Galassie Anomale : Nuclei Galattici Attivi e Buchi Neri. Lezione 10

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Galassie Anomale : Nuclei Galattici Attivi e Buchi Neri. Lezione 10"

Transcript

1 Galassie Anomale : Nuclei Galattici Attivi e Buchi Neri Lezione 10

2 Galassie Normali La radiazione elettromagnetica emessa dalle galassie normali è quasi interamente prodotta dai processi di evoluzione stellare: Ottico-UV-vicinoIR: stelle; Infrarossa: polvere calda ( stelle); Raggi X: resti di supernovae, ecc. Righe di emissione: regioni HII, ecc. 2

3 Nuclei Galattici Attivi Nell universo locale il ~10% delle galassie ha un nucleo compatto e molto luminoso detto Nucleo Galattico Attivo (Active Galactic Nucleus, AGN). Si ritiene che gli AGN siano alimentati da accrescimento di massa su un buco nero supermassivo (MBH ~ M ). Un AGN è caratterizzato da emissione di origine non-stellare: righe di emissione larghe (FWHM ~ km/s); righe di emissione da specie molto ionizzate (p.e. ioni con potenziali di ionizzazione da 54.4 ev di He +2 a ~400 ev di S +8 ); forte continuo ottico-uv di natura non stellare; forte emissione di raggi X; forte emissione radio con lobi e getti; variabilità rapida e forte (τ ~ 1 h - 1 yr). Queste caratteristiche non sono spiegabili con una normale popolazione stellare. L AGN è molto spesso più brillante della galassia (tipicamente Lgal ~ L, con LAGN ~ L ). 3

4 (ottico) ( kev) Spettri anomali Normale Starburst AGN Forte emissione X Lobi di emissione radio Optical/UV γ Galassia Ellittica Forte emissione radio Continuo Ottico-UV non stellare

5 Classificazione osservativa degli AGN Esistono tre classi principali di AGN Galassie di Seyfert Quasars Radio galassie Radio galassie Quasars Seyferts FR I FR II Luminosità Alta Bassa Bassa Alta Tasso di accrescimento sul BH Alto Alto Basso Basso 5

6 Le Galassie di Seyfert Scoperte da Karl Seyfert nel 1943 come galassie a spirali peculiari caratterizzate da forti righe di emissione nel nucleo. Galassia di Seyfert Seyfert nucleus (NGC7469) Bulge of 'normal' galaxy NGC 1566 Spirale Normale Flux (erg s -1 cm -2 Å -1 ) Hβ [OIII] M 83 0 Lo spettro di una galassia di Seyfert ha righe di emissione che indicano un livello di ionizzazione del gas più elevato di quello riscontrato nelle galassie starburst (o nelle regioni HII). In alcuni casi le righe hanno larghezze elevate FWHM > 1000 km/s (galassie normali FWHM < 300 km/s) 6

7 Le Righe di Emissione di un AGN MS [OIII]495.9 & Hα Flux (W m -2 nm -1 ) [OII]372.7 [NeIII]386.9 [NeIII]396.8 Hδ410.1 Hγ [OIII]436.3 HeII468.6 Hβ HeI587.6 [FeVII]608.7 [OI]630.0 & [NII]658.4 [SII]671.7 & Wavelength (nm) Le righe larghe permesse (da H, He) hanno larghezze di ~10 4 km/s e sono emesse da gas ad alta densità (Ne >10 9 cm -3, Ne > Nc). Le righe strette proibite (da N, O, S,...) hanno larghezze <1000 km/s e sono emesse da gas a bassa densità (Ne ~ cm -3, Ne < Nc). 7

8 Galassie di Seyfert Esistono due tipi di galassie di Seyfert in base alla presenza o meno di righe larghe nello spettro: ~20% di tutte le Seyfert Seyfert 1 (Sy1) righe larghe (broad ~ 5000 km/s; > 1000 km/s) permesse (Hα, Hβ, HeII etc.); continuo UV-X forte e variabile; luminosità fino a ~10 45 erg/s (~ L ). Seyfert 2 (Sy2) le righe permesse sono strette (narrow ~ 500 km/s; < 1000 km/s); continuo UV-X molto debole rispetto a quello stellare della galassia ospite. ~80% di tutte le Seyfert [OI] [SII] Broad Line Region (BLR): regione compatta, di alta densità (n >10 9 cm -3 ) Narrow Line Region (NLR): regione estesa di bassa densità (n ~ cm -3 ) 8

9 Altre galassie di Seyfert... Le Narrow Line Seyfert 1 Galaxies (NLS1) sono galassie di Seyfert di tipo 1 ma con righe larghe strette : 1000 km/s < FWHM < 2000 km/s I LINER (Low Ionization Narrow Line Region) sono analoghi delle Seyfert 2 ma con righe molto forti di bassa ionizzazione. 9

10 I Quasar Scoperti nel 1960 come sorgenti radio (Quasar = Quasi stellar radio source) Simili alle Seyfert 1 ma molto più luminosi (L > erg s -1 = L ) e si trovano a redshift ( distanze) più elevate. Sono più luminosi delle galassie più luminose note. La loro luminosità nasconde la galassia ospite ed hanno un apparenza stellare. 3C il quasar più vicino e la sua galassia ospite. Spettro tipico di un quasar. 10

11 Seyfert e Quasar NGC 4051 z = log L opt = 41.2 Mrk 335 z = log L opt = 43.8 PG z = log L opt =

12 I Quasar Dato il redshift elevato dei quasar più vicini (z~0.1) inizialmente non si riusciva a capire cosa fossero le righe (larghe!) osservate negli spettri. Esempio di 3C 273: Redshift z = (λ-λ0)/λ0 = Dalla legge di Hubble la distanza in Mpc è d = cz/h0 = 677 Mpc La magnitudine apparente è m=13 Il modulo di distanza è m-m = 5 log( d[mpc] ) +25 La magnitudine assoluta è M = Per una galassia brillante M -21. Flux (erg s -1 cm -2 Å -1 ) C 273 è ~100 volte più brillante di una galassia brillante ed ha L~10 12 L Hγ λ 0 = nm rest Fe II + He II Hβ [OIII] λ = nm observed Wavelength (nm) 3C 273 Fe II 12

