FONDAMENTI DI GEOMETRIA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FONDAMENTI DI GEOMETRIA"

Transcript

1 1 FONDAMENTI DI GEOMETRIA (Fundamental geometrical concepts) La geometria [ghè (terra) metron (misura)] è una parte della matematica che studia lo spazio, la forma, l estensione, la trasformazione delle figure dei corpi che ci circondano. Il punto, la retta e il piano sono enti primitivi della geometria euclidea, concetti non definibili sulla base dei quali costruire l edificio di tutte le altre definizioni geometriche che studieremo in seguito. Ci limiteremo a dare una spiegazione degli enti fondamentali della geometria. Il PUNTO (point) è privo di estensione e di materia, ma possiede una posizione nello spazio. Per indicare un punto si usa una lettera maiuscola dell alfabeto. La RETTA (straight line) è un insieme denso 1, ordinato e infinito di punti avente tutti la stessa direzione, ma privo di un primo e di un ultimo elemento. Ha una sola dimensione: la lunghezza. Per indicare una retta si usa una lettera minuscola dell alfabeto. 1 POSTULATO 3 : Dati due punti distinti A e B, esiste una ed una sola retta che li contiene entrambi. POSTULATO: Ogni retta r è un insieme ordinato di punti. (ciò significa che fra due punti di una retta sono compresi infiniti punti) 3 POSTULATO: Per ogni punto P passano infinite rette.. C A r B r C r Fascio di rette che passano per il punto A. Il PIANO (plane) è un insieme infinito di punti che possiede due dimensioni: la lunghezza e la larghezza. Per indicare un piano si usa una lettera maiuscola dell alfabeto greco. Risulta chiaro che lo studio della geometria piana ha come oggetto un insieme di punti detto piano. I sottoinsiemi del piano sono le rette e le figure. La SEMIRETTA (ray or half-line) è un insieme denso, infinito ed ordinato di punti aventi tutti la stessa direzione; possiede un punto di origine che precede tutti gli altri punti. La retta r è divisa in due semirette opposte dal punto di origine A. s s s s = {r} ; s s = {A} 1 Denso: tra due punti di una retta ci sono infiniti punti. Ordinato: presi due punti in una retta, si può comprendere quale di questi precede o segue l altro quindi fissare un criterio di precedenza. 3 Postulato: principio che non ha bisogno di essere dimostrato perché in sé evidente e fonte di dimostrazione per altri fatti geometrici o per costruire una teoria.

2 Il SEGMENTO (segment) è una porzione di retta delimitata da due punti detti estremi AB. È dunque un sottoinsieme ordinato, denso e infinito di punti di una retta r, dotato di primo ed ultimo elemento detti estremi (end points). AB r Due segmenti che hanno in comune un estremo - ed uno soltanto - si dicono consecutivi. Due segmenti consecutivi che appartengono alla stessa retta si dicono adiacenti. Più segmenti a due a due consecutivi e non adiacenti formano una poligonale (aperta, chiusa, intrecciata). L ANGOLO (angle) è ciascuna delle due porzioni di piano delimitate da due semirette (lati dell angolo) aventi l origine O in comune (vertice). L angolo si dice convesso se, comunque si scelgano due punti sui suoi lati (esempio A e B), è possibile unirli con un segmento. Se questo non è possibile, l angolo è definito concavo. Si può definire l angolo come l intersezione di due semipiani. P P = { } Presi due semipiani P e P aventi per origine due rette incidenti r e r, si considera angolo convesso l insieme dei punti in comune ai due semipiani. Due angoli che hanno per somma un angolo retto si dicono complementari. Quando la loro somma è un angolo piatto si dicono supplementari, mentre se la somma è un angolo giro allora i due angoli si dicono esplementari.

