LEZIONI DI STATISTICA MEDICA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "LEZIONI DI STATISTICA MEDICA"

Transcript

1 LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa

2 La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa defsce la forma pù o meo raccolta della dstrbuzoe toro al valore cetrale.

3 la varable d teresse è l ALTEZZA UNA POPOLAZIONE CON MOLTA VARIABILITÀ UNA POPOLAZIONE CON POCA VARIABILITÀ

4 INDICI DI DISPERSIONE (measures of dsperso). CAMPO DI VARIAZIONE (rage). DISTANZA INTERQUARTILE 3. DEVIANZA 6. COEFFICIENTE DI VARIAZIONE 4. VARIANZA 5. DEVIAZIONE STANDARD

5 RANGE (CAMPO DI VARIAZIONE) Rage ma - m dffereza tra l valore massmo e l valore mmo osservat S basa soltato su valor estrem della dstrbuzoe e o tee coto de valor termed E' molto fluezato da osservazo aomale (outlers) Tede ad aumetare al crescere del umero delle osservazo

6 esempo: um. lfood metastatc Rage ma - m um. lfood metastatc Rage ma - m um. lfood metastatc Rage ma - m 8-0 8

7 DISTANZA INTERQUARTILE IQR Q 3 - Q dffereza tra l III quartle (Q3) ed l I quartle (Q) I questo tervallo rcade la metà de valor osservat, posta esattamete al cetro della dstrbuzoe. No è fluezata da osservazo aomale o estreme.

8 esempo: Statura matrcole della Facoltà d Medca (A.A. 95/96) Rage ma - m cm MASCHI Statura Freq. Cumul Totale 34 Calcolo del I quartle: Calcolo del III quartle: (rago percetlco 5) (rago percetlco 75). rago (34+) * 5 / 00. rago (34+) * 75 / / * 3 / 4 6. I quartle 74 cm. III quartle 8 cm IQR Q3 - Q cm geeralmete s rporta: 74,8

9 Il cocetto d base el calcolo della devazoe stadard Tutt gl dc d varabltà soo calcolat sulla dstaza tra le sgole osservazo ed l rspettvo valore medo della varable.

10 DEVIANZA Nella popolazoe Nel campoe dmesoe della popolazoe N ( µ ) dmesoe del campoe ( ) meda ella popolazoe (parametro) meda el campoe (statstca) E u dce d dspersoe defto sulla base del cocetto d scarto rspetto ad u puto cetrale della dstrbuzoe. E la base delle msure d dspersoe per varabl quattatve (da essa dscedoo la Varaza e la Devazoe Stadard).

11 DEVIANZA DEVIANZA formula per formula per l l calcolo calcolo + ) ( ) ( N ) ( ) ( formula usata ella pratca per semplfcare l calcolo la dffereza al membro assume sempre valore postvo!!! + N N ) ( ) ( + N N N ) ( + N + PROPRIETA DELLA SOMMATORIA: Se a è ua costate: a a a a ) )

12 esempo: 5 5 / 3 5 devaza (5-5) + (5-5) + (5-5) devaza (4-5) + (5-5) + (6-5) devaza ( - 5) + (5-5) + (8-5) 8

13 esempo: FEV p ( -) ( -) TOT ( ) / cl/s 3 devaza 5000 cl /s cl/s FEV p ( -) ( -) * 500* * 500* TOT (50*+300*+350*) / cl/s 6 devaza 0000 cl /s cl/s La devaza raddoppa ache se la varabltà è costate, perché aumeta l umero delle osservazo!

14 VARIANZA E ua devaza meda ossa la devaza rapportata al umero delle osservazo campoare () o della popolazoe (N). E la meda artmetca de quadrat degl scart delle sgole osservazo dalla loro meda. Nella popolazoe σ N ( N µ ) s Nel campoe ( ) parametro statstca Grad d Lbertà

15 s ( ) ( ) / VARIANZA: formula per l calcolo I GRADI DI LIBERTÀ rappresetao l umero d osservazo dpedet del campoe, dal mometo che su dat dspobl è gà stata calcolata ua statstca (la meda campoara). La VARIANZA: Tee coto d tutte le osservazo ed è duque fluezata da evetual osservazo aomale (outlers). No è drettamete cofrotable co la meda o altr dc d poszoe quato l utà d msura è elevata al quadrato.

16 ) ( ) ( s k k k Quado le osservazo soo raggruppate ua dstrbuzoe d frequeza ( k class): VARIANZA VARIANZA PONDERATA PONDERATA

17 esempo: dstrbuzoe d frequeza della statura delle matrcole d Medca dell Uverstà d Veroa ell A.A. 95/ CLASSE PUNTO FREQUENZA * * CENTRALE ASSOLUTA ( ) [50-55) * 5.5 (5.5) * [55-60) * (57.5) * [60-65) * (6.5) * [65-70) [70-75) [75-80) [80-85) [85-90) [90-95] TOTALE s ( ) / (5.5) 4 /5 57.cm?!

18 DEVIAZIONE STANDARD σ Nella popolazoe N ( µ) N s Nel campoe (d.s. corretta) ( ) Ha sempre valore postvo E' ua msura della dspersoe della varable toro alla meda E ua msura d dstaza dalla meda, drettamete cofrotable co le msure d poszoe, essedo calcolata co la stessa utà d msura.

19 esempo: dstrbuzoe d frequeza della statura delle matrcole d Medca dell Uverstà d Veroa ell A.A. 95/ CLASSE PUNTO FREQUENZA * * CENTRALE ASSOLUTA ( ) [50-55) * 5.5 (5.5) * [55-60) * (57.5) * [60-65) * (6.5) * [65-70) [70-75) [75-80) [80-85) [85-90) [90-95] TOTALE s ( ) / (5.5) 4 / cm

20 ESEMPIO I dat seguet s rferscoo al lvello d emogloba (X) g/00 ml msurato u campoe d 70 doe: Raggruppate dat tervall d ampezza g/00 ml. Determate la varaza e la devazoe stadard della dstrbuzoe (dat raggruppat tervall d classe). 9,4,9 9,3,4 3 9,4,4 3, 9,7,5 3, 0,,6 3, 0,,6 3,3 0,3,7 3,3 0,4,7 3,4 0,4,8 3,4 0,5,8 3,5 0,6,9 3,5 0,6,9 3,6 0,7 3,7 0,8 3,7 0,8, 4, 0,9, 4,6 0,9, 4,6 0,9, 4,7,3 4,9,5 5,,5,,7,,9,,9,3,9

21 SOLUZIONE CLASSE PUNTO FREQUENZA calcolamo CENTRALE ASSOLUTA calcolamo * l prodotto * ( ) ( ) l prodotto tra l tra l puto QUADRATO [9-0) [0-) cetrale 47.0 del valore [-).5 9 della 8.5 classe cetrale 5.75 [-3).5 4 e 75.0 la della classe [3-4) [4-5] frequeza e la frequeza TOTALE VARIANZA s ( ) / (84.0) 69 / 70.9( g /00mL) DEVIAZIONE STANDARD s ( ) /.9.38g /00mL

22 ESERCIZIO-I I dat seguet s rferscoo al lvello d emogloba (X) g/00 ml msurato u campoe d 70 doe: Determate l rage e la dstaza terquartle della dstrbuzoe (dat dvdual). 9,4,9 9,3,4 3 9,4,4 3, 9,7,5 3, 0,,6 3, 0,,6 3,3 0,3,7 3,3 0,4,7 3,4 0,4,8 3,4 0,5,8 3,5 0,6,9 3,5 0,6,9 3,6 0,7 3,7 0,8 3,7 0,8, 4, 0,9, 4,6 0,9, 4,6 0,9, 4,7,3 4,9,5 5,,5,,7,,9,,9,3,9

23 SOLUZIONE-I Rage ma - m g/00 ml valore mmo valore massmo 9,4,9 9,3,4 3 9,4,4 3, 9,7,5 3, 0,,6 3, 0,,6 3,3 0,3,7 3,3 0,4,7 3,4 0,4,8 3,4 0,5,8 3,5 0,6,9 3,5 0,6,9 3,6 0,7 3,7 0,8 3,7 0,8, 4, 0,9, 4,6 0,9, 4,6 0,9, 4,7,3 4,9,5 5,,5,,7,,9,,9,3,9

24 SOLUZIONE-I Calcolo del I quartle ( rago percetle 5):. rago (70+) * 5 / 00 7 / 4 8. I quartle 0.9 g/00 ml Calcolo del III quartle ( rago percetle 75):. rago (70+) * 75 / 00 7*3 / III quartle 3. g/00 ml IQR Q 3 - Q g/00 ml 9,4,9 9,3,4 3 9,4,4 3, 9,7,5 3, 0,,6 3, 0,,6 3,3 0,3,7 3,3 0,4,7 3,4 0,4,8 3,4 0,5,8 3,5 0,6,9 3,5 0,6,9 3,6 0,7 3,7 0,8 3,7 0,8, 4, 0,9, 4,6 0,9, 4,6 0,9, 4,7,3 4,9,5 5,,5,,7,,9,,9,3,9

25 I alcue stuazo l cofroto della varabltà all tero d due grupp d osservazo utlzzado la devazoe stadard è fuorvate Due varabl dverse: I 9 ragazze matrcole d Medca a Veroa ell A.A. 95/96, la meda del peso era par a 55. Kg e la devazoe stadard era par a 5.7 Kg, la meda della statura era par a 66. cm e la devazoe stadard era par a 6. cm. E maggore la varabltà del peso o la varabltà della statura?. Le varabl msurate e due grupp soo dverse (le osservazo e due grupp soo espresse co dverse utà d msura)

26 Due grupp co valor med molto dstat: Tre eoat pesao rspettvamete 3, 4 e 5 Kg (meda 4 Kg; dev.st. Kg). Tre bamb d ao pesao 0, e Kg (meda Kg; dev.st. Kg). La devazoe stadard è uguale e due grupp, ma l buo seso suggersce che la varabltà del peso sa maggore e eoat.. La varable msurata è la stessa ma valor med delle osservazo e due grupp soo molto dstat (le osservazo e due grupp soo su dvers ord d gradezza)

27 COEFFICIENTE DI VARIAZIONE PERCENTUALE CV% (devazoe stadard / meda) * 00% C permette d msurare la varabltà dpedetemete dalla gradezza e dalla scala d msura delle osservazo Meda Dev. stadard CV Neoat 4 Kg Kg 5.0 % Bamb ao Kg Kg 9. % La varabltà del peso è maggore e eoat. Meda Dev. stadard CV Peso 55. Kg 5.7 Kg 0.3 % Statura 66. cm 6. cm 3.7 % La varabltà del peso è maggore della varabltà della statura.

28 ESEMPIO: X putegg d 5 studet al test d ammssoe per la laurea TLB. Calcolare meda e dev. stadard Meda Varaza 0.06 Devazoe stadard 0.49

29 ESEMPIO: I u ambulatoro d dabetologa vee rlevato l peso d due grupp d soggett: l prmo d umerostà 5 composto da ragazz co età ferore a 0 a ed l secodo d umerostà 8 composto da aza co età superore a 65 a. I dat soo rportat ella seguete tabella: È possble affermare che le due dstrbuzo d valor abbao la stessa varabltà? E possble dre che valor d peso e due grupp s addesao modo smle attoro al valore medo?

30

31

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche

Consentono di descrivere la variabilità all interno della distribuzione di frequenza tramite un unico valore che ne sintetizza le caratteristiche Metodologa della rcerca pcologa clca - Dott. Luca Flppo Coetoo d decrvere la varabltà all tero della dtrbuzoe d frequeza tramte u uco valore che e tetzza le carattertche Metodologa della rcerca pcologa

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA Le msure d tedeza cetrale OBIETTIVO Idvduare u dce che rappreset sgfcatvamete u seme d dat statstc. Esempo Nella tabella seguete soo rportat valor del tasso glcemco rlevat su 0 pazet:

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

Elementi di Statistica descrittiva Parte II

Elementi di Statistica descrittiva Parte II Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU

3 Variabilità. variabilità. Senza deviazione dalla norma il progresso non è possibile. (Frank Zappa) Statistica - 9CFU 3 Varabltà 3 varabltà Seza devazoe dalla orma l progresso o è possble (Frak Zappa) 68 Statstca - 9CFU 3 Varabltà 3. varabltà Defzo Varabltà E l atttude d u feomeo ad assumere dverse modaltà. Essa è msurata

Dettagli

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma Gl dc stetc Tedeza cetrale Forma Varabltà Cosetoo l passaggo da ua pluraltà d formazo ad u uca msura umerca; Stetzzao l tera dstrbuzoe u sgolo valore, cosetedo così cofrot el tempo, ello spazo o tra crcostaze

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3 Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

SERVIZIO DAF: FONTI STATISTICHE

SERVIZIO DAF: FONTI STATISTICHE Gacomo Bulgarell Uffco Servz Statstc SERVIZIO DAF: FONTI STATISTICHE Mercoledì 3 ottobre 202 4. La Statstca (III) Idc d poszoe Nella rcerca scetfca e tecologca, così come elle sceze ecoomche, socal e poltche,

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice.

Lezione 5. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 5. A. Iodice. La Statistica Alfoso Iodice D Eza iodicede@uicas.it Uiversità degli studi di Cassio () Statistica 1 / 26 Outlie La 1 2 La 3 4 () Statistica 2 / 26 Trimmed mea - La aritmetica risete della preseza di valori

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Regressione e Correlazione

Regressione e Correlazione Regressoe e Correlazoe Probabltà e Statstca - Aals della Regressoe - a.a. 4/5 L aals della regressoe è ua tecca statstca per modellare e vestgare le relazo tra due (o pù) varabl. Nella tavola è rportata

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Facoltà di Economia. Obiettivo. Quando studiarla? Lezione n 7. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca acoltà d Ecooma a.a. - La cocetrazoe Quado studarla? Obettvo Dagramma d Lorez apporto d cocetrazoe rea d cocetrazoe Esemp Sommaro Lezoe 7 Lez7-a.a. - statstca-fracesco mola Quado studarla?

Dettagli

Misure di dispersione (o di variabilità)

Misure di dispersione (o di variabilità) 14/1/01 Misure di dispersione (o di variabilità) Range Distanza interquartile Deviazione standard Coefficiente di variazione Misure di dispersione 7 8 9 30 31 9 18 3 45 50 x = 9 range=31-7=4 x = 9 range=50-9=41

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

ELABORAZIONE DEI DATI

ELABORAZIONE DEI DATI ELABORAZIONE DEI DATI QUESTA FASE SERVE AD ESPRIMERE IN MODO SINTETICO I RISULTATI DELL INDAGINE SVOLTA CALCOLANDO DEGLI INDICI: VALORI MEDI INDICI DI VARIABILITA I valor med Il valore medo è u valore

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA

ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA ALCUNI ELEMENTI DI STATISTICA DESCRITTIVA The last step of reaso s to ackowledge that there s a fty of thgs that go beyod t. B. Pascal La Statstca ha come scopo la coosceza quattatva de feome collettv.

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

STATISTICA DESCRITTIVA modulo 1 Corso di Laurea SMID Elda Guala e Ivano Repetto Dipartimento di Matematica - Università degli Studi di Genova

STATISTICA DESCRITTIVA modulo 1 Corso di Laurea SMID Elda Guala e Ivano Repetto Dipartimento di Matematica - Università degli Studi di Genova - -. Varabl statstche STATISTICA DESCRITTIVA modulo Corso d Laurea SMID Elda Guala e Ivao Repetto Dpartmeto d Matematca - Uverstà degl Stud d Geova I dat rportat sotto s rferscoo a studet uverstar che

Dettagli

Elementi di statistica descrittiva Parte III

Elementi di statistica descrittiva Parte III Problem coess co l so della meda - la meda pò sbre forte fleza de valor modal estrem del ( alc cas molto dfferet dagl altr dat osservat) - la meda pò o essere valore osservato - la meda è applcable solo

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Premessa. Abbiamo più volte enfatizzato come questo processo di sintesi comporta un prezzo da pagare in termini di perdita di informazioni.

Premessa. Abbiamo più volte enfatizzato come questo processo di sintesi comporta un prezzo da pagare in termini di perdita di informazioni. Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo o dscreto

Dettagli

Capitolo 2 Errori di misura: definizioni e trattamento

Capitolo 2 Errori di misura: definizioni e trattamento Captolo Error d msura: )Geeraltà defzo e trattameto I cocett d meda, varaza e devazoe stadard s utlzzao ormalmete per otteere formazo sulla botà d ua msura. I geerale, s assume come msura m della gradezza

Dettagli

TRATTAMENTO STATISTICO DEI DATI ANALITICI

TRATTAMENTO STATISTICO DEI DATI ANALITICI TRATTAMENTO STATISTICO DEI DATI ANALITICI Nell aals chmca u aalsta effettua u umero lmtato d prove e cosdera la meda de rsultat otteut per poter arrvare a determare o l valore VERO d ua determata gradezza

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia Tabelle Statstche Massmo Alfoso Russo Dpartmeto d Sceze Ecoomche, Matematche e Statstche Uverstà d Fogga STATISTICA I - 2009 - Fogga Cocett d base Serazoe Dat d tpo quattatvo. Sere Dat d tpo qualtatvo;

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Capitolo 4 Le Misure di Centralità

Capitolo 4 Le Misure di Centralità Captolo 4 Le Msure d Cetraltà Le msure d cetraltà Premessa Il passaggo da u eleco d modaltà alle dstrbuzo d frequeze co modaltà dstte (carattere qualtatvo o dscreto) e co class d modaltà (carattere cotuo

Dettagli

NOTA METODOLOGICA PER L ANALISI DELLE CAUSE DI MORTE

NOTA METODOLOGICA PER L ANALISI DELLE CAUSE DI MORTE OTA METODOOGICA PER AAISI DEE CAUSE DI MORTE SITESI METADATI Fote de dat archvo del Regstro d Mortaltà Regoale della Toscaa Area della rlevazoe Utà Satare ocal della Toscaa (suddvsoe 12 U.S.. e rspettve

Dettagli

Formulario e tavole. Complementi per il corso di Statistica Medica

Formulario e tavole. Complementi per il corso di Statistica Medica Complemet per l corso d Statstca Medca Formularo e tavole Ne è cosetto l uso all esame scrtto, ma og Studete deve cosultare solo l propro formularo, e essu altro materale! Statstca Descrttva destà ampea

Dettagli

Associazione tra due variabili quantitative

Associazione tra due variabili quantitative Esempo (1) Assocazoe tra due varabl quattatve Suppoamo che u professore vogla dmostrare che eserctars a casa aut gl studet el superameto dell esame. esame. A tal fe regstra la votazoe de compt a casa e

Dettagli

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel:

UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA. Prof.ssa Donatella Siepi tel: UNIVERSITA DEGLI STUDI DI PERUGIA STATISTICA MEDICA Prof.ssa Doatella Siepi doatella.siepi@uipg.it tel: 075 5853525 05 dicembre 2014 6 LEZIONE Statistica descrittiva STATISTICA DESCRITTIVA Rilevazioe dei

Dettagli

Elementi di Statistica descrittiva Parte III

Elementi di Statistica descrittiva Parte III Elemet d Statstca descrttva Parte III Paaa Idce d asmmetra (/) Idce d forma che esprme l grado d asmmetra (skewess) d ua dstrbuzoe. Sao u, u,,u osservazo umerche. Chamamo dce d asmmetra l espressoe: c

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metod Statstc per le decso d mpresa (Note ddattche) Bruo Chadotto 5. Campo casual e dstrbuzo campoare - Campo casual Nel Cap. 3 d queste ote s è avuto modo d dstguere

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100 Dstrbuzon d frequenza Varable x Frequenze Frequenze Frequenze Frequenze % cumulate relatve x 1 n 1 n 1 n 1 / n 1 /*100 x n n 1 +n n / n /*100 x k n k n 1 +.+n k = n k / n k /*100 totale 1 100 Indc sntetc

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

Come cambia la distribuzione se consideriamo 5 classi equiampie (k=5)? Freq. relativa. Freq. Ass. n i

Come cambia la distribuzione se consideriamo 5 classi equiampie (k=5)? Freq. relativa. Freq. Ass. n i Come camba la dstrbuzoe se cosderamo 5 class equampe (k5)? xmax xm 2.02 03 d 38,80 k 5 Class x xl x + Ass. relatva N Frequeza relatva cumulata F l 03,0 -- 484,8 4 0,82 0,82 484,8 -- 866,6 5 0,0 0,92 866,6

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA.

CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA. TE11_st fb - 5/10/007 5/10/007 XI - 1 CAPITOLO XI STIMA DEI PARAMETRI DI UNA VARIABILE ALEATORIA. 11.1 - Itroduzoe. I geerale, parametr caratterstc d ua v.a. (che per o soo l suo valore medo e la sua varaza

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

ammontare del carattere posseduto dalle i unità più povere.

ammontare del carattere posseduto dalle i unità più povere. Eserctazoe VII: La cocetrazoe Eserczo Determare l rapporto d cocetrazoe d G del fatturato medo (espresso. d euro) d 8 mprese e rappresetare la curva d Lorez: 97 35 39 52 24 72 66 87 Eserczo apporto d cocetrazoe

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

MISURE E GRANDEZZE FISICHE

MISURE E GRANDEZZE FISICHE R. Campaella Ig. Meccaca v. Peruga Gradezze fsche Rev. 12.02.21 MISRE E GRANDEZZE FICHE 1 Itroduzoe Nella descrzoe de feome la fsca s serve d legg, elle qual tervegoo gradezze fsche qual: la lughezza,

Dettagli

per il controllo qualità in campo tessile ing. Piero Di Girolamo

per il controllo qualità in campo tessile ing. Piero Di Girolamo edtg project M.R. Oofro ELEMENTI DI STATISTICