Lo spettro di un segnale numerico

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lo spettro di un segnale numerico"

Transcript

1 Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di E b /N 0 ) di un costellzione dipendono solo dll disposizione dei suoi segnli nello spzio Euclideo, non dlle forme d ond utilizzte. Stess form dell costellzione = stesse prestzioni prescindere di versori (porte, sinusoidi, ecc.) Finor bbimo ignorto l occupzione spettrle (bnd occupt)

2 Costellzione Considerimo un costellzione M = { s () t =+ AP (), t s () t = AP ()} t Si trtt di un costellzione monodimensionle dove il versore è l port rettngolre di durt secondi b () t = P () t L costellzione è binri ntipodle M = { s = ( + α), s = ( α)} α = A

3 Costellzione Come è ftto il segnle trsmesso? Nell intervllo [0,[ l costellzione è M={s i (t)} e trsmetto + αb() t oppure αb() t Nell intervllo trsmetto + αb t n oppure αb ( ) t n [n,(n+)[l costellzione è del tipo M={s i (t-n)} e ( ) con Il segnle trsmesso si può quindi scrivere come + s() t = [ n] p( t n) n= 0 pt () = b() t n [ ] + { α, α} 3

4 Costellzione monodimensionle qulsisi Questo risultto vle per qulsisi costellzione monodimensionle ( α ) ( α ) ( α ) M = { s =, s =,..., s = } R m m con versore b() t Il segnle trsmesso sul cnle si può scrivere come: + s() t = [ n] p( t n) n= 0 con n [ ] { α,..., α,..., α } pt () = b() t i m sequenz simboli trsmessi filtro di trsmissione 4

5 L sequenz di simboli trsmessi Considerimo l sequenz [n] = sequenz simboli trsmessi rmite il lbeling binrio, quest sequenz è in corrispondenz uno uno con l sequenz binri di informzione che bbimo modellizzto come un sequenz binri rndom idele (stzionri, con bit equiprobbili e sttisticmente indipendenti) 5

6 L sequenz di simboli trsmessi L sequenz di simboli [n] è quindi un sequenz stzionri di vribili csuli, compost d simboli indipendenti ([n] e [n ] s.i. indipendenti tr loro) equiprobbili P( [ n] = αi ) = m con vlor medio e vrinz m µ = αi m i= m = i m i= ( ) σ α µ 6

7 Lo spettro di un segnle numerico Dt l form d ond genert d un costellzione monodimensionle, che come bbimo visto h espressione: s() t = [ n] p( t n) n= voglimo or clcolrne l densità spettrle di potenz. + s(t) è un funzione del tempo vlori reli dipendente d un sequenz [n] di vribili csuli: è un processo csule. (per semplicità supporremmo i simboli trsmessi d - - ) 7

8 Lo spettro di un segnle numerico Dto il processo csule + s() t = [ n] p( t n) n= G ( f ) l densità spettrle di potenz s dell funzione di utocorrelzione è dt dll trsformt di Fourier + jπ fτ Gs( f ) = Rs( τ ) e d τ e ci fornisce informzione su come è distribuit l potenz sull sse delle frequenze: + P() s = Rs(0) = Gs( f ) df 8

9 Simboli indipendenti e vlor medio nullo Si dimostr che, per un COSELLAZIONE MONODIMENSIONALE CON BARICENRO NELL ORIGINE pt () = b() t filtro di trsmissione lo spettro di potenz è dto dll G s ( f) P( f ) = σ lo spettro di potenz è direttmente proporzionle P(f) 9

10 Costellzione ntipodle Considerimo l costellzione M = { s () t =+ AP (), t s () t = AP ()} t Il versore è ugule ll port rettngolre di durt secondi b () t = P () t L costellzione come insieme di vettori è binri ntipodle M = { s = ( + α), s = ( α)} α = A Il bricentro è nell origine 0