3 3 Posizione di più rette Le rette possono essere parallele o incidenti: 5 POSTULATO: data una retta r ed un punto P esterno ad essa esiste una ed una sola retta s passante per P e non avente alcun punto in comune con la r. Le due rette r ed s si dicono PARALLELE r s poiché appartengono allo stesso piano (complanari) e non hanno nessun punto in comune r s = Si dicono parallele anche due rette che coincidono, in quanto ogni punto dell una coincide con un punto dell altra r s = r s Le due rette r e t (qui di fianco) hanno il punto A in comune dunque si dicono INCIDENTI r t = {A}. Quando due rette incidenti formano quattro angoli retti si dicono PERPENDICOLARI (oppure ortogonali oppure normali). Le due rette r e f hanno il punto B in comune, sono incidenti e perpendicolari r f, infatti l angolo α = 90. Se due rette incidenti non sono tra loro perpendicolari (esempio retta r e t) si dicono oblique. La PROIEZIONE ORTOGONALE di un punto o di un segmento ad una retta si ottiene tracciando la retta perpendicolare. AH è la distanza del punto A alla retta r detto segmento perpendicolare, H è il piede della perpendicolare e proiezione del punto A.

4 4 RETTE TAGLIATE DA UNA TRASVERSALE TEOREMA 4. Se due rette sono parallele, allora, tagliate da una trasversale, formano con essa: angoli alterni (sia interni sia esterni) congruenti tra loro, angoli corrispondenti congruenti tra loro, angoli coniugati (sia interni sia esterni) supplementari. POLIGONI Una linea formata da più segmenti consecutivi si dice spezzata. Una linea spezzata chiusa si dice poligonale. Un poligono è una porzione di piano delimitata da una poligonale. Il segmento somma dei lati del poligono si dice perimetro. 4 TEOREMA: proposizione dimostrabile strutturata nella forma se allora. Il teorema è composto da una ipotesi, una tesi ed una dimostrazione della tesi. Esempio Se un triangolo è isoscele (ipotesi), allora gli angoli alla base sono congruenti (tesi)

5 5 Si dice corda di un poligono convesso qualunque segmento (esempio EF) che unisce due punti della poligonale o contorno che non appartengono allo stesso lato. I segmenti che uniscono due vertici non consecutivi sono le diagonali di un poligono (esempio AC). Per calcolare il numero di diagonali che è possibile tracciare in un qualsiasi poligono, si può usare questa formula matematica: n(n 3) D = in cui n è il numero di lati del poligono. ESEMPIO: D = n(n 3) = 5(5 3) = 5 = 10 = 5 TEOREMA. La somma degli angoli interni di un poligono convesso è uguale a tanti angoli piatti quanti sono i lati, meno un angolo giro. Usando la seguente formula S i = 180 (n ) si può calcolare facilmente la somma degli angoli interni di un qualsiasi poligono. Per un poligono con 4 lati avremo S i = 180 (4 ) = 180 = 360 TEOREMA. La somma degli angoli esterni di un poligono convesso è uguale ad un angolo giro, qualunque sia il numero dei suoi lati.

Lezione introduttiva allo studio della GEOMETRIA SOLIDA

Lezione introduttiva allo studio della GEOMETRIA SOLIDA Lezione introduttiva allo studio della GEOMETRIA SOLIDA Geometria solida Lo spazio euclideo è un insieme infinito di elementi detti punti e contiene sottoinsiemi propri ed infiniti : le rette e i piani..

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Indice del vocabolario della Geometria euclidea

Indice del vocabolario della Geometria euclidea Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

CONCETTI e ENTI PRIMITIVI

CONCETTI e ENTI PRIMITIVI CONCETTI e ENTI PRIMITIVI Sono Concetti e Enti primitivi ciò che non può essere definito in modo più elementare, il significato è noto a priori, cioè senza alcun'altra specificazione. es. es. movimento

Dettagli

Enti Fondamentali della Geometria

Enti Fondamentali della Geometria Enti Fondamentali della Geometria La GEOMETRIA è la scienza che studia la forma, l estensione delle figure e le trasformazioni che queste possono subire. (Un po di storia.) Gli ENTI GEOMETRICI FONDAMENTALI

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Il punteggio totale della prova è 100/100. La sufficienza si ottiene con il punteggio di 60/100.

Il punteggio totale della prova è 100/100. La sufficienza si ottiene con il punteggio di 60/100. ISI Civitali - Lucca CLASSE, Data Nome: Cognome: Nei test a scelta multipla la risposta esatta è unica Ad ogni test viene attribuito il seguente punteggio: 4 punti risposta corretta 1 punto risposta omessa

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

VERIFICA DI GEOMETRIA A

VERIFICA DI GEOMETRIA A VERIFICA DI GEOMETRIA A n1 classe IV F data nome e cognome Tre punti allineati A,B,C in modo che AB=2BC Disegna un fascio proprio di rette Due angoli consecutivi e complementari Un poligono convesso Disegna

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

CONGRUENZE TRA FIGURE DEL PIANO

CONGRUENZE TRA FIGURE DEL PIANO CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,

Dettagli

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono:

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: congruenti (uguali) maggiore minore la somma di due angoli la ottieni portandoli ad essere consecutivi

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura) GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Dalle figure solide alle figure piane

Dalle figure solide alle figure piane Pagina 1 di 9 Dalle figure solide alle figure piane Ogni solido è delimitato da un certo numero di figure piane. Queste figure, dette facce del solido, hanno due dimensioni: la larghezza e la lunghezza.

Dettagli

CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá

CONOSCENZE 1. gli enti fondamentali e le loro. 2. la posizione reciproca di punto, retta, piano 3. gli angoli e le loro proprietaá GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l operare con le misure angolari CONOSCENZE 1. gli enti

Dettagli

Disegno Geometrico. Nomenclatura e definizioni.

Disegno Geometrico. Nomenclatura e definizioni. Disegno Geometrico Nomenclatura e definizioni www.tecnomille.wordpress.com Il DISEGNO Nel mondo dell rte, il disegno artistico è utilizzato per comunicare emozioni e sensazioni. Il disegno tecnico è differente:

Dettagli

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco». Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 10 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 10 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

CAP. 1 - GLI ELEMENTI PRIMITIVI

CAP. 1 - GLI ELEMENTI PRIMITIVI CP. 1 - GLI ELEMENTI PRIMITIVI 1 Geometria e realtà 2 Elementi primitivi della geometria 3 Punto 4 Figura geometrica 5 Figure congruenti 6 Linea 7 Retta 8 Proprietà della retta 9 Punti allineati 10 Semiretta

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI

PROGRAMMAZIONE DIDATTICA PER COMPETENZE. Modulo A : INSIEMI PROGRAMMAZIONE DIDATTICA PER COMPETENZE Indirizzo LICEO DELLE SCIENZE UMANE Classe I D disciplina Matematica Modulo A : INSIEMI UNITÁ A1 TEORIA DEGLI INSIEMI UNITÁ A2 GLI INSIEMI NUMERICI COMPETENZE DA

Dettagli

ELEMENTI FONDAMENTALI

ELEMENTI FONDAMENTALI Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

Test sugli angoli. In questa dispensa vengono proposti dei test di verifica sulle nozioni di base di geometria piana relative agli angoli.

Test sugli angoli. In questa dispensa vengono proposti dei test di verifica sulle nozioni di base di geometria piana relative agli angoli. Test sugli angoli In questa dispensa vengono proposti dei test di verifica sulle nozioni di base di geometria piana relative agli angoli. Vengono presentate 20 domande a risposta multipla, risolte e commentate.

Dettagli

Rette perpendicolari

Rette perpendicolari Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare

Dettagli

GEOMETRIA. A cura della Prof.ssa Elena Spera. ANNO SCOLASTICO Classe IC Scuola Media Sasso Marconi. Prof.

GEOMETRIA. A cura della Prof.ssa Elena Spera. ANNO SCOLASTICO Classe IC Scuola Media Sasso Marconi. Prof. GEOMETRIA A cura della Prof.ssa Elena Spera ANNO SCOLASTICO 2007 2008 Classe IC Scuola Media Sasso Marconi Prof.ssa Elena Spera 1 Come consultare l ipertesto l GEOMETRIA Benvenuti! Per navigare e muoversi

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

Matematica Introduzione alla geometria

Matematica Introduzione alla geometria Matematica Introduzione alla geometria prof. Vincenzo De Felice 2014 Problema. Si mostri che un triangolo con due bisettrici uguali è isoscele. La matematica è sfuggente. Ziodefe 1 2 Tutto per la gloria

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune.

Le figure solide. Due rette nello spaio si dicono sghembe se non sono complanari e non hanno alcun punto in comune. Le figure solide Nozioni generali Un piano nello spazio può essere individuato da: 1. tre punti A, B e C non allineati. 2. una retta r e un punto A non appartenente ad essa. 3. due rette r e s incidenti.

Dettagli

Rette perpendicolari

Rette perpendicolari Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare

Dettagli

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono

03) Somma degli angoli interni di un poligono. 04) Somma degli angoli esterni di un poligono Unità idattica N 24 I poligoni 35 U.. N 24 I poligoni 01) efinizione di poligono 02) lcune proprietà dei poligoni 03) Somma degli angoli interni di un poligono 04) Somma degli angoli esterni di un poligono

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

QUADRILATERI. È dunque possibile pensare ad un quadrilatero come alla parte di piano delimitata da quattro rette a due a due incidenti.

QUADRILATERI. È dunque possibile pensare ad un quadrilatero come alla parte di piano delimitata da quattro rette a due a due incidenti. QURILTERI efinizione: un quadrilatero (o quadrangolo) è un poligono di quattro lati. ue lati non consecutivi di un quadrilatero sono detti opposti. ue angoli interni di un quadrilatero non adiacenti ad

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

I Triangoli e i criteri di congruenza

I Triangoli e i criteri di congruenza I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam

Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam ALGEBRA Liceo Scientifico Statale C. Cattaneo PROGRAMMA DI MATEMATICA CLASSE I SEZ. M A.S. 2016/2017 Prof. DE MATTIA Miriam Teoria degli insiemi - insiemi e loro rappresentazioni; - sottoinsiemi propri

Dettagli

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U

Le figure che abbiamo ottenuto prendono il nome di spezzate o poligonali. Una spezzata può essere: H S T U Prendiamo in considerazione le figure geometriche nel piano, cioè le figure piane, intendendo con questo termine un qualsiasi insieme di punti appartenenti a uno stesso piano. Disegniamo più segmenti consecutivi:

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S

ARITMETICA. Gli insiemi UNITA 1. Programma svolto di aritmetica e geometria classe 1 ^ D A.S Programma svolto di aritmetica e geometria classe 1 ^ D A.S. 2014-2015 Scuola Secondaria di primo grado S. Quasimodo di Fornacette Istituto Comprensivo di Calcinaia DOCENTE: Monica Macchi UNITA ARITMETICA

Dettagli

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno

Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,

Dettagli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli

Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli Programma di Matematica Classe 1^ B/LL Anno scolastico 2016/2017 Testo Massimo Bergamini, Graziella Barozzi - Matematica multimediale.azzurro con Tutor, Zanichelli CAPITOLO 1: NUMERI NATURALI ORDINAMENTO

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

Unità Didattica N 22 I triangoli. U.D. N 22 I triangoli

Unità Didattica N 22 I triangoli. U.D. N 22 I triangoli 10 Unità Didattica N 22 I triangoli U.D. N 22 I triangoli 01) Il triangolo ed i suoi elementi 02) Uguaglianza di due triangoli 03) Primo criterio di uguaglianza dei triangoli 04) Secondo criterio di uguaglianza

Dettagli

(Prof.ssa Dessì Annalisa)

(Prof.ssa Dessì Annalisa) LICEO SCIENTIFICO PITAGORA - SELARGIUS CLASSE 1 SEZ. E - ANNO SCOLASTICO 2014 / 2015 PROGRAMMA DI MATEMATICA Libro di testo: Bergamini Barozzi Matematica multimediale.blu con tutor, vol. 1 Zanichelli L

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GONIOMETRIA introduzione : concetti di geometria euclidea Prof. Calogero Contrino Partizione del piano: semipiani Con riferimento alla figura 1 si consideri il seguente postulato Considerata una retta

Dettagli

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1)

APPUNTI DI MATEMATICA GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) GEOMETRIA \ GEOMETRIA EUCLIDEA \ GEOMETRIA DEL PIANO (1) Un ente (geometrico) è un oggetto studiato dalla geometria. Per descrivere gli enti vengono utilizzate delle definizioni. Una definizione è una

Dettagli

Parte Seconda. Geometria

Parte Seconda. Geometria Parte Seconda Geometria Geometria piana 99 CAPITOLO I GEOMETRIA PIANA Geometria: scienza che studia le proprietà delle figure geometriche piane e solide, cioè la forma, l estensione e la posizione dei

Dettagli

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI

LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI LA GEOMETRIA DELLO SPAZIO: CENNI DI TEORIA ED ESERCIZI SPAZIO: l insieme di tutti i punti. PUNTI ALLINEATI: punti che appartengono alla stessa retta PUNTI COMPLANARI: punti che appartengono allo stesso

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

Un po di GEOMETRIA. Le LINEE

Un po di GEOMETRIA. Le LINEE Un po di GEOMETRIA Le LINEE 1) Quante e quali sono le ESTENSIONI o DIMENSIONI delle figure? 1) Le ESTENSIONI o DIMENSIONI delle figure sono tre: LUNGHEZZA, LARGHEZZA, ALTEZZA 2) Quante ESTENSIONI o DIMENSIONI

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015 Liceo Scientifico Statale Albert Einstein Insegnante : Saccaro Arianna Programma di Matematica 1E a.s 2014/2015 I NUMERALI NATURALI E I NUMERI INTERI: Che cosa sono i numeri naturali Le quattro operazioni

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

C7. Circonferenza e cerchio

C7. Circonferenza e cerchio 7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio

Dettagli

COME PUO ESSERE UNA LINEA?

COME PUO ESSERE UNA LINEA? COME PUO ESSERE UNA LINEA? SE I PUNTI CHE LA FORMANO SEGUONO TUTTI LA STESSA DIREZIONE, ALLORA E UNA LINEA RETTA. SE I PUNTI CHE LA FORMANO CAMBIANO DIREZIONE, ALLORA E UNA LINEA CURVA. SE E FORMATA DA

Dettagli

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA

PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO INSEGNANTE: MASCI ORNELLA PROGRAMMA DI MATEMATICA PER LA CLASSE 1^A DEL LICEO SCIENTIFICO MALPIGHI ANNO SCOLASTICO 2014-2015 INSEGNANTE: MASCI ORNELLA ALGEBRA NUMERI NATURALI: - Ripetizione dei numeri naturali e delle quattro operazioni

Dettagli

Presenta: I Poligoni e loro proprietà

Presenta: I Poligoni e loro proprietà Presenta: I Poligoni e loro proprietà Scuola secondaria di I grado: classe prima Ricordiamo: ü Le figure geometriche fondamentali: rette, semirette, segmenti, angoli. ü Il concetto di lunghezza e di ampiezza

Dettagli

Appunti di geometria del piano

Appunti di geometria del piano Appunti di geometria del piano Gianpaolo Prina Istituto Prof. G. Sismondi Pescia Anno scolastico 2010-2011 La geometria e gli enti primitivi La geometria è la disciplina che descrive e studia le proprietà

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

Unità Didattica N 25 Quadrilateri particolari

Unità Didattica N 25 Quadrilateri particolari Unità idattica N 25 Quadrilateri particolari 41 Unità idattica N 25 Quadrilateri particolari 01) efinizione di quadrilatero 02) efinizione di parallelogrammo 03) Teoremi diretti sul parallelogrammo 04)

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

LICEO SCIENTIFICO G. BRUNO MURAVERA ANNO SCOLASTICO 2015 / 16 PROGRAMMA DI MATEMATICA

LICEO SCIENTIFICO G. BRUNO MURAVERA ANNO SCOLASTICO 2015 / 16 PROGRAMMA DI MATEMATICA LICEO SCIENTIFICO G. BRUNO MURAVERA ANNO SCOLASTICO 2015 / 16 PROGRAMMA DI MATEMATICA CLASSE : 1 B scienze applicate LIBRO DI TESTO : Bergamini Trifone Barozzi DOCENTE : Patrizia Floris Matematica.blu

Dettagli

UNITA 1 NOMENCLATURA E DEFINIZIONI GEOMETRICHE: ENTI GEOMETRICI FONDAMENTALI

UNITA 1 NOMENCLATURA E DEFINIZIONI GEOMETRICHE: ENTI GEOMETRICI FONDAMENTALI UNITA 1 NOMENCLATURA E DEFINIZIONI GEOMETRICHE: ENTI GEOMETRICI FONDAMENTALI Questa unità fornisce la definizione degli enti geometrici fondamentali, accompagnata dall illustrazione grafica. Lo scopo è

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Cap. 11 I Quadrilateri

Cap. 11 I Quadrilateri Cap. 11 I Quadrilateri Definizione di quadrilatero Si definisce quadrilatero un poligono di 4 lati Definizione di poligono Definiamo poligono una porzione di piano delimitata da una spezzata chiusa Gli

Dettagli

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

LA GEOMETRIA DEL PIANO. TRIANGOLI

LA GEOMETRIA DEL PIANO. TRIANGOLI LA GEOMETRIA DEL PIANO. TRIANGOLI ESERCIZI Dati i seguenti enunciati, trasformali nella forma «Se, allora» e indicane l ipotesi e la tesi. 1 a) Un filo metallico attraversato da corrente elettrica si riscalda.

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE

SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE SCHEDA1 PARALLELISMO E PERPENDICOLARITA' FRA RETTE Controllare la correttezza delle seguenti proprietà, controllandola su un esempio e muovendo dinamicamente gli oggetti costruiti. 1. Per due punti passa

Dettagli

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso.

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso. Poligoni In geometria un poligono è una figura geometrica piana delimitata da una linea spezzata chiusa. I segmenti che compongono la spezzata chiusa si dicono lati del poligono e i punti in comune a due

Dettagli

sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm.

sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm. GA00001 Determinare la superficie laterale di un cilindro a) 60 π cm 2. b) 42 π cm 2. c) 90 π cm 2. d) 81 π cm 2. a sapendo che la sua area di base è 9 π cm 2 e l altezza del solido è 10 cm. GA00002 In

Dettagli

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario Appunti corso di Fisica, Facoltà di Agraria, Docente Ing. Francesca Todisco REREQUISITI Rette e piani (parallelismo, perpendicolarità, incidenza) roiezioni ortogonali Componenti Direzione Seno, coseno

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

Classifichiamo i poligoni

Classifichiamo i poligoni Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18 Geometria Rudimenti della Logica e della Matematica Marzo 2013 Geometria Marzo 2013 1 / 18 La geometria tratta delle figure e le forme nello spazio. Letteralmente della misura della terra o più in concreto,

Dettagli

APPUNTI DI GEOMETRIA SOLIDA

APPUNTI DI GEOMETRIA SOLIDA APPUNTI DI GEOMETRIA SOLIDA Geometria piana: (planimetria) studio delle figure i cui punti stanno tutti su un piano Geometria solida: (stereometria) studio delle figure i cui punti non giacciono tutti

Dettagli

Esercizi sulle rette nello spazio

Esercizi sulle rette nello spazio 1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

MASTER Comunicazione della Scienza

MASTER Comunicazione della Scienza MASTER 2007-2008 Comunicazione della Scienza Linguaggi e fondamenti concettuali della matematica 2a settimana Euclide 1 Euclide - Elementi Euclide - Elementi La prima proposizione del Libro I degli Elementi

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo

Dettagli