13 Le Radio Galassie Alcuni nuclei attivi sono caratterizzati da una forte emissione radio anche estesa su dimensioni molto più grandi della galassia stessa (>100 kpc). Centauro A (NGC 5128) Lobi di emissione radio X+Ottico+Radio Anche i Quasar possono avere una forte emissione radio: Quasar Radio Loud. Hanno L più elevate delle radio galassie. La radio galassia Fornax A Galassia Ellittica 13

14 Getti relativistici Gli AGN radio-loud sono caratterizzati da getti di materiale molto collimati che partono dal nucleo e terminano nei lobi radio. Questi getti sono osservati nel radio, ma anche nell ottico e nell X. Spesso i blob lungo il getto si muovono di moto superluminale ovvero con velocità apparenti > c ( moti relativistici in direzione vicina alla linea di vista). M87: HST (ottico) 14

15 Cygnus A NGC 6251

16 Tipi di Radio Sorgenti Esistono due tipi di sorgenti radio (galassie o quasar) classificate in base alla loro apparenza radio: Sorgenti Fanaroff-Riley I (FR I) Sorgenti Fanaroff-Riley II (FR II) Radio Loudness L(178MHz) < 2x10 25 W > 2x10 25 W FR I FR II Getti radio gemelli, molti blob di emissione, estesi, oscurate ai bordi (edge darkened) Getti radio singoli e altamente collimati, brillanti ai bordi (edge brightened) 16

17 Distribuzione Spettrale di Energia Combinando le informazioni fotometriche nelle varie bande dello spettro em è possibile ricostruire la distribuzione spettrale di energia (Spectral Energy Distribution, SED) di un AGN. L integrale della SED fornisce la luminosità totale (bolometrica) dell AGN. La SED è rappresentata spesso da un grafico log νfν - log ν (se asse x è log ν, log νfν è direttamente legata all area sotto la curva ovvero all integrale). Si osservano varie componenti: Big Blue Blump, IR Bump, raggi X. La caratteristica principale è che log νfν costante dal radio ai raggi X. La potenza radio è una eccezione: solo il 10% degli AGN sono radio-loud log ν F(ν) 0-1 Spectral Energy Distribution (SED) Radio Loud IR bump Radio Quiet Big Blue Bump X-rays log ν 17

18 Emissione non-stellare Gli spettri di galassie normali sono dominati da emissione termica di corpo nero in due bande: Visibile/Vicino IR: stelle; Lontano IR: polvere riscaldata dalle stelle Spectral Energy Distribution (SED) 3C 273 (Quasar radio loud) Radio Loud IR bump Big Blue Bump log ν F(ν) 0-1 Radio Quiet Warm/hot dust O star X-rays log ν Galassia a spirale 18

19 BL Lac e Blazars Alcuni AGN sono peculiari nel senso che sono caratterizzati da: sorgenti radio compatte (no lobi) e molto potenti; spesso blob di emissione radio mostrano moti superluminali (velocità apparenti sul piano del cielo > c); hanno spettri dominati da continuo fortemente polarizzato privo di righe di emissione; la SED è più piatta di quella degli altri AGN; sono estremamente variabili in luminosità. Questi AGN sono detti BL Lac o Blazars. 19

20 Spettri di AGN Blazar (radio-loud) Quasar Galassie di Seyfert Galassia Normale AGN debole Radio Galassie 20

21 Principali Classi di AGN 21

22 Variabilità Curva di luce nel visibile del blazar 3C279 L emissione delle galassie normali è dovuta a ~10 11 stelle la luminosità non varia. La luminosità di un AGN è variabile a tutte le lunghezza d onda con tempi scala di ~ore (raggi X) - mesi (visibile/ir). I Blazar sono gli AGN più variabili. 22

23 Variabilità: ampiezza 23

24 Dimensioni del Motore centrale La variabilità determina un limite superiore alle dimensioni della regione emittente: R c Δt R dimensioni della regione emittente, Δt tempo scala di variabilità La rapida variabilità X in una galassia di Seyfert è caratterizzata da un tempo scala Δt~10 4 s ovvero R m (20 AU). 24

25 Il Motore Centrale? Qual è la sorgente di energia degli AGN? Il meccanismo fisico di produzione dell energia deve rispettare le seguenti caratteristiche osservative: Spettri non-stellari (SED, continuo e righe di emissione; forte emissione UV, X e radio); Rapida variabilità (in alcuni casi < ore) ovvero sorgente compatta; Sorgenti radio estremamente compatte (p.e. Centauro A < 10 lt-days); Moti superluminali (accelerazione di plasma a velocità relativistiche); Getti collimati in direzione ben definita anche su lunghezze fino a Mpc (direzione fissata ottimi giroscopi); 25

26 Efficienza di conversione M-E Le reazioni di fusione nucleare hanno efficienza bassa. Esempio: catena p-p nel Sole ovvero 4 1 H 4 He + 2γ+2νe massa iniziale: 4 mp = amu = amu (atomic mass unit, amu = 1.66x10-27 kg) massa finale (nucleo 4 He) = amu massa convertita in energia: Δm = amu Efficienza di conversione: ϵ = Δm/4mp = / = = 0.7% Tempo scala di variabilità di ~3 ore dimensioni d ~ c Δt = 10-4 pc Supponiamo che la sorgente sia costituita da stelle con massa totale M e che brucino una frazione f della massa totale nel tempo Δt con efficienza ε: L = ε f M c 2 L = ε fm c 2 t t con i valori ε=0.7%, f=10% e Δt = 10 7 y (molto conservativi) si ottiene che per avere L = erg/s si devono avere stelle per M ~10 8 M in 10-4 pc ovvero ρ ~10 20 M pc impossibile ( centro Galattico). 26

27 Il Motore Centrale L unico processo che può fornire una alta efficienza di conversione M-E in volumi piccoli è l accrescimento su un oggetto compatto. L efficienza massima si avrà per l oggetto più compatto noto ovvero un Buco Nero Il gas interstellare possiede momento angolare e si dispone a formare un disco di accrescimento ruotante attorno al buco nero. Nel disco, la viscosità permette al gas di perdere momento angolare e quindi di cadere verso il BH, convertendo energia gravitazionale in radiazione elettromagnetica e producendo particelle accelerate a velocità relativistiche. E potenziale gravitazionale E cinetica del gas Calore (tramite la viscosità) radiazione EM (corpo nero). Accretion disk X-ray & UV radiation Black hole magnetic fields & relativistic particles 27

28 La produzione di energia Se il gas in accrescimento verso il buco nero ha un momento angolare, si ha naturalmente la formazione di un disco in rotazione circolare. Il disco si forma naturalmente con asse di rotazione parallelo al momento angolare del gas in accrescimento. La rotazione su orbite circolari avviene a seguito dell interazione viscosa tra i vari elementi di gas che portano ad una ridistribuzione dell energia: ogni elemento di gas si colloca così allo stato di L F cent energia minima che corrisponde all orbita circolare. Consideriamo adesso un elemento di massa dm nel disco di accrescimento attorno al BH di massa M. Nel processo di accrescimento la variazione di energia termica dalla massa dm per passare da r a r+dr sarà pari a metà della variazione di energia potenziale (teorema del Viriale) de th = 1 2 GMdm r + dr 1 2 GMdm r V eff = GM BHm R Fgrav + L R 2 28

29 La produzione di energia La quantità di energia irraggiata è pertanto dl = de th dt = 1 2 GM dm dt 1 r 1 r + dr = 1 2 GMṀ dr r 2 Integrando su r si ottiene L = Rin R out dl = 1 2 GMṀ 1 R in 1 R out 1 2 GMṀ R in L efficienza di conversione di massa in energia si ottiene da ε = GM 2 c 2 R in L = εṁc2 Si può dimostrare con la relatività generale che l orbita stabile più interna ad un buco nero non ruotante è per R in =3R Sch =6 GM c 2 29

30 La Produzione di Energia ovvero ε contro ε nuc L efficienza di irraggiamento è ε = 1/12 mc 2 / mc 2 = 1/12 = Una frazione non trascurabile (~10%) dell energia a riposo (E=mc 2 ) è irraggiata nel processo di accrescimento (reazioni di fusione nucleare nelle stelle hanno ε = 0.7%) Quanta massa deve essere accresciuta per anno per emettere le luminosità osservate? La luminosità tipica di un quasar è L ~ erg/s con ε ~ 0.1. Massa m rilascia energia E = ε mc 2 per cui la luminosità è L = ΔE/Δt = ε c 2 Δm/Δt e Δm/Δt è il tasso di accrescimento (M /yr) necessario. Per L = erg/s, con ε ~ 0.1 si ottiene Δm/Δt ~ 0.2 M /yr 30

31 La Produzione di Energia Da calcoli più accurati che tengono anche conto del processi di accrescimento nel disco si ottiene Orbita stabile più interna Efficienza conversione M E BH non ruotante (Schwarschild) 3 RS BH massimamente ruotante (Kerr) RS

I Nuclei Galattici Attivi. Lezione 15

I Nuclei Galattici Attivi. Lezione 15 I Nuclei Galattici Attivi Lezione 15 Schema della Lezione Principali proprietà dei Nuclei Galattici Attivi (AGN, Active Galactic Nuclei). Classi di Nuclei Galattici Attivi. Il motore centrale ed il disco

Dettagli

Spettro della galassia di Seyfert NGC 4151

Spettro della galassia di Seyfert NGC 4151 Spettro della galassia di Seyfert NGC 4151 Misura del redshift e della larghezza delle righe di emissione Enrico Ferrari & Michele Previatello Istituto Tecnico Industriale Severi - Padova (22 Aprile 2005)

Dettagli

Nuclei Galattici Attivi e Buchi Neri. Lezione 14

Nuclei Galattici Attivi e Buchi Neri. Lezione 14 Nuclei Galattici Attivi e Buchi Neri Lezione 14 Perchè un BH molto massiccio? Quanto massiccio deve essere un buco nero per irraggiare con la luminosità di un AGN? Se richiediamo che che LAGN < LEdd (limite

Dettagli

Il mezzo circumnucleare: Oscuramento. Monday, January 9, 12

Il mezzo circumnucleare: Oscuramento. Monday, January 9, 12 Il mezzo circumnucleare: Oscuramento Riassunto/Ripasso delle Componenti Disco di Accrescimento (sorgente UV-X D < 0.01 pc L = 10 42-10 47 erg/s Spectral Energy Distribution (SED Radio Loud IR bump He 2+

Dettagli

La Broad Line Region (BLR) La Narrow Line Region (NLR) Δτ ~ r / c 1 = r / c 2 = 0 ~ r / c Δτ4 = 2r / c NGC 1068 Δτ3 = r / c

La Broad Line Region (BLR) La Narrow Line Region (NLR) Δτ ~ r / c 1 = r / c 2 = 0 ~ r / c Δτ4 = 2r / c NGC 1068 Δτ3 = r / c La Broad Line Region (BLR) La Narrow Line Region (NLR) La Broad Line Region è costituita da nubi di gas denso (NH~10 9-10 13 cm -3 ), fotoionizzate dalla sorgente centrale e fredde, Te~2!10 4 K). Le variazioni

Dettagli

Emissione termica della polvere

Emissione termica della polvere Emissione termica della polvere corpo nero assorbimento nell IR k(λ) λ 2 L dust ( ) M dust ( )=M dust B(,T)k( ) Qual e la temperatura dei grani? a 2 Q abs UV F UV =4 a 2 Q abs IR SB T 4 B(,T)= ( ) k( )

Dettagli

Corso facoltativo. Astronomia. Galassie. Christian Ferrari & Gianni Boffa Liceo di Locarno

Corso facoltativo. Astronomia. Galassie. Christian Ferrari & Gianni Boffa Liceo di Locarno Corso facoltativo Astronomia Galassie Christian Ferrari & Gianni Boffa Liceo di Locarno Parte 3: Galassie La Via Lattea Classificazione delle galassie Ammassi e super-ammassi Formazione delle galassie

Dettagli

I buchi ne!: piccoli. e gran" cannibali

I buchi ne!: piccoli. e gran cannibali I buchi ne!: piccoli e gran" cannibali insaziabili Tomaso Belloni (Osservatorio Astronomico di Brera) I mostri del cielo I buchi ne!: piccoli e gran" cannibali insaziabili Tomaso Belloni (Osservatorio

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

La nostra galassia: la Via Lattea. Lezione 13

La nostra galassia: la Via Lattea. Lezione 13 La nostra galassia: la Via Lattea Lezione 13 Sommario La struttura della Galassia. Osservazioni in ottico, infrarosso e radio. Disco, sferoide (bulge) e alone. Popolazioni stellari. Braccia a spirale.

Dettagli

Formazione Stellare dalla Nostra Galassia all Universo Lontano

Formazione Stellare dalla Nostra Galassia all Universo Lontano Formazione Stellare dalla Nostra Galassia all Universo Lontano R. Maiolino Osservatorio Astrofisico di Arcetri Dipartimento di Astronomia Univ. di Firenze C.N.R.-CAISMI CAISMI Sezione di Firenze La Formazione

Dettagli

Astronomia Strumenti di analisi

Astronomia Strumenti di analisi Corso facoltativo Astronomia Strumenti di analisi Christian Ferrari & Gianni Boffa Liceo di Locarno Parte E: Strumenti di analisi Radiazione elettromagnetica Interazione radiazione - materia Redshift Misura

Dettagli

Le nebulose. Le nebulose sono agglomerati di idrogeno, polveri e plasma.

Le nebulose. Le nebulose sono agglomerati di idrogeno, polveri e plasma. Le nebulose Le nebulose sono agglomerati di idrogeno, polveri e plasma. Esistono vari tipi di nebulosa: nebulosa oscura all interno della quale avvengono i fenomeni di nascita e formazione di stelle; nebulosa

Dettagli

Sistemi binari e accrescimento

Sistemi binari e accrescimento Sistemi binari e accrescimento Le Stelle Binarie Finora abbiamo considerato le stelle come oggetti luminosi e isolati; le stelle sono alimentate da reazioni di fusione nucleare non interagiscono con il

Dettagli

I Nuclei Galattici Attivi

I Nuclei Galattici Attivi Istituto Nazionale di Astrofisica Osservatorio astronomico di Brera Universo in fiore I Nuclei Galattici Attivi Anna Wolter Anna.Wolter@brera.inaf.it INAF-Osservatorio Astronomico di Brera 11 marzo 2015

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Unità 2 - L ambiente celeste

Unità 2 - L ambiente celeste Unità 2 - L ambiente celeste 1 1. La Sfera celeste Stelle in rotazione 2 1. La Sfera celeste Punti di riferimento sulla Sfera celeste 3 1. La Sfera celeste Individuare la Stella polare sulla Sfera celeste

Dettagli

SOLE, struttura e fenomeni

SOLE, struttura e fenomeni SOLE, struttura e fenomeni Lezioni d'autore di Claudio Censori VIDEO Introduzione (I) Il Sole è la stella più vicina a noi, della quale possiamo pertanto ricavare in dettaglio informazioni dirette. Si

Dettagli

Oltre il Sistema Solare

Oltre il Sistema Solare Corso di astronomia pratica Oltre il Sistema Solare Gruppo Astrofili Astigiani Andromedae LE STELLE Nascita di una stella Una nube di gas (soprattutto idrogeno) Inizia a collassare sotto l azione della

Dettagli

Sull Espansione dell Universo. Silvano Massaglia Dipartimento di Fisica Università di Torino

Sull Espansione dell Universo. Silvano Massaglia Dipartimento di Fisica Università di Torino Sull Espansione dell Universo Silvano Massaglia Dipartimento di Fisica Università di Torino Seminario Didattico 2014 1 Sommario Il quadro osservativo in cosmologia Il Big Bang, l inflazione e L Universo

Dettagli

Astronomia Lezione 17/10/2011

Astronomia Lezione 17/10/2011 Astronomia Lezione 17/10/2011 Docente: Alessandro Melchiorri e.mail:alessandro.melchiorri@roma1.infn.it Libri di testo: - An introduction to modern astrophysics B. W. Carroll, D. A. Ostlie, Addison Wesley

Dettagli

Materia e radiazione. Lezione 6

Materia e radiazione. Lezione 6 Materia e radiazione Lezione 6 Sommario Luce e radiazione: come estrarre l informazione fisica dalla luce delle stelle. La radiazione di corpo nero: leggi di Wien e di Stefan. Struttura Atomica: nucleo

Dettagli

TEORIA DELLA RELATIVITA

TEORIA DELLA RELATIVITA Cenni sulle teorie cosmologiche TEORIA DELLA RELATIVITA Nasce dalla constatazione che il movimento è relativo, e dipende dal sistema di riferimento. La teoria è formulata da Einstein che coniuga la precedente

Dettagli

Le Galassie I mattoni dell Universo

Le Galassie I mattoni dell Universo Le Galassie I mattoni dell Universo Stefano Covino INAF / Osservatorio Astronomico di Brera Da Terra vediamo solo una grande fascia di stelle, gas e polveri Questa ad esempio è la zona della costellazione

Dettagli

Le galassie e le leggi di gravitazione

Le galassie e le leggi di gravitazione Le galassie e le leggi di gravitazione Le leggi del moto dei pianeti Keplero La più importante innovazione di Keplero fu quella di riuscire a liberarsi dal pregiudizio che le orbite dei pianeti dovessero

Dettagli

CARATTERISTICHE DELLE STELLE

CARATTERISTICHE DELLE STELLE CARATTERISTICHE DELLE STELLE Lezioni d'autore di Claudio Censori VIDEO Introduzione I parametri stellari più importanti sono: la le la la luminosità, dimensioni, temperatura e massa. Una stella è inoltre

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

Cap.1. argomenti del corso. il filo conduttore è il ruolo della gravità. forze gravitazionali ed elettromagnetiche. Teorema del Viriale

Cap.1. argomenti del corso. il filo conduttore è il ruolo della gravità. forze gravitazionali ed elettromagnetiche. Teorema del Viriale Cap.1 argomenti del corso Teorema del Viriale forze gravitazionali ed elettromagnetiche la gravità equilibrata dalla pressione nelle stelle: stelle normali, produzione di energia termonucleare; nane bianche

Dettagli

La nascita ed evoluzione della Via Lattea. Francesca Matteucci Dipartimento di Astronomia Universita di Trieste

La nascita ed evoluzione della Via Lattea. Francesca Matteucci Dipartimento di Astronomia Universita di Trieste La nascita ed evoluzione della Via Lattea Francesca Matteucci Dipartimento di Astronomia Universita di Trieste La Via Lattea Anticamente la Via Lattea era... Il latte perso da Giunone mentre allattava

Dettagli

Quasar e Buchi Neri. Maria Massi (Max Planck Institut für Radioastronomie)

Quasar e Buchi Neri. Maria Massi (Max Planck Institut für Radioastronomie) Quasar e Buchi Neri Maria Massi (Max Planck Institut für Radioastronomie) I Quasar sono gli oggetti piu' luminosi dell' Universo I. Come sono stati scoperti i Quasar? II. Cosa e' un Quasar? III. Cosa resta

Dettagli

Astronomia INTRODUZIONE

Astronomia INTRODUZIONE Astronomia 2015-16 INTRODUZIONE Contenuti: Corso di Astronomia 2015-2016 Prof. Marco Bersanelli Fondamenti Struttura stellare Evoluzione stellare Strumentazione per astrofisica Astrofisica galattica Astrofisica

Dettagli

Astronomia Extragalattica

Astronomia Extragalattica Astronomia Extragalattica Alessandro Marconi Dipartimento di Astronomia e Scienza dello Spazio, Università degli Studi di Firenze Anno Accademico 2007/2008 Contatti, Bibliografia e Lezioni Contatti email:

Dettagli

Unità 2 - L ambiente celeste

Unità 2 - L ambiente celeste Unità 2 - L ambiente celeste 1 2 1. La Sfera celeste Stelle in rotazione 3 Posizione delle stelle Pc Distanza alla quale un corpo celeste ha una parallasse p di 1 di arco 4 1 UA 1 al = 9,3 x 10 15 m =

Dettagli

Osservando il Sole è possibile scorgere delle aree che appaiono più scure (macchie) rispetto al resto della fotosfera a causa della loro temperatura

Osservando il Sole è possibile scorgere delle aree che appaiono più scure (macchie) rispetto al resto della fotosfera a causa della loro temperatura Osservando il Sole è possibile scorgere delle aree che appaiono più scure (macchie) rispetto al resto della fotosfera a causa della loro temperatura più "bassa" Il numero di macchie solari visibili sulla

Dettagli

LEZIONE 6. L Universo al telescopio

LEZIONE 6. L Universo al telescopio L Universo al telescopio LEZIONE 6 1: La velocità della luce Come abbiamo già accennato, la luce viaggia nel vuoto ad una velocità pari a 300'000 km/s. Per fare un paragone, la luce ci impiega circa 1

Dettagli

QUASAR: un salto dalla nostra galassia ai confini dell universo

QUASAR: un salto dalla nostra galassia ai confini dell universo QUASAR: un salto dalla nostra galassia ai confini dell universo Mari Polletta Istituto Nazionale di Astrofisica Istituto di Astrofisica Spaziale e Fisica Cosmica di Milano 1 L anno della scoperta dei Quasars

Dettagli

Le distanze in Astronomia

Le distanze in Astronomia Le distanze in Astronomia Argomenti trattati Distanze astronomiche: alcuni metodi di misura Le galassie: morfologia e classificazione Cosmologia: accenni DISTANZE ASTRONOMICHE DISTANZA E TEMPO La Luna

Dettagli

Sorgenti di luce Colori Riflettanza

Sorgenti di luce Colori Riflettanza Le Schede Didattiche di Profilocolore IL COLORE Sorgenti di luce Colori Riflettanza Rome, Italy 1/37 La luce: natura e caratteristiche La luce è una radiazione elettromagnetica esattamente come lo sono:

Dettagli

/H*DODVVLHGL6H\IHUW ,OPRGHOORFKHVSLHJDORVSHWWURGHOOD6H\IHUW SUHYHGHXQ%XFR1HURFHQWUDOHFRQXQGLVFR GLDFFUHVFLPHQWRLQWRUQR

/H*DODVVLHGL6H\IHUW ,OPRGHOORFKHVSLHJDORVSHWWURGHOOD6H\IHUW SUHYHGHXQ%XFR1HURFHQWUDOHFRQXQGLVFR GLDFFUHVFLPHQWRLQWRUQR 6WXGLRGHOORVSHWWURGLXQ$*1HGLXQ4XDVDU di 8UL%DJKLQ0DWWLD'HQHJD5RVDQQD'UDJRQH(OHQD(Q]R con il prof.&)rulhul del Liceo Scientifico Statale "G.B. Benedetti" Venezia Docenti per il Dipartimento di Astronomia

Dettagli

Lo Spettro Elettromagnetico

Lo Spettro Elettromagnetico Spettroscopia 1 Lo Spettro Elettromagnetico Lo spettro elettromagnetico è costituito da un insieme continuo di radiazioni (campi elettrici e magnetici che variano nel tempo, autogenerandosi) che va dai

Dettagli

4 CORSO DI ASTRONOMIA

4 CORSO DI ASTRONOMIA 4 CORSO DI ASTRONOMIA Ammassi di stelle, Nebulose e Galassie 16 gennaio 2016 spiegazioni di Giuseppe Conzo Parrocchia SS. Filippo e Giacomo Oratorio Salvo D Acquisto SOMMARIO Dalle stelle agli ammassi

Dettagli

Origine ed Evoluzione dell Universo. Lezione 16

Origine ed Evoluzione dell Universo. Lezione 16 Origine ed Evoluzione dell Universo Lezione 16 Sommario Perchè il cielo è buio? L espansione cosmica ed il tempo di Hubble. Il Big Bang ed il fondo cosmico a micro-onde. L esplosione cosmica. La geometria

Dettagli

LE GALASSIE ESTERNE. Morfologia e classificazione

LE GALASSIE ESTERNE. Morfologia e classificazione LE GALASSIE ESTERNE Morfologia e classificazione LE GALASSIE ESTERNE Morfologia e classificazione La nostra Galassia ha un diametro di 100 000 anni luce ed è popolata da almeno 200 miliardi di stelle,

Dettagli

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino

Evoluzione stellare: dalla nascita di una stella alla sua fine. Serafina Carpino Evoluzione stellare: dalla nascita di una stella alla sua fine Serafina Carpino Oltre a miliardi di stelle, nello spazio ci sono nubi di materia interstellare, formate da estese condensazioni di gas e

Dettagli

Trasmissione di calore per radiazione

Trasmissione di calore per radiazione Trasmissione di calore per radiazione Sia la conduzione che la convezione, per poter avvenire, presuppongono l esistenza di un mezzo materiale. Esiste una terza modalità di trasmissione del calore: la

Dettagli

Stelle e galassie. Le sorgenti dei raggi cosmici

Stelle e galassie. Le sorgenti dei raggi cosmici Stelle e galassie Le sorgenti dei raggi cosmici La massa dei corpi celesti Tappa fondamentale per la misurazione dei corpi celesti è stata la determinazione della massa della Terra, avvenuta alla fine

Dettagli

Salve ragazze e ragazzi!

Salve ragazze e ragazzi! Salve ragazze e ragazzi! Bentornati nel nostro Osservatorio. In questa puntata continueremo a studiare la nostra Galassia e anche le altre galassie che popolano l Universo. Per studiare le galassie, quindi,

Dettagli

1. Le stelle. corpi celesti di forma sferica. costituite da gas (idrogeno ed elio)

1. Le stelle. corpi celesti di forma sferica. costituite da gas (idrogeno ed elio) LE STELLE 1. Le stelle corpi celesti di forma sferica costituite da gas (idrogeno ed elio) producono energia al loro interno tramite reazioni di fusione nucleare, la emettono sotto forma di luce che arriva

Dettagli

GALASSIE. Sono i "mattoni" che compongono l'universo, il quale ne contiene miliardi.

GALASSIE. Sono i mattoni che compongono l'universo, il quale ne contiene miliardi. L UNIVERSO: l insieme di tutta la materia e l energia esistente dell immenso spazio in cui sono immerse. Contiene miliardi di GALASSIE L Universo ebbe origine, circa 12-15 miliardi di anni fa (ovviamente

Dettagli

La misura dei parametri fisici delle stelle

La misura dei parametri fisici delle stelle La misura dei parametri fisici delle stelle La misura dei parametri fisici delle stelle Grandezze più importanti che permettono di caratterizzare le stelle sono: la distanza ( d ); Astronomia lo spettro

Dettagli

La struttura stellare

La struttura stellare La struttura stellare Brevi richiami su proprietà osservative Grandezze più importanti che permettono di caratterizzare le stelle sono: la distanza ( d ); Astronomia lo spettro della radiazione e.m. emessa

Dettagli

L Universo secondo la Fisica moderna

L Universo secondo la Fisica moderna Jesi 16 aprile 2005 L Universo secondo la Fisica moderna Cesare Bini Universita La Sapienza Roma Come la Fisica del XX secolo ha affrontato il problema dell origine dell Universo e quali sono i problemi

Dettagli

L essenziale è invisibile agli occhi: la materia oscura

L essenziale è invisibile agli occhi: la materia oscura L essenziale è invisibile agli occhi: la materia oscura Prof. Armando Pisani, M. Peressi e G. Pastore I.S.I.S. (Lic. Classico) D. Alighieri (GO), A.S. 2013-14 Indice Introduzione Di che cosa è fatto l

Dettagli

Lezione 5. La misura delle distanze in astrofisica

Lezione 5. La misura delle distanze in astrofisica Lezione 5 La misura delle distanze in astrofisica La misura delle distanze in astrofisica Per misurare le distanze dagli oggetti celesti è necessario disporre di regoli e di una scala che consenta di calibrare

Dettagli

Le galassie. 1. Formazione stellare

Le galassie. 1. Formazione stellare Le galassie 1. Formazione stellare Oggi riusciamo ad osservare galassie e quasar fino a distanze corrispondenti a tempi in cui l eta dell Universo era meno del 10% di quella attuale, mentre il fondo cosmico

Dettagli

(In Luce Visibile: nm)

(In Luce Visibile: nm) (In Luce Visibile: 300 700 nm) La fascia piu` chiara che attraversa il cielo notturno e` stata indicata in tutte le culture antiche con vari nomi che spesso fanno riferimento ai concetti di: Fiume Celeste

Dettagli

Sfera Celeste e Coordinate Astronomiche. A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011

Sfera Celeste e Coordinate Astronomiche. A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011 Astronomiche A. Stabile Dipartimento di Ingegneria Università degli Studi del Sannio Benevento Atripalda, 9 Maggio 2011 Unità di lunghezza e distanze tipiche 1. Sistema Solare: 1 UA = 149,5 milioni di

Dettagli

TECNICHE SPETTROSCOPICHE

TECNICHE SPETTROSCOPICHE TECNICHE SPETTROSCOPICHE L interazione delle radiazioni elettromagnetiche con la materia e essenzialmente un fenomeno quantico, che dipende sia dalle proprieta della radiazione sia dalla natura della materia

Dettagli

Astrofisica e cosmologia

Astrofisica e cosmologia Astrofisica e cosmologia Lezioni d'autore Claudio Cigognetti La radiazione cosmica di fondo (SuperQuark Rai) VIDEO L'energia oscura (parte prima) VIDEO L'energia oscura (parte seconda) VIDEO La misura

Dettagli

p e c = ev Å

p e c = ev Å Corso di Introduzione alla Fisica Quantistica (f) Soluzioni Esercizi: Giugno 006 * Quale la lunghezza d onda di de Broglie di un elettrone che ha energia cinetica E 1 = KeV e massa a riposo m 0 = 9.11

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA M. Marengo INTERAZIONI DELLE RADIAZIONI CON LA MATERIA Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna mario.marengo@unibo.it Si definiscono radiazioni ionizzanti tutte le

Dettagli

1. Le caratteristiche delle stelle 2. La vita e la morte delle stelle 3. Le galassie 4. L universo e il Big Bang

1. Le caratteristiche delle stelle 2. La vita e la morte delle stelle 3. Le galassie 4. L universo e il Big Bang 1. Le caratteristiche delle stelle 2. La vita e la morte delle stelle 3. Le galassie 4. L universo e il Big Bang Le caratteristiche delle stelle le stelle sono lontanissime dalla Terra; le loro distanze

Dettagli

Unità di misura di lunghezza usate in astronomia

Unità di misura di lunghezza usate in astronomia Unità di misura di lunghezza usate in astronomia In astronomia si usano unità di lunghezza un po diverse da quelle che abbiamo finora utilizzato; ciò è dovuto alle enormi distanze che separano gli oggetti

Dettagli

mercoledì 13 febbraio 2013 Universo Primitivo Adriano Fontana INAF - Osservatorio Astronomico di Roma Università La Sapienza - Roma

mercoledì 13 febbraio 2013 Universo Primitivo Adriano Fontana INAF - Osservatorio Astronomico di Roma Università La Sapienza - Roma Universo Primitivo Adriano Fontana INAF - Osservatorio Astronomico di Roma Università La Sapienza - Roma Nebbie cosmiche: le prime galassie dell'universo. Adriano Fontana INAF - Osservatorio Astronomico

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

UNIVERSO STATICO E UNIVERSO IN ESPANSIONE

UNIVERSO STATICO E UNIVERSO IN ESPANSIONE L UNIVERSO INDICE ARGOMENTI: BIG BANG UNIVERSO STATICO E IN ESPANSIONE TEORIA DELLO STATO STAZIONARIO TEORIA DELLA MATERIA OSCURA LE STELLE E LA LORO EVOLUZIONE STELLE DOPPIE BUCHI NERI UNIVERSI PARALLELI

Dettagli

L Universo invisibile della Radioastronomia

L Universo invisibile della Radioastronomia L Universo invisibile della Radioastronomia Le onde radio Gli inizi I radiotelescopi L universo radio 29 Marzo 2009 Corrado Trigilio La Radioastronomia non e`... ascoltare i dati radio! ma osservare ed

Dettagli

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa

Un immagine digitale. Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa Un immagine digitale Dimensioni finite (X,Y) No profondità inerente Numero finito di pixel Rappresentazione numerica dell energia luminosa Y X x y f(x,y) = intensità luminosa in (x,y) Tre livelli di image

Dettagli

Proprietà fisiche del Mezzo Interstellare Diffuso!

Proprietà fisiche del Mezzo Interstellare Diffuso! Proprietà fisiche del Mezzo Interstellare Diffuso! Lezione ISM 3! G. Vladilo! Astronomia Osservativa C, ISM 3, Vladilo (2011)! 1! Il Mezzo Interstellare come laboratorio di fisica! Fisica delle basse densità!

Dettagli

Bande elettromagnetiche, brillanza superficiale, intensità specifica

Bande elettromagnetiche, brillanza superficiale, intensità specifica Corso di introduzione all'astrofisica secondo modulo Programma svolto A.A. 2010-2011 Astronomia ad occhio nudo Il funzionamento dell'occhio umano Il meccanismo della visione Sensibilità spettrale 1. Potere

Dettagli

Gravità bilanciata dalla pressione cinetica

Gravità bilanciata dalla pressione cinetica Cap. 3 stelle normali Gravità bilanciata dalla pressione cinetica 1 dp ρ dr = GM r 2 2T = f GM 2 R equilibrio differenziale integrato T = 1 k GMm p 10R 107 K ma la stella irraggia quindi perde energia

Dettagli

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati

4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi stato fondamentale stati eccitati 4. Lo spettro discreto: emissione e assorbimento di luce da parte di atomi Accanto allo spettro continuo che i corpi emettono in ragione del loro stato termico, si osservano spettri discreti che sono caratteristici

Dettagli

La Formazione Stellare. Lezione 10

La Formazione Stellare. Lezione 10 La Formazione Stellare Lezione 10 Sommario Dove avviene la formazione stellare: le nubi molecolari giganti. Collasso gravitazionale: massa e lunghezza di Jeans. Formazione stellare indotta. Dischi protostellari

Dettagli

1. L ambiente celeste

1. L ambiente celeste 1. L ambiente celeste Arecibo (Puerto Rico, Antille), 12 ottobre 1992: cinquecentesimo anniversario della scoperta dell America. Il potente radiotelescopio, la cui parabola riveste un ampia cavità naturale,

Dettagli

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ;

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ; PROBLEMI I primi tre problemi sono tratti dal libro P. Fleury, J.P. Mathieu, Esercizi di Fisica, Zanichelli (Bologna, 1970) che contiene i testi e le relative soluzioni, indicati dal loro numero e pagina

Dettagli

UNIVERSITA DEGLI STUDI DI CATANIA

UNIVERSITA DEGLI STUDI DI CATANIA UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI SCIENZE M.F.N. CORSO DI LAUREA TRIENNALE IN FISICA CORSO DI ISTITUZIONI DI ASTROFISICA AUTOVALUTAZIONE DEL PROFITTO QUESTIONARIO A RISPOSTA MULTIPLA Caro Studente,

Dettagli

n(z) = n(0) e m gz/k B T ; (1)

n(z) = n(0) e m gz/k B T ; (1) Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 4 Luglio 008 - (tre ore a disposizione) [sufficienza con punti 8 circa di cui almeno 4 dagli esercizi nn. 3 e/o 4] [i bonus possono essere

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Schema di un tubo a raggi X

Schema di un tubo a raggi X Raggi X 1 Schema di un tubo a raggi X I raggi X sono prodotti quando una sostanza è bombardata da elettroni ad alta velocità. I componenti fondamentali di un tubo a raggi X sono: a) ampolla di vetro a

Dettagli

PROGRAMMA DI SCIENZE DELLA TERRA CLASSE 1^ H. a. s Prof.ssa RUBINO ALESSANDRA

PROGRAMMA DI SCIENZE DELLA TERRA CLASSE 1^ H. a. s Prof.ssa RUBINO ALESSANDRA ISTITUTO TECNICO INDUSTRIALE DI STATO "ENRICO FERMI" Via Luosi n. 23-41124 Modena Tel. 059211092 059236398 - (Fax): 059226478 E-mail: info@fermi.mo.it Pagina web: www.fermi.mo.it PROGRAMMA DI SCIENZE DELLA

Dettagli

In quanti modi un buco nero può ucciderci?

In quanti modi un buco nero può ucciderci? In quanti modi un buco nero può ucciderci? Alberto Cappi Flavio Fusi Pecci INAF - Osservatorio Astronomico di Bologna Bologna, 23 Agosto 2007 potremmo DAVVERO essere uccisi da un buco nero? I buchi neri

Dettagli

La misura delle distanze stellari

La misura delle distanze stellari La misura delle distanze stellari Gisella Clementini INAF - Osservatorio Astronomico di Bologna Eratostene di Cirene, 240 a.c. - raggio Terrestre Ipparco di Nicea, 150 a.c. - distanza Terra-Luna Giovanni

Dettagli

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA AREA CONTROLLATA D =!E!m energia assorbita nell'unità di massa 2 UNITA' DI MISURA dose assorbita D =!E!m dimensioni [D] =

Dettagli

AMMASSI DI GALASSIE. Marco Castellano.

AMMASSI DI GALASSIE. Marco Castellano. AMMASSI DI GALASSIE Marco Castellano castellano@oa-roma.inaf.it AMMASSI DI GALASSIE Gli oggetti più grandi dell Universo: 1) Un breve viaggio verso l Ammasso più vicino a noi 2) Quanto sono grandi: la

Dettagli

m s m s. 3, K g

m s m s. 3, K g Le osservazioni hanno permesso una stima della massa pari a : Grande Nube : 0 0 9 m s Piccola Nube : assumendo i valori : m PM 6 0 9 m s, 978 0 0 K g R GM 60 6800 al 5060 al, il punto neutro della Grande

Dettagli

Insegnare relatività. nel XXI secolo

Insegnare relatività. nel XXI secolo Insegnare relatività nel XXI secolo E s p a n s i o n e d e l l ' U n i v e r s o e l e g g e d i H u b b l e La legge di Hubble Studiando distanze e moto delle galassie si trova che quelle più vicine

Dettagli

Unità Didattica 7. L Universo delle Galassie

Unità Didattica 7. L Universo delle Galassie Diapositiva 1 Unità Didattica 7 L Universo delle Galassie In questa unità vengono descritte le principali proprietà morfologiche e cinematiche delle galassie, la misura della distanza delle galassie, la

Dettagli

INTRODUZIONE ALLA SPETTROMETRIA

INTRODUZIONE ALLA SPETTROMETRIA INTRODUZIONE ALLA SPETTROMETRIA La misurazione dell assorbimento e dell emissione di radiazione da parte della materia è chiamata spettrometria. Gli strumenti specifici usati nella spettrometria sono chiamati

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Nane bianche e stelle di neutroni. di Roberto Maggiani

Nane bianche e stelle di neutroni. di Roberto Maggiani Nane bianche e stelle di neutroni di Roberto Maggiani Prendendo in mano una zoletta di zucchero e poi una zolletta di ferro potremmo verificare il maggior peso di quest ultima, infatti, nello stesso volume

Dettagli

Il fenomeno luminoso

Il fenomeno luminoso Un immagine Dimensioni finite (X,Y) No profondità inerente Rappresentazione numerica energia luminosa Y X x y B(x,y) = intensità luminosa in (x,y) Il fenomeno luminoso Fisica della luce e grandezze fotometriche

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7 La Teoria dei Quanti e la Struttura Elettronica degli Atomi Capitolo 7 Proprietà delle Onde Lunghezza d onda (λ) E la distanza tra due punti identici su due onde successive. Ampiezza è la distanza verticale

Dettagli

Come si forma il nocciolo di una galassia?

Come si forma il nocciolo di una galassia? Roma, 22 giugno 2015 COMUNICATO STAMPA Come si forma il nocciolo di una galassia? Una ricerca, cui partecipa la Sapienza, prende in esame il rapporto tra buchi neri super massicci e ammassi stellari al

Dettagli

Il modello cosmologico standard e l enigma dell espansione

Il modello cosmologico standard e l enigma dell espansione Istituto Nazionale di Astrofisica Osservatorio astronomico di Brera Universo in fiore Il modello cosmologico standard e l enigma dell espansione Luigi Guzzo Luigi.guzzo@brera.inaf.it INAF-Osservatorio

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

BRILLANZA: potenza emessa per unità di angolo solido e unità di superficie della sorgente.

BRILLANZA: potenza emessa per unità di angolo solido e unità di superficie della sorgente. LUMINOSITA INTRINSECA O ASSOLUTA Energia totale irradiata nell unità di tempo (secondo) ossia il flusso totale di energia Viene misurata coi fotometri fotoelettrici: se un fascio di luce colpisce uno strato

Dettagli