11 Costellzione ntipodle Lo spettro dell form d ond è dto dll G s P( f ) ( f) = σ fcendo i conti si ottiene p() t = b () t = P () t sin( π f ) Gs ( f) = A ( π f ) GG( v (f) s G x(f) f b f

12 Costellzione ntipodle M = { s = ( + α), s = ( α)} α = A Conti: b () t = P () t Dobbimo clcolre G s ( f) P( f ) = σ L sequenz [n] h vlor medio vrinz µ = 0.5 ( α + α) = 0 σ = 0.5 ( α + α ) = α = A

13 Costellzione ntipodle p() t = b () t = P () t Introducimo l funzione sinc(x): sinc( x) sin( π x) = (π x) L trsformt di Fourier di p(t) vle sostituendo si ottiene π sin( π f) P( f) = sinc( f) e = e ( π f ) sin( π f) P( f) = ( π f ) j fτ jπ fτ P( f) sin( π f) = σ = Gs( f) A ( π f) ( σ = A ) 3

14 Costellzione ntipodle È uno spettro in bnd-bse (potenz concentrt ttorno ll frequenz zero = continu) Lo spettro h degli zeri nei multipli di / Il lobo principle h mpiezz / tr / e +/ Gli ltri lobi hnno mpiezz / con mpiezz decrescente sin( π f ) Gs ( f) = A ( π f ) GG( v (f) s G x(f) f b f 4

15 L scelt dell costellzione Quest costellzione è dtt d un cnle con rispost in frequenz H(f) del tipo pss-bsso s() t s () t H ( f ) rt () Non considerimo il rumore. Il segnle di uscit r(t) h uno spettro dto dll: G ( f) = H( f) G ( f) r s In questo cso lo spettro G s (f) è illimitto, quindi ci vorrebbe un rispost idele del tipo H(f)= (cnle Gussino binco idele) per non distorcere il segnle. 5

16 L scelt dell costellzione s() t s () t H ( f ) rt () G ( f) = H( f) G ( f) r s Se l rispost H(f) è di tipo pss bsso, il segnle ricevuto r(t) risult distorto rispetto quello trsmesso. uttvi, se l bnd pssnte è sufficiente mpi, il segnle ricevuto non è troppo diverso d quello trsmesso (vengono tglite le frequenze più lte, m i lobi secondri diventno sempre più piccoli e meno importnti l crescere dell frequenz). Se invece l rispost fosse del tipo pss bnd, il segnle ricevuto srebbero completmente diverso d quello trsmesso. 6

17 L scelt dell costellzione s() t s () t H ( f ) rt () G ( f) = H( f) G ( f) r s Dto un cnle con rispost H(f) Il segnle trsmesso deve essere progettto in modo che il suo spettro G s (f) si concentrto ttorno lle frequenze dove l rispost H(f) èbuon. In questo modo il segnle ricevuto non è troppo distorto rispetto quello trsmesso. 7

18 Costellzione ntipodle Considerimo or l costellzione M = { s () t =+ AP ()cos( t π f t), s () t = AP ()cos( t π f t)} 0 0 Il versore è B= b() t = P ()cos t f0t ( π ) L costellzione come insieme di vettori è ncor binri ntipodle M = { s = ( + α), s = ( α)} α = A Il bricentro è nell origine 8

19 Costellzione ntipodle Lo spettro dell form d ond è dto dll fcendo i conti si ottiene b() t = P ()cos t f0t ( π ) G s ( f) P( f ) = σ sin( π( f f0) ) sin( π( f + f0) ) Gs ( f) = A + 4 ( π( f f0) ) ( π( f + f0) ) Gs ( f) G v (f) G x (f) G v (f) G x (f) f b f f b f 0 9

20 Costellzione ntipodle Conti: Per l sequenz [n] si h n [ ] { α, + α } µ = 0 σ = α = Lo spettro di quest form d ond è dto dll P( f ) Gs( f) = σ L trsformt di Fourier di p() t = b() t = P ()cos t π f0t è: ( ) A sin( π f) jπ fτ P( f) = e ( δ( f f0) + δ( f + f0) ) = ( π f) sin( π( f f0) ) sin( π( f + f0) ) = + e ( π( f f0) ) ( π( f + f0) ) jπ fτ 0

