funzione unidirezionale

logaritmo discreto come funzione unidirezionale logaritmo discreto come funzione unidirezionale in generale, lavoreremo con il gruppo U(Z p ) = Z p dati g generatore di Z p e x tale che 1 x p 1, calcolare y = g x è computazionalmente facile (y g x (mod

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA. (41 ore complessive di lezione)

DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA. (41 ore complessive di lezione) DIARIO DEL CORSO DI TEORIA DEI NUMERI E CRITTOGRAFIA DOCENTE: SANDRO MATTAREI (41 ore complessive di lezione) Prima settimana. Lezione di martedí 22 febbraio 2011 (due ore) Rappresentazione di numeri interi

Dettagli

POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K

POLINOMI. (p+q)(x) = p(x)+q(x) (p q)(x) = p(x) q(x) x K POLINOMI 1. Funzioni polinomiali e polinomi Sono noti campi infiniti (es. il campo dei complessi C, quello dei reali R, quello dei razionali Q) e campi finiti (es. Z p la classe dei resti modp con p numero

Dettagli

3/10/ Divisibilità e massimo comun divisore

3/10/ Divisibilità e massimo comun divisore MCD in N e Polinomi 3/10/2013 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore di due numeri naturali

Dettagli

Risposte non motivate non verranno giudicate

Risposte non motivate non verranno giudicate Istituzioni di Matematiche 16/02/2016 Ver.1 Nome e cognome Matricola X se Quadriennale Risposte non motivate non verranno giudicate Gli studenti della laurea quadriennale svolgono gli esercizi 1,2,3,5

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Fattorizzazione di interi e crittografia

Fattorizzazione di interi e crittografia Fattorizzazione di interi e crittografia Anna Barbieri Università degli Studi di Udine Corso di Laurea in Matematica (Fattorizzazione e crittografia) 14 Maggio 2012 1 / 46 Il teorema fondamentale dell

Dettagli

DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E mcm DEFINIZIONI. Multiplo di un numero

DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E mcm DEFINIZIONI. Multiplo di un numero DISPENSA NUMERI MULTIPLI, DIVISORI, PRIMI, MCD E DEFINIZIONI Multiplo di un numero Scegliendo un numero e moltiplicandolo per la serie di tutti i numeri naturali ottengo i suoi multipli. Es i multipli

Dettagli

04 - Logica delle dimostrazioni

04 - Logica delle dimostrazioni Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 04 - Logica delle dimostrazioni Anno Accademico 013/014 D. Provenzano,

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

ESERCITAZIONE N.5. La relazione divide in Z. E data in Z * la corrispondenza x~y x divide y. Stabilire se è riflessiva, simmetrica, transitiva.

ESERCITAZIONE N.5. La relazione divide in Z. E data in Z * la corrispondenza x~y x divide y. Stabilire se è riflessiva, simmetrica, transitiva. ESERCIZIO 1. ESERCITAZIONE N.5 6 novembre 2007 La relazione divide in Z E data in Z * la corrispondenza x~y x divide y. Stabilire se è riflessiva, simmetrica, transitiva. Divisione euclidea in Z Algoritmo

Dettagli

schema di firma definizione formale

schema di firma definizione formale schema di firma Alice firma un messaggio da mandare a Bob ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare quello per firmare dev essere privato (solo Alice può firmare)

Dettagli

Geometria analitica del piano pag 12 Adolfo Scimone

Geometria analitica del piano pag 12 Adolfo Scimone Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due

Dettagli