Calcolo delle Probabilità

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo delle Probabilità"

Transcript

1 Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti davide.petturiti@sbai.uniroma.it web: Esercizio. Siano X e Y due variabili aleatorie indipendenti con distribuzione U([0, ]) e U([0, ]), rispettivamente. Denotando con Z = X + Y, determinare la densità f Z (z), il valore atteso E(Z), la varianza Var(Z), e la probabilità P(X < Y Y < ). Esercizio. Siano X e Y due variabili aleatorie indipendenti, entrambe con distribuzione normale e E(X) = E(Y ) = 0, Var(X) = e Var(Y ) = 4. Determinare la funzione di densità congiunta f (x, y) del vettore aleatorio (X, Y ) e l equazione delle relative curve di livello. Sia (X 0,Y 0 ) il vettore aleatorio ottenuto da (X,Y ) eseguendo una rotazione (in senso antiorario) di un angolo µ intorno all origine. Determinare le funzioni di densità marginali f X 0 e f Y 0 di X 0 e Y 0, e per quali angoli µ (se esistono) le variabili aleatorie X 0 e Y 0 sono indipendenti. Esercizio 3. Sia (X,Y ) il vettore aleatorio con densità Ω k(x + )(y + ) se (x, y) A, f (x, y) = dove k è una costante reale positiva ed A è il parallelogramma di vertici (,0), (,), (0,) e (0,). Determinare il valore della costante k, le densità condizionate f X Y e f Y X, e la probabilità P(Y < X Y < ). Esercizio 4. Il codominio di un vettore aleatorio (X, Y ) è costituito dalle coppie equiprobabili (, 0), (, ), (, ), (0,4), (, 3), (,0), 4 5,. Determinare la funzione di ripartizione F Z (z) di Z = 5X + Y. Esercizio 5. La densità congiunta di un vettore aleatorio continuo (X, Y ) le cui componenti assumono valori non-negativi è Ω 4ye x y se x 0, y 0, f (x, y) = 0 altrove. Posto Z = X + Y, calcolare per ogni z 0 la funzione di sopravvivenza S Z (z) e la funzione di rischio h Z (z) di Z. Esercizio 6. Un vettore aleatorio (X,Y ) ha densità congiunta Ω p k x f (x, y) = + y se (x, y) C, dove k è una opportuna costante positiva e C è il settore della corona circolare individuata dalle circonferenze centrate nell origine di raggio 3 e 4 che giace nel primo quadrante. Determinare il valore di k, le densità marginali f X (x) ef Y (y), e la probabilità dell evento E = (X > Y ). SUGGERIMENTO: quando il codominio del vettore aleatorio coinvolge delle circoferenze, per facilitare l integrazione potrebbe essere utile passare dalle coordinate cartesiane alle coordinate polari.

2 Svolgimento degli esercizi Esercizio Sappiamo che X ª U([0,]), Y ª U([0,]), e che X e Y sono indipendenti, quindi la densità congiunta del vettore aleatorio (X,Y ) risulta Ω f (x, y) = f X (x)f Y (y) = per (x, y) [0,] [0,], 0 atrove, il cui grafico è mostrato in Figura (a). (a) Funzione di densità congiunta f (x, y) (b) Funzione di densità f Z (z) di Z Figura : Grafici di f (x, y) ef Z (z) Posto Z = X + Y si osserva facilmente che C Z = [0,3] inoltre, poiché X e Y sono indipendenti, la sua densità f Z può essere trovata come convoluzione delle densità di X e Y, ovvero Essendo f Z (z) = (f X f Y )(z) = Z + f X (t)f Y (z t)dt. Ω per 0 t, f X (t) = Ω e f Y (z t) = per 0 z t () z t z, si ha che f X (t)f Y (z t) 6= 0 per max{0, z } t min{, z}, quindi possiamo riscrivere f Z come segue ( R min{,z} f Z (z) = max{0,z } dt = I per z [0,3], 0 altrove. Per calcolare I ci serve determinare gli estremi di integrazione al variare di z [0,3]. Risulta che max{0, z } = z () z 0 () z ; max{0, z } = 0 () z 0 () z ; min{, z} = z () z ; min{, z} = () z ; da cui, ricordando che z [0,3], segue che per z [0,], max{0, z } = 0 e min{, z} = z; per z (,), max{0, z } = 0 e min{, z} = ; per z [,3], max{0, z } = z e min{, z} =. Abbiamo quindi che 8 R z >< 0 dt = [t]z 0 = z per z [0,], R I = 0 >: dt = [t] 0 = per z (,), R z dt = [t] z = 3 z per z [,3],

3 da cui 8 >< f Z (z) = >: z per z [0,], per z (,), 3 z per z [,3], il cui grafico è mostrato in Figura (b). Ricordando che l indipendenza di X e Y implica Cov(X,Y ) = 0, segue che Infine, essendo E(Z) = E(X + Y ) = E(X) + E(Y ) = + = 3, Var(Z) = Var(X + Y ) = Var(X) + Var(Y ) + Cov(X,Y ) = + 4 = 5. P(Y < ) = Z 0 dx Z 0 dy = e P(X < Y < ) = Z 0 dx Z x dy = 4, risulta P((X < Y ) ^ (Y < )) P(X < Y < ) P(X < Y Y < ) = = = P(Y < ) P(Y > ). 3

4 Esercizio Essendo X ª N (0,) e Y ª N (0,), le relative densità risultano f X (x) = p e x e f Y (y) = º p y º e 8, e dall indipendenza di X e Y segue che la densità congiunta del vettore aleatorio (X,Y )è il cui grafico è mostrato in Figura (a). f (x, y) = f X (x)f Y (y) = x 4º e y 8 per x, y R, (a) Funzione di densità congiunta f (x, y) (b) Curve di livello Essendo poi E(X) = E(Y ) = Cov(X,Y ) = 0, segue che Figura : Grafico di f (x, y) e relative curve di livello E(XY) = 0. Il vettore aleatorio (X,Y ) ha distribuzione normale bivariata a componenti indipendenti, quindi f (x, y) ha un massimo assoluto in corrispondenza del vettore delle medie di X e Y, ovvero in µ = (0,0), dove risulta f (0,0) = 4º º 0.095, inoltre f (x, y) è positiva su tutto il piano R. Da ciò segue che f (x, y) assume valori in 0, 4º. Per k 0, 4º l equazione delle curve di livello si ottiene imponendo f (x, y) = k, ovvero x 4º e y 8 = k () e x y 8 = 4ºk () x y 8 = ln(4ºk), che corrisponde ad un ellisse. La Figura (b) mostra alcune curve di livello ottenute per alcuni valori di k. Per µ [0,+), il vettore aleatorio (X 0,Y 0 ) che corrisiponde ad una rotazione di (X,Y ) in senso antiorario intorno all origine può essere espresso come Ω X 0 = X cos(µ) Y sin(µ), Y 0 = X sin(µ) + Y cos(µ), dove, per µ fissato, cos(µ) e sin(µ) sono costanti reali. Quindi, costruendo la matrice cos(µ) sin(µ) A = sin(µ) cos(µ) ed utilizzando la notazione di prodotto tra matrici, possiamo porre (X 0,Y 0 ) = (X,Y )A, da cui segue che (X 0,Y 0 ) ha ancora distribuzione normale bivariata. Si noti che det(a) =. OSSERVAZIONE: Se un vettore aleatorio (X, Y ) ha distribuzione normale bivariata, presa una matrice reale A di dimensione ( ) con determinante non-nullo ed un vettore riga b di dimensione ( ), la trasformazione lineare di (X,Y ) data da (X 0,Y 0 ) = (X,Y )A + b ha ancora distribuzione normale bivariata. 4

5 OSSERVAZIONE: Se una variabile aleatoria X ha distribuzione normale N (µ, æ), e a, b sono costanti reali, allora Y = ax + b ha distribuzione N (aµ + b, a æ). Per un µ fissato poniamo: U = X cos(µ) che ha distribuzione N (0, cos(µ) ) con E(U) = 0, Var(U) = cos (µ) e U (t) = e cos (µ)t ; V = Y sin(µ) che ha distribuzione N (0, sin(µ) ) con E(V ) = 0, Var(V ) = 4sin (µ) e V (t) = e 4sin (µ)t ; W = X sin(µ) che ha distribuzione N (0, sin(µ) ) con E(W) = 0, Var(W) = sin (µ) e W (t) = e sin (µ)t ; Z = Y cos(µ) che ha distribuzione N (0, cos(µ) ) con E(Z) = 0, Var(Z) = 4cos (µ) e Z (t) = e 4cos (µ)t ; e ciò ci permette di riscrivere Ω X 0 = U + V, Y 0 = W + Z, Anche i vettori (U, V ) e(w, Z) hanno distribuzione normale bivariata poiché cos(µ) 0 (U,V ) = (X,Y ) 0 sin(µ) inoltre si ha, ricordando che E(U) = E(V ) = E(W) = E(Z) = E(XY) = 0, sin(µ) 0 e (W, Z) = (X,Y ) 0 cos(µ) Cov(U, V ) = E(UV) E(U)E(V ) = E((X cos(µ))( Y sin(µ))) = cos(µ) sin(µ)e(xy) = 0, Cov(W, Z) = E(WZ) E(W)E(Z) = E((X sin(µ))(y cos(µ))) = sin(µ) cos(µ)e(xy) = 0, quindi U, V sono indipendenti, ed anche W, Z., OSSERVAZIONE: Se un vettore aleatorio (X,Y ) ha distribuzione normale bivariata allora X e Y sono indipendenti se e solo se Cov(X,Y ) = 0. In generale, ciò non è vero se (X,Y ) non ha distribuzione normale bivariata. Possiamo determinare la funzione di ripartizione di X 0 e di Y 0 come segue X 0(t) = U+V (t) = U (t) V (t) = e (cos (µ)+4sin (µ))(t) e Y 0(t) = W+Z (t) = W (t) Z (t) = e (sin (µ)+4cos (µ))(t), da ciò si può concludere che X 0 ª N f X 0(x) = p º(cos (µ) + 4sin (µ)) p p 0, cos (µ) + 4sin (µ) e Y 0 ª N 0, sin (µ) + 4cos (µ) e quindi e x (cos (µ)+4sin (µ)) e f Y 0(y) = p º(sin (µ) + 4cos (µ)) Infine, X 0 e Y 0 sono stocasticamente indipendenti se e solo se Cov(X 0,Y 0 ) = 0, quindi essendo E(X ) = Var(X) =, E(Y ) = Var(Y ) = 4, Cov(X 0,Y 0 ) = E(X 0 Y 0 ) E(X 0 )E(Y 0 ) e y (sin (µ)+4cos (µ)). = E((X cos(µ) Y sin(µ))(x sin(µ) + Y cos(µ))) E(X cos(µ) Y sin(µ))e(x sin(µ) + Y cos(µ)) = cos(µ)sin(µ)e(x ) cos(µ)sin(µ)e(y ) = 3cos(µ)sin(µ), dalla legge di annullamento del prodotto segue che Cov(X 0,Y 0 ) = 0 quando cos(µ) = 0 oppure sin(µ) = 0, ovvero X 0,Y 0 sono indipendenti per µ = º n con n {0,,,...}. 5

6 Esercizio 3 La densità congiunta è dove Ω k(x + )(y + ) per (x, y) A, f (x, y) = Il valore di k è dato da A = {(x, y) R : x 0, x + y x + } = {(x, y) R :0 y, x y } [ {(x, y) R : y, y x 0}. Z + Z + f (x, y)dxdy = k quindi la densità può essere riscritta come f (x, y) = il cui grafico è mostrato in Figura 3(a) e 3(b). Z 0 Ω 55 (x + )dx Z x+ x+ (x + )(y + ) per (x, y) A, (y + )dy = 55 k = () k = 55, (a) Funzione di densità congiunta f (x, y) (b) Funzione di densità congiunta f (x, y) (c) Funzione di densità f X (x) di X (d) Funzione di densità f Y (y) di Y Figura 3: Grafici di f (x, y), f X (x) ef Y (y) Le densità marginali risultano f X (x) = f Y (y) = Z + Z + i cui grafici sono riportati in Figura 3(c) e 3(d). Ω f (x, y)dy = 55 (x + )R x+ 6 x+ (y + )dy = 55 (x + x + 4) per x [,0], 8 >< 55 (y + )R y 6 (x + )dx = 55 (y3 + 4y + 4y) per y [0,), f (x, y)dx = 55 >: (y + )R 0 y (x + )dx = 6 55 ( y3 y + 4y + 8) per y [,], 6

7 Le densità condizionate sono date da 8 f (x, y) >< f X Y (x y) = f Y (y) = >: f Y X (y x) = (x+)(y+) (y 3 +4y +4y) (x+)(y+) ( y 3 y +4y+8) per y [0,), x y, per y [,], y x 0, ( f (x, y) (x+)(y+) f X (x) = per x [,0], x + y x +, (x +x+4) 0 altrove. Infine, poiché le due rette y = x + ey = x si intersecano in x =, si ha che P(Y < ) = 6 55 Z 0 (y 3 + 4y + 4y)dy = 43 0 e P( < Y < X) = 55 Z Z x (x + )dx (y + )dy = x+ 44, da cui segue che P((Y < X) ^ (Y < )) P( < Y < X) P(Y < X Y < ) = = P(Y < ) P(Y < ) = 0.

8 Esercizio 4 Il vettore aleatorio (X,Y ) può essere scritto in forma tabellare come segue Y TOT X TOT Poniamo Z = 5X + Y = '(X,Y ), dove ' è la funzione di due variabili reali '(t, s) = 5t + s, la quale risulta definita sul codominio di (X,Y ). Valutiamo ' sul codominio di (X,Y ) ottenendo: '(,0) = 5; '(,) = '(, 3) = ; '(, ) = '(0,4) = ' 4 5, = 8; '(,0) = 0; da cui ricaviamo che C Z = { 5,,8,0} con distribuzione di probabilità P(Z = 5) = P(X =,Y = 0) = ; P(Z = ) = P((X =,Y = ) _ (X =,Y = 3)) = P(X =,Y = ) + P(X =,Y = 3) = ; µ P(Z = 8) = P (X =,Y = ) _ (X = 0,Y = 4) _ µx = 45,Y = = P(X =,Y = ) + P(X = 0,Y = 4) + P µx = 45,Y = = 3 ; P(Z = 0) = P(X =,Y = 0) =. Da ciò segue immediatamente che 8 >< F Z (z) = >: 0 per z < 5, per 5 z <, 3 per z < 8, 6 per 8 z < 0, per z 0, il cui grafico è riportato in Figura 4. Figura 4: Funzione di ripartizione F Z (z) di Z 8

9

10

11

12

13

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

Nome e cognome:... Matricola...

Nome e cognome:... Matricola... Nome e cognome:................................................... Matricola................. CALCOLO DELLE PROBABILITA - 0/07/008 CdS in Economia e Finanza - Cds in Informatica - Cds SIGAD Motivare dettagliatamente

Dettagli

X Vincita (in euro) Tabella 1: Vincite

X Vincita (in euro) Tabella 1: Vincite Cognome e Nome:....................................... Matricola............. CdS............. CALCOLO DELLE PROBABILITA - 9 Giugno 1 CdS in STAD, SIGAD - docente: G. Sanfilippo Motivare dettagliatamente

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Esercizi di Calcolo delle Probabilità Foglio 3

Esercizi di Calcolo delle Probabilità Foglio 3 Esercizi di Calcolo delle Probabilità Foglio David Barbato Esercizio. (6-ese- s) Sia (X, Y ) un vettore aleatorio con densità: { αy (x, y) D f (X,Y ) (x, y) (x, y) / D Dove D {(x, y) R : x

Dettagli

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina)

Calcolo delle probabilità (3/7/2001) (Ing. Elettronica, Informatica, Telecomunicazioni - Latina) Calcolo delle probabilità (3/7/00). La distribuzione di probabilità di un numero aleatorio X non negativo soddisfa la condizione P (X > x + y X > y) = P (X > x), x > 0, y > 0. Inoltre la previsione di

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Variabili casuali multidimensionali Variabili casuali multidimensionali: k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità X = (X 1,..., X k ) Funzione di

Dettagli

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella

Foglio di esercizi 4-12 Aprile 2019 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Esercizio. Foglio di esercizi 4 - Aprile 9 Probabilità e statistica Ingegneria Meccanica Alessandro Ciallella Un punto viene scelto a caso uniformemente nel cerchio di raggio 3 centrato nell origine. Dette

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot

Appello febbraio. Vero o falso. Es 1 Es 2 Es 3 Es 4 Tot Es Es 2 Es 3 Es 4 Tot Appello febbraio Calcolo delle probabilità 5 febbraio 208 Studente: Matricola: Vero o falso Esercizio (0 pti). Si dica, motivando la propria risposta, se le seguenti affermazioni

Dettagli

CP110 Probabilità: Esame del 6 giugno Testo e soluzione

CP110 Probabilità: Esame del 6 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 21-11, II semestre 6 giugno, 211 CP11 Probabilità: Esame del 6 giugno 211 Testo e soluzione 1. (6 pts) Ci sono 6 palline, di cui nere e rosse. Ciascuna,

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 212-13, II semestre 23 maggio, 213 CP11 Probabilità: Esonero 2 Testo e soluzione 1. (7 punti) Una scatola contiene 1 palline, 5 bianche e 5 nere. Ne vengono

Dettagli

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie.

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. 9 e 11 Dicembre 2008 Richiami di teoria Come si calcolano le densità marginali Esercizi Una v.a. n-dimensionale (o vettore aleatorio

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

1. Siano A, E eventi incompatibili, e sia B E, con P (A) = 1 5, P (B) = 3 10, P (E) = 1 2.

1. Siano A, E eventi incompatibili, e sia B E, con P (A) = 1 5, P (B) = 3 10, P (E) = 1 2. CALCOLO DELLE PROBABILITA - 5 gennaio 005 Ing. Elettronica : 4, Nettuno :. Siano A, E eventi incompatibili, e sia B E, con P (A) = 5, P (B) = 0, P (E) =. Dimostrare che tale assegnazione è coerente, determinando

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Variabili casuali Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio Determinare se le funzioni seguenti: 0.0 se x < 0. se x = g(x) = 0.5 se x = 0.7 se x = 3 se x =

Dettagli

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità

Esercitazione del 06/03/2012 Istituzioni di Calcolo delle Probabilità Esercitazione del 6/3/ Istituzioni di Calcolo delle Probabilità David Barbato barbato@math.unipd.it Esercizio. E la notte di San Lorenzo, Alessandra decide di andare a vedere le stelle cadenti. Osserverà

Dettagli

CP110 Probabilità: Esonero 2

CP110 Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 22-3, II semestre 23 maggio, 23 CP Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota:. L unica cosa che si puo usare durante l esame è una penna

Dettagli

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio

Variabili aleatorie multiple. X = (X 1,..., X n ) vettore aleatorio Variabili aleatorie multiple X = (X 1,..., X n ) vettore aleatorio F X (x 1,..., x n ) = P(X 1 x 1,..., X n x n ) caso particolare n = 2 (variabile doppia) F X,Y (x, y) = P(X x, Y y) V.a. discreta: (X,

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

B C D E A B D E A B C E A B E A B D A B E A B C A B B D A B B A B B C A B

B C D E A B D E A B C E A B E A B D A B E A B C A B B D A B B A B B C A B same di Teoria dei Segnali Ing. Informatica, lettronica e Telecomunicazioni 8 settembre 6 sercizio Si consideri di dover ordinare i nomi di 5 persone, indicate come,,, ed. Nell ordinamento di devono rispettare

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

DISTRIBUZIONI BINOMIALE, POISSON E NORMALE Indice degli esercizi

DISTRIBUZIONI BINOMIALE, POISSON E NORMALE Indice degli esercizi DISTRIBUZIONI BINOMIALE, POISSON E NORMALE Indice degli esercizi 1 Distribuzione di Poisson 1.1 Soluzione dell'esercizio 1 2 Sulla distribuzione normale 2.1 Soluzione dell'esercizio 2 3 Distribuzione binomiale

Dettagli

CP110 Probabilità: Esonero 2. Testo e soluzione

CP110 Probabilità: Esonero 2. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 29-2, II semestre 25 maggio, 2 CP Probabilità: Esonero 2 Testo e soluzione . (7 pt) Siano T, T 2 variabili esponenziali indipendenti, di parametri λ =

Dettagli

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte

Esercizi 6 - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizi - Variabili aleatorie vettoriali, distribuzioni congiunte Esercizio. X e Y sono v.a. sullo stesso spazio di probabilità (Ω, E, P). X segue la distribuzione geometrica modificata di parametro p

Dettagli

Variabili aleatorie n-dim

Variabili aleatorie n-dim Sessione Live #6 Settimana dal 6 maggio al giugno 003 Variabili aleatorie n-dim Funzioni di ripartizione e di densità (F.D.R. e f.d.d.) congiunte e marginali, valori medi e momenti misti, funzione generatrice

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 06 Luglio 2011 UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 6 Luglio Gli studenti che devono sostenere l esame da 9 CFU risolvano i quesiti numero 3-4-5-6-7-8-9 Gli studenti che devono sostenere l

Dettagli

Risultati X P(X) TTT 0 1/8 TTC 1 1/8 TCT 1 1/8 CTT 1 1/8 TCC 2 1/8 CTC 2 1/8 CCT 2 1/8 CCC 3 1/8 X P(X) F(X) 0 1/8 1/8 1 3/8 4/8 2 3/8 7/8 3 1/8 1

Risultati X P(X) TTT 0 1/8 TTC 1 1/8 TCT 1 1/8 CTT 1 1/8 TCC 2 1/8 CTC 2 1/8 CCT 2 1/8 CCC 3 1/8 X P(X) F(X) 0 1/8 1/8 1 3/8 4/8 2 3/8 7/8 3 1/8 1 Esercizio 1 Determinare la distribuzione di probabilità e la funzione di ripartizione della v.c. discreta X = numero di croci in 3 lanci di una moneta. Calcolare F(-1), F(1.5), F(300). Risultati X P(X)

Dettagli

CP110 Probabilità: esame del 4 febbraio Testo e soluzione

CP110 Probabilità: esame del 4 febbraio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 20-2, II semestre 4 febbraio, 203 CP0 Probabilità: esame del 4 febbraio 203 Testo e soluzione . (6 pts) In un triangolo rettangolo i cateti X e Y sono

Dettagli

CAPITOLO 9. Vettori Aleatori

CAPITOLO 9. Vettori Aleatori CAPITOLO 9 Vettori Aleatori 9 9 Vettori Aleatori 3 9 Vettori Aleatori In molti esperimenti aleatori, indicando con Ω l insieme dei possibili risultati, al generico risultato dell esperimento, ω Ω, sono

Dettagli

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue Esercitazioni di Statistica Matematica A Lezione 7 Variabili aleatorie continue.) Determinare la costante k R tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Claudia Furlan Anno Accademico 006-007 Ringrazio Carlo Gaetan, Nicola Sartori e Aldo Solari per il materiale, aggiunte e

Dettagli

Calcolo delle Probabilità 16 Giugno 2016, C.d.L. STAD, UNIPA

Calcolo delle Probabilità 16 Giugno 2016, C.d.L. STAD, UNIPA Calcolo delle Probabilità 6 Giugno 206, C.d.L. STAD, UNIPA Prova intera esercizi, 2, 3, 4, 5, 6. Tempo 2 h 45 minuti. Esercizio risolto correttamente vale 5.5 punti. Seconda Prova in itinere esercizi 4,

Dettagli

0 z < z < 2. 0 z < z 3

0 z < z < 2. 0 z < z 3 CALCOLO DELLE PROBABILITÀ o - 7 gennaio 004. Elettronica : 4; Nettuno: 3.. Data un urna di composizione incognita con palline bianche e nere, sia K = il numero di palline bianche nell urna è il doppio

Dettagli

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio

II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 20 febbraio II Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 3/4 Nome: febbraio 4 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 3 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. La variabile casuale normale Da un analisi di bilancio è emerso che, durante i giorni feriali

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19 III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 8/9 Martedì luglio 9 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017

Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria 2 Primo Appello 13 Luglio 2017 Politecnico di Milano Ingegneria Industriale e dell Informazione Analisi e Geometria Primo Appello 13 Luglio 017 Cognome: Nome: Matricola: Es.1: 11 punti Es.: 6 punti Es.3: 7 punti Es.: 8 punti Totale

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Università degli Studi di Trento Corso di laurea in Matematica A.A. 013/014 Settembre 014 Esercizio 1 Sia P 3 lo spazio proiettivo reale tridimensionale dotato del riferimento

Dettagli

Statistica. Congiunte. Capitolo 5. Distribuzioni di Probabilità. Chap 5-1. Statistics for Business and Economics, 6e 2007 Pearson Education, Inc.

Statistica. Congiunte. Capitolo 5. Distribuzioni di Probabilità. Chap 5-1. Statistics for Business and Economics, 6e 2007 Pearson Education, Inc. Statistica Capitolo 5 Distribuzioni di Probabilità Congiunte Statistics for Business and Economics, 6e 2007 Pearson Education, Inc. Chap 5-1 Distribuzione di Probabilità Congiunta Una variabile casuale

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica Statistica Corso Base (Serale) Dott.ssa Cristina Mollica cristina.mollica@uniroma1.it Variabili casuali Esercizio 1. Determinare la distribuzione di probabilità e la funzione di ripartizione della variabile

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013

I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. 2012/ Giugno 2013 I Sessione I Prova Scritta o Recupero Esonero di Probabilità e Statistica a.a. / 9 Giugno Recupero I esonero o prova scritta di Probabilità da 5 cfu o di Probabilità e Statistica da cfu: esercizio ; esercizio

Dettagli

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio

III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2013/14 Nome: 16 luglio III Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 013/14 Nome: 16 luglio 014 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità

Esercitazione del 19/02/2013 Istituzioni di Calcolo delle Probabilità Esercitazione del 19/0/013 Istituzioni di Calcolo delle Probabilità David Barbato Variabili aleatorie esponenziali. Minimo di v.a. esponenziali indipendenti. Ricordiamo innanzitutto che due variabili aleatorie

Dettagli

Tutorato V Probabilità e Statistica a.a. 2015/2016

Tutorato V Probabilità e Statistica a.a. 2015/2016 Tutorato V Probabilità e Statistica a.a. 05/06 Argomenti: momenti; varianza e covarianza; interpretazione della media condizionale; retta di regressione. Esercizio. Sia (Ω, F, P) uno spazio di probabilià.

Dettagli

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili:

LE VARIABILI CASUALI A 1, A 2.,..., A k., p 2.,..., p k. generati da una specifica prova sono necessari ed incompatibili: LE VARIABILI CASUALI Introduzione Data prova, ad essa risultano associati i k eventi A, A,..., A k con le relative probabilità p, p,..., p k. I k eventi A i generati da una specifica prova sono necessari

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

CALCOLO DELLE PROBABILITÀ

CALCOLO DELLE PROBABILITÀ CALCOLO DELLE PROBABILITÀ - gennaio 000 Elettronici: nn. 4 Informatici: nn. 6. Un lotto contiene pezzi buoni ed un solo pezzo difettoso. Si effettuano tre estrazioni senza restituzione, e sia E i = pezzo

Dettagli

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci

Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci Es.: una moneta viene lanciata 3 volte. X = n. di T nei primi 2 lanci Y = n. di T negli ultimi 2 lanci X\Y 0 1 2 0 1/8 1/8 0 1/4 1 1/8 1/4 1/8 1/2 2 0 1/8 1/8 1/4 1/4 1/2 1/4 1 X e Y non sono indip. Se

Dettagli

ESERCIZI SULLE CURVE

ESERCIZI SULLE CURVE ESERCIZI SULLE CURVE VALENTINA CASARINO Esercizi per il corso di Fondamenti di Analisi Matematica, (Ingegneria Gestionale, dell Innovazione del Prodotto, Meccanica e Meccatronica, Università degli studi

Dettagli

COPPIE DI VARIABILI ALEATORIE

COPPIE DI VARIABILI ALEATORIE COPPIE DI VAIABILI ALEATOIE E DI NADO 1 Funzioni di ripartizione congiunte e marginali Definizione 11 Siano X, Y va definite su uno stesso spazio di probabilità (Ω, F, P La coppia (X, Y viene detta va

Dettagli

Coniche in forma generale

Coniche in forma generale LE CONICHE Fissiamo nel piano un sistema di riferimento cartesiano ortogonaleo, x, y, u. Coniche in forma generale Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche

Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Secondo appello di Istituzioni di probabilità Laurea Triennale in scienze statistiche Matr pari 9/7/18 COGNOME e NOME... N. MATRICOLA... Esercizio 1. punti Siano X e Y due variabilili aleatorie normali

Dettagli

La funzione di ripartizione caratterizza la v.a. Ad ogni funzione di ripartizione corrisponde una ed una sola distribuzione.

La funzione di ripartizione caratterizza la v.a. Ad ogni funzione di ripartizione corrisponde una ed una sola distribuzione. Funzione di ripartizione X v.a. a valori in IR F X (x) = P (X x), x IR Indice X omesso quando chiaro Proprietà funzione di ripartizione F (i) F X (x) ; x (ii) è non decrescente Sia a < b P (a < X b) =

Dettagli

Studente: Matricola: 0 x 1 n, x x 1 n, che converge alla funzione di riparatizione della costante 0;

Studente: Matricola: 0 x 1 n, x x 1 n, che converge alla funzione di riparatizione della costante 0; Es 1 Es Es 3 Es Tot Terzo appello settembre Calcolo delle probabilità 13 settembre 18 Studente: Matricola: Vero o falso Esercizio 1 (1 pti). Si dica, motivando la propria risposta, se le seguenti aermazioni

Dettagli

Calcolo delle Probabilità: esercitazione 11

Calcolo delle Probabilità: esercitazione 11 Argomento: Distribuzioni bivariate discrete (pag. 44 e seguenti) e covarianza (pag 45 e seguenti). Distribuzione bivariate assolutamente continue (pag. 48 e seguenti del libro di testo). La v.c. trinomiale

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 2 Secondo compito in itinere 30 Giugno 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Giugno 6 Cognome: Nome: Matricola: Es.: 9 punti Es.: 9 punti Es.: 6 punti Es.4: 9 punti Totale. Si consideri

Dettagli

Esercizio 1. Un punto viene scelto a caso nel cerchio di raggio R > 0 con distribuzione uniforme.

Esercizio 1. Un punto viene scelto a caso nel cerchio di raggio R > 0 con distribuzione uniforme. Esercizi settimana 8 Esercizi applicati Esercizio. Un punto viene scelto a caso nel cerchio di raggio R > con distribuzione uniforme. (i) qual è la probabilità che il punto disti dall'origine più di r,

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (2)

Computazione per l interazione naturale: fondamenti probabilistici (2) Computazione per l interazione naturale: fondamenti probabilistici (2) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@di.unimi.it

Dettagli

CP110 Probabilità: Esame 4 luglio Testo e soluzione

CP110 Probabilità: Esame 4 luglio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 4 luglio, 2012 CP110 Probabilità: Esame 4 luglio 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline numerate da 1

Dettagli

CP110 Probabilità: Esame 30 gennaio Testo e soluzione

CP110 Probabilità: Esame 30 gennaio Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2010-11, II semestre 30 gennaio, 2012 CP110 Probabilità: Esame 30 gennaio 2012 Testo e soluzione 1. (5 pts) Un gioco consiste in n prove ripetute, tali

Dettagli

CALCOLO DELLE PROBABILITA - 13 Aprile 2011 CdL in STAD, SIGAD - docente: G. Sanfilippo

CALCOLO DELLE PROBABILITA - 13 Aprile 2011 CdL in STAD, SIGAD - docente: G. Sanfilippo Cognome e Nome: Matricola CdS CALCOLO DELLE PROBABILITA - 13 Aprile 211 CdL in STAD, SIGAD - docente: G Sanfilippo Motivare dettagliatamente le risposte su fogli allegati e scrivere le risposte negli appositi

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014

Prove scritte dell esame di Analisi Matematica II a.a. 2013/2014 Prove scritte dell esame di Analisi Matematica II a.a. 3/4 C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 9 giugno 4. (8 punti) Risolvere il problema

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Metodi Matematici per la Gestione del Rischio - Esercizi

Metodi Matematici per la Gestione del Rischio - Esercizi Metodi Matematici per la Gestione del Rischio - Esercizi. Considerare la seguente funzione di due variabili kxe y+x, per (x, y) [0, ] [0, + ), f(x, y) = 0, altrimenti. Determinare il valore della costante

Dettagli

1.- Una scatola contiene 5 palline (bianche o nere, con al più una pallina nera). Considerato

1.- Una scatola contiene 5 palline (bianche o nere, con al più una pallina nera). Considerato CALCOLO DELLE PROBABILITA - 14 gennaio 2006 Elettronica I o mod.: Es.1 4. Nettuno: Es.1 3. V.O.: Es.1 6. 1.- Una scatola contiene 5 palline (bianche o nere, con al più una pallina nera). Considerato l

Dettagli

Esercizi su leggi Gaussiane

Esercizi su leggi Gaussiane Esercizi su leggi Gaussiane. Siano X e Y v.a. indipendenti e con distribuzione normale standard. Trovare le densità di X, X +Y e X, X. Mostrare che queste due variabili aleatorie bidimensionali hanno le

Dettagli

sen n x( tan xn n n=1

sen n x( tan xn n n=1 8 Gennaio 2016 Nome (in stampatello): 1) (8 punti) Discutere la convergenza della serie di funzioni al variare di x in [ 1, 1]. n x( tan xn n ) xn sen n 2) (7 punti) Provare che la forma differenziale

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

h (y) = e y2 (1 2y 2 )

h (y) = e y2 (1 2y 2 ) . Sia f(x, y = (x+ye x y. eterminare gli estremi assoluti di f nel triangolo chiuso di vertici (0, 0, (a, a, (0, a ( a. Soluzione Poniamo O = (0, 0, A = (a, a, B = (0, a. Il triangolo giace nel primo quadrante

Dettagli

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A

COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre

V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2012/13 Nome: 18 ottobre V Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 202/ Nome: 8 ottobre 20 Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile usare

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);

GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB); VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.

Dettagli

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE

PROBABILITÀ SCHEDA N. 5 SOMMA E DIFFERENZA DI DUE VARIABILI ALEATORIE DISCRETE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Eventi numerici e variabili aleatorie

Eventi numerici e variabili aleatorie Capitolo Eventi numerici e variabili aleatorie. Probabilità di eventi numerici Nel capitolo precedente si sono considerate le nozioni di esperimento, risultato, evento. Un evento è individuato dai risultati

Dettagli

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA

CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA II PROVA DI ACCERTAMENTO, FILA A GEOMETRIA 19/06/008 Esercizio 0.1. Si consideri il seguente endomorfismo di R 4 T (x, y, z, w) = ( x + y + z + w, y + z,

Dettagli

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 )

y (b) f(x, y) = y log x sin x (c) f(x, y) = tan y (d) f(x, y) = e x y (f) f(x, y) = cos(x 2 + y 2 ) FUNZIONI DI PIÙ VARIABILI. Siano date le seguenti funzioni: (a) f(x, y) = 3x + y (c) h(x, y) = x y (b) g(x, y) = xy (d) k(x, y) = x + y Determinare e disegnare nel piano cartesiano il dominio delle funzioni

Dettagli

Matematica e Statistica per Scienze Ambientali

Matematica e Statistica per Scienze Ambientali per Scienze Ambientali Variabili aleatorie - Appunti 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Gennaio 2013 Variabili aleatorie Un numero aleatorio è un esempio di variabile aleatoria.

Dettagli

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012

GEOMETRIA svolgimento di uno scritto del 11 Gennaio 2012 GEOMETRIA svolgimento di uno scritto del Gennaio ) Trovare una base per lo spazio delle soluzioni del seguente sistema omogeneo: x + y 5z = 3x y + z = x y + 8z =. Il sistema può essere scritto in forma

Dettagli

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4,

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4, Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 04/05 Prova di Esonero Maggio 05 degli esercizi proposti Siano G, E, E tre variabili aleatorie gaussiane indipendenti, rispettivamente

Dettagli

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue,

Studente: Matricola: Soluzione. V usando la disuguaglianza di Chebyschev, per n sucientemente grande segue, Es Es 2 Es 3 Es 4 Tot Secondo appello luglio Calcolo delle probabilità 2 luglio 29 Studente: Matricola: Vero o falso Esercizio ( pti). Si dica, motivando la propria risposta, se le seguenti aermazioni

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016

Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Tutorato di Complementi di Analisi Matematica e Statistica 26 maggio 2016 Esercizi possibili di probabilità e statistica Notazioni: U(a, b) è la distribuzione di probabilità uniforma nell intervallo (a,

Dettagli

Esercizi di Matematica A.A. 2017/2018

Esercizi di Matematica A.A. 2017/2018 C.d.L. in Produzioni Animali - Scuola di Agraria e Medicina Veterinaria - Università di Bologna Cod. corso 65965 Esercizi di Matematica A.A. 2017/2018 Insiemistica Dati: A = {1, 2,, 4, 5} B = {1, 5, 7,

Dettagli

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1

Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio Esercizio 1 Corso di Statistica - Prof. Fabio Zucca IV Appello - 5 febbraio 2015 Nome e cognome: Matricola: c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. 8994

Dettagli

Probabilità e Statistica

Probabilità e Statistica Probabilità e Statistica Variabili Casuali multidimensionali Marco Pietro Longhi C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica a.s. 2/29 Marco Pietro Longhi Prob. e Stat.

Dettagli