21 Costellzione ntipodle P( f) Segue: sin( π( f f ) ) sin( π( f + f ) ) = + ( π( f f0) ) ( π( f + f0) ) 0 0 (il doppio prodotto è trscurbile) G s ( f) P( f ) = σ σ = A Lo spettro dell form d ond è quindi dto dll sin( π( f f0) ) sin( π( f + f0) ) Gs ( f) = A + 4 ( π( f f0) ) ( π( f + f0) )

22 Costellzione ntipodle Lo spettro è trslto ttorno ll frequenz f 0 si trtt di un segnle in bnd pssnte o trslt Il lobo principle h mpiezz / centrto ttorno f 0 Gli ltri lobi hnno mpiezz / con mpiezz decrescente Gs ( f) G v (f) G x (f) G v (f) G x (f) f b f f b f 0 sin( π( f f0) ) sin( π( f + f0) ) Gs ( f) = A + 4 ( π( f f0) ) ( π( f + f0) )

23 Modulzione linere Cso generle s() t = [ n] p( t n) n G s ( f) P( f ) = σ se considero s '( t) = p'( t n) n p '( t) = p( t) cos( π f t) Gs' ( f) = [ Gs( f f0) + Gs( f + f0)] 4 n 0 frequenz dell portnte Lo spettroètrsltottornollfrequenzf 0 3

24 Costellzione ntipodle 3 Considerimo quest costellzione ( πt ) ( πt ) ( πt ) ( πt ) sin / sin / M = s() t =+ A, s() t = A / / A differenz di qunto ftto finor, mmettimo segnli di durt temporle infinit. Usndo quest proprietà: + sin( y) y dy = π Si trov che il versore è: b() t = ( πt ) ( πt/ ) sin / Si trtt ncor di un costellzione monodimensionle di due segnli ntipodli: M = { s = ( + α), s = ( α)} α = A 4

25 Costellzione ntipodle 3 Lo spettro dell form d ond è dto dll π fcendo i conti si ottiene b () t = π / ( ) Gs ( f ) = Arect f ( t ) ( t ) sin / G s ( f) P( f ) = σ G ( v f ) f / 5

26 Costellzione ntipodle 3 Si trtt di un segnle in bnd bse con occupzione spettrle (bilter) totle pri / compres tr -/ e / ( ) Gs ( f ) = Arect f G ( v f ) f / 6

27 Costellzione ntipodle 3 Conti: Il segnle trsmesso si può scrivere come con n [ ] + { α, α} s() t = [ n] p( t n) n pt () = b() t = ( πt ) ( πt/ ) sin / Per l sequenz [n] si h n [ ] { α, + α } µ = 0 σ = α Lo spettro di quest form d ond è dt dll G s P( f ) ( f) = σ 7

28 Costellzione ntipodle 3 Considerimo p(t): si trtt di un filtro pss bsso idele. L trsformt di Fourier è costnte tr -/() e +/(). Possimo scrivere: pt () = ( πt ) ( πt/ ) sin / ( ) P( f) = rect f L L = ( ) L P( f) rect f rect ( L x ) x 8

29 Costellzione ntipodle 3 G s ( f) P( f ) = σ σ = α = A ( ) P( f) = rect f Lo spettro dell form d ond è quindi dto dll ( ) Gs ( f ) = A rect f 9

30 Filtro pss bsso idele Il filtro pss bsso idele h ndmento: sin( πt/ ) xt () = ( πt/ ) t/ 30

31 Filtro pss bsso idele Filtro pss bsso idele Occupzione spettrle (bilter) totle minim e pri compres tr e + X ( f ) 3

32 Filtri coseno rilzto Un filtro coseno rilzto è crtterizzto d un coefficiente di roll-off α con 0 α L rispost ll impulso è l seguente xt () = sin( πt/ ) cos( απt/ ) ( πt/ ) ( αt/ ). Quest funzione vle nell origine e 0 nei multipli di quindi soddisf l condizione di ssenz di ISI: xi [ ] = se i= 0 xi [ ] = 0 se i 0. Nel cso α=0 si ritrov il filtro pss bsso idele. 3

33 Filtri coseno rilzto Andmento temporle con due diversi vlori di lf:.0 lf=0. lf= xt () = sin( πt/ ) cos( απt/ ) ( πt/ ) ( αt/ ) t/ 33

34 Rissunto filtri Filtro pss bsso idele Occupzione spettrle (bilter) totle minim e pri compres tr e + X ( f ) 34

35 Rissunto filtri Filtri coseno rilzto con coefficiente di roll-off Occupzione spettrle (bilter) totle pri 0 α ( ) +α compres tr ( + α) e + ( + α) X ( f ) ( +α ) ( +α ) ( +α ) 35

36 Definizione di efficienz spettrle Supponimo di trsmettere un trffico binrio crtterizzto d un dt rte R b medinte un dt costellzione M. Se B è l bnd occupt dl segnle s(t) trsmesso sul cnle, definimo EFFICIENZA SPERALE η = R b B [ bps / Hz] 36

01CXGBN Trasmissione numerica. parte 9: lo spettro del segnale trasmesso

01CXGBN Trasmissione numerica. parte 9: lo spettro del segnale trasmesso 0CXGBN rsmissione numeric prte 9: lo spettro del segnle trsmesso Lo spettro di un segnle numerico Abbimo visto che le prestzioni (P b (e) in funzione di Eb/N0) di un costellzione dipendono solo dll disposizione

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

01CXGBN Trasmissione numerica. parte 11: modulazione 2-PAM

01CXGBN Trasmissione numerica. parte 11: modulazione 2-PAM 0CXGBN Trasmissione numerica parte : modulazione 2-PAM PARTE 2: Modulazioni Numeriche 2 Modulazioni: introduzione Per ogni modulazione considereremo: Caratteristiche generali Costellazione (insieme di

Dettagli

01CXGBN Trasmissione numerica. parte 10: Interferenza intersimbolica

01CXGBN Trasmissione numerica. parte 10: Interferenza intersimbolica CXGBN rasmissione numerica parte : Interferenza intersimbolica Interferenza intersimbolica Data una costellazione monodimensionale, ad esempio con baricentro nell origine, abbiamo visto che lo spettro

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Integrali curvilinei (integrali di densità) Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli curvilinei di prim specie (integrli di densità) 15 Dicembre 215 Indice 1 Integrli di line di prim specie

Dettagli

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli:

rispetto alla direzione iniziale. Ricordando i valori della carica e della massa dell elettrone, e = C e m e = kg, si calcoli: Esme scritto di Elettromgnetismo del 15 Luglio 2011 -.. 2010-2011 proff. S. Gigu, F. Lcv, F. Ricci Elettromgnetismo 10 o 12 crediti: esercizi 1,3,4 tempo 3 h e 30 min; Elettromgnetismo 5 crediti: esercizio

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Appendice 2B: Probabilità e densità di probabilità

Appendice 2B: Probabilità e densità di probabilità Appendice B: Proilità e densità di proilità Concetto di proilità normlmente pplicto eventi csuli non predeterminili! Esempi di eventi cusli: Vlori limite: P A 0 : A P : A uscit dell fcci 6 nel lncio di

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Variabili Casuali e Distribuzioni di Probabilità Definizione: VARIABILI CASUALI VARIABILI CASUALI PROBABILITÀ

Variabili Casuali e Distribuzioni di Probabilità Definizione: VARIABILI CASUALI VARIABILI CASUALI PROBABILITÀ Vriili Csuli e Distriuzioni di Proilità Un vriile csule X è un vriile numeric il cui vlore misurto può cmire ripetendo lo stesso esperimento di misur X può essere un vriile continu o discret 1 Esempi di

Dettagli

Lezione 14. Risoluzione delle equazioni algebriche.

Lezione 14. Risoluzione delle equazioni algebriche. Lezione Prerequisiti: Lezioni 8,. Risoluzione delle equzioni lgebriche. Si F un cmpo, e si K un chiusur lgebric di F. Si f ( ) F[ ] non costnte. Studimo i metodi di risoluzione per l equzione f ( ) = 0,

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

4.7 RETICOLO RECIPROCO

4.7 RETICOLO RECIPROCO 4.7 RETICOLO RECIPROCO L teori clssic dell elettromgnetismo mostr che qundo un ond elettromgnetic (e.m.) di un dt lunghezz d ond λ incontr un ostcolo di dimensioni confrontbili con λ si verific il fenomeno

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Appendice 1 - Varie sui sistemi di trasmissione

Appendice 1 - Varie sui sistemi di trasmissione Appunti di Comuniczioni Elettriche Appendice - Vrie sui sistemi di trsmissione Cenni generli sui rdioricevitori... Cso prticolre: diotelescopio... Cenni generli sui rdiotrsmettitori...3 Cso prticolre:

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

ESPONENZIALI E LOGARITMI

ESPONENZIALI E LOGARITMI ESPONENZIALI E LOGARITMI RICHIAMI DI TEORIA dom f Im f grfico Funzioni esponenzili y=^ con > Funzioni esponenzili y=^ con

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Un classico modello dinamico dell interazione tra domanda e offerta è

Un classico modello dinamico dell interazione tra domanda e offerta è Appendice A Alcuni modelli per l ingegneri gestionle A.1 Il modello rgntel Un clssico modello dinmico dell interzione tr domnd e offert è descitto d un equzione lle differenze del primo ordine. Il funzionmento

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L.

lungo la curva. 2 x 2 + y 2 (4p)v- Si calcoli il raggio di curvatura nei vari istanti e in funzione della posizione. =: L. Anlisi Mtemtic II, Anno Accdemico 7-8. Ingegneri Edile e Architettur Vincenzo M. Tortorelli 5 Settembre 7: prim prov in itinere. N. mtr./nno iscr. Cognome docente/ crediti Nome Istruzioni l fine dell vlutzione:

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Esercitazione Dicembre 2014

Esercitazione Dicembre 2014 Esercitzione 10 17 Dicembre 2014 Esercizio 1 Un economi chius è crtterizzt di seguenti dti: A = 400 M = 250 γ = 1.5 (moltiplictore dell politic fiscle) β = 0.8 moltiplictore dell politic monetri z = 0.25

Dettagli

La luna. di Diego Alberto

La luna. di Diego Alberto L lun di Diego Alberto Un mondo sempre più luntico L ide di fondo è quell di descrivere e vlutre l evoluione dell percentule pprente di Lun illumint giorno per giorno: essendo pprossimbile d un sfer, l

Dettagli

P8 Ponti radio terrestri e satellitari

P8 Ponti radio terrestri e satellitari P8 Ponti rdio terrestri e stellitri P8.1 Un collegmento in ponte rdio 11 GHz impieg due ntenne prboliche uguli venti gudgno G 40 db ed efficienz η 0,5. Gli pprti di ricetrsmissione sono collegti lle rispettive

Dettagli

PNI SESSIONE SUPPLETIVA QUESITO 1

PNI SESSIONE SUPPLETIVA QUESITO 1 www.mtefili.it PNI 2005 - SESSIONE SUPPLETIVA QUESITO È dto un trpezio rettngolo, in cui le bisettrici degli ngoli dicenti l lto obliquo si intersecno in un punto del lto perpendicolre lle bsi. Dimostrre

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

8. Prodotto scalare, Spazi Euclidei.

8. Prodotto scalare, Spazi Euclidei. 8. Prodotto sclre, Spzi Euclidei. Ricordimo l definizione di prodotto sclre di due vettori del pino VO 2 (vle in modo del tutto nlogo nche in VO 3 ). Definizione: Sino v, w VO 2 e si θ l ngolo convesso

Dettagli

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi.

Corso di Analisi: Algebra di Base. 4^ Lezione. Radicali. Proprietà dei radicali. Equazioni irrazionali. Disequazioni irrazionali. Allegato Esercizi. Corso di Anlisi: Algebr di Bse ^ Lezione Rdicli. Proprietà dei rdicli. Equzioni irrzionli. Disequzioni irrzionli. Allegto Esercizi. RADICALI : Considerto un numero rele ed un numero intero positivo n,

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura.

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura. 7.5. BAICENTI 99 P J Q Gli ssi HJ e PQ (che isecno i lti opposti del rettngolo) sono ssi di simmetri mterile. il ricentro dell lmin coincide con l intersezione dei due ssi: G, G H Esempio 7.18 (Bricentro

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra

Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Corso di Fondamenti di Telecomunicazioni Esercizi Teoria dei segnali Prof. Giovanni Schembra Sommario CARATTERISTICHE DEI SEGNALI DETERMINATI.... ESERCIZIO.... ESERCIZIO... 5.3 ESERCIZIO 3 CONVOLUZIONE...

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Geometria Differenziale: Parte 7

Geometria Differenziale: Parte 7 Geometri Differenzile: Prte 7 Sommrio Curvtur geodetic. Tubo intorno un curv dello spzio. Superfici prllele. Mpp esponenzile. 1 Curvtur geodetic Si α : I Σ un curv prmetrizzt dll sciss curviline, intermente

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli

Laboratorio II, modulo

Laboratorio II, modulo Laboratorio II, modulo 2 206-207 Banda di un segnale e filtri (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_04.pdf e http://wpage.unina.it/verdoliv/tds/appunti/appunti_05.pdf

Dettagli

Richiami sui vettori. A.1 Segmenti orientati e vettori

Richiami sui vettori. A.1 Segmenti orientati e vettori A Richimi sui vettori Richimimo lcune definizioni e proprietà dei vettori, senz ssolutmente pretendere di drne un trttzione mtemticmente complet. Lvoreremo sempre in uno spzio crtesino (euclideo) tre dimensioni,

Dettagli

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di

Sistemi principali di normali ad una varietà giacenti nel suo o 2. Nota di Sistemi principli di normli d un vrietà gicenti nel suo o 2. Not di Giuseppe Vitli Pdov. In un mio recente lvoro *) ho considerto, per ogni superficie il cui j si di 2 k dimensioni (k 2, 3), un sistem

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione

Pulse Amplitude Modulation (PAM) 2 Scelta delle risposte impulsive dei filtri in trasmissione e ricezione Pulse Amplitude Modulation (PAM 1 Definizione La trasmissione di una sequenza di numeri {a k } mediante un onda PAM consiste nel generare, a partire dalla sequenza {a k } il segnale a tempo continuo u(t

Dettagli

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE GRAFICI DEDUCIBILI

FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE GRAFICI DEDUCIBILI FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE GRAFICI DEDUCIBILI Angel Dontiello FUNZIONI ESPONENZIALI Crescit di un popolzione

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

StereoPIV in un getto in crossflow

StereoPIV in un getto in crossflow Second Giornt di Studio su Tecniche Ottiche e Termogrfiche in Termofluidodinmic StereoPIV in un getto in crossflow T. Astrit, F. G. Nese e G. M. Crlomgno Università degli studi di Npoli Federico II DETEC

Dettagli

BREVE APPENDICE SULLE UNITA' LOGARITMICHE

BREVE APPENDICE SULLE UNITA' LOGARITMICHE BREVE APPENDICE SULLE UNITA' LOGARITMICHE Per esprimere gudgni e ttenuzioni, nonché cifre di rumore e rpporti segnle-rumore si usno frequentemente le unità logritmiche. Come risultto, l grndezz in questione

Dettagli

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico

Seconda prova maturita 2016 soluzione secondo problema di matematica scientifico Second prov mturit 06 soluzione secondo problem di mtemtic scientifico Skuol.net June, 06 Primo Problem Le tre funzioni proposte sono f () ( ) k f () 6 + 9k + f () cos( π k ). Punto Affinche l funzione

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Esercizi su spazi ed operatori lineari

Esercizi su spazi ed operatori lineari Esercizi su spzi ed opertori lineri Corso di Fisic Mtemtic 2,.. 2013-2014 Diprtimento di Mtemtic, Università di Milno 23 Ottobre 2013 1 Spzio L 2 Esercizio 1. Per = 0, b = 1, dire quli delle seguenti funzioni

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base

8. Sistemi di Modulazione Numerica in banda-base. Modulo TLC:TRASMISSIONI Modulazione numerica in banda base 1 8. Sistemi di Modulazione Numerica in banda-base Modulazione e Demodulazione numerica 2 sequenza numerica segnale analogico...0010111001... modulatore numerico x(t) sequenza numerica...0010011001...

Dettagli

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α

ipotenusa cateto adiacente ad α cateto opposto ad α ipotenusa cateto adiacente ad α ipotenusa cateto adiacente ad α Trigonometri I In quest prim prte dell trigonometri denimo le funzioni trigonometriche seno, coseno e tngente e le loro funzioni inverse. Vedremo nche come utilizzrle nell risoluzione dei tringoli. Comincimo

Dettagli

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata

9. Sistemi di Modulazione Numerica in banda traslata. Modulo TLC:TRASMISSIONI Modulazione numerica in banda traslata 1 9. Sistemi di Modulazione Numerica in banda traslata Modulazione QAM (analogica) 2 Modulazione QAM (Quadrature Amplitude Modulation; modulazione di ampiezza con portanti in quadratura) è un tipo di modulazione

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Trasformata di Fourier: esercizi d esame

Corso di SEGNALI a.a Corso di SEGNALI. anno accademico Trasformata di Fourier: esercizi d esame Corso di SEGNLI a.a.008 009 Corso di SEGNLI anno accademico 008-009 rasormata di Fourier: esercizi d esame. Successivamente si calcoli il valore di () per 0, ±/ e ±/. Per calcolare la trasormata di questo

Dettagli

Spazi di probabilità generali. Variabili casuali assolutamente continue

Spazi di probabilità generali. Variabili casuali assolutamente continue Cpitolo 4 Spzi di probbilità generli. Vribili csuli ssolutmente continue 4.1 σ-lgebre. Misure di Probbilità Con gli spzi di probbilità discreti, bbimo visto molti spetti importnti del Clcolo delle Probbilità,

Dettagli

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione.

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione. L funzione esponenzile L funzione = è chimt funzione esponenzile di dove è l bse dell funzione. > 0; Condizioni di vlidità: < < ; > 0 Se > l funzione è monoton crescente > = = = o L funzione esponenzile

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1

CAMPIONAMENTO E RICOSTRUZIONE. Y(f) Y(f-15) Y(f+15) f[hz] Yc(f) Y(f) Y(f-17.5) Y(f+17.5) Yc(f) Esercizio 1 CAMPIONAMENTO E RICOSTRUZIONE Esercizio 1 Dato il segnale y(t), con trasformata di Fourier Y(f) rappresentata in figura, rappresentare lo spettro del segnale ottenuto campionando idealmente y(t) con a)

Dettagli

6. Trasmissione Numerica in Banda Base

6. Trasmissione Numerica in Banda Base 1 INFO-COM Dpt. Dipartimento di Scienza e Tecnica dell Informazione e della Comunicazione Università degli Studi di Roma La Sapienza 6. Trasmissione Numerica in Banda Base TELECOMUNICAZIONI per Ingegneria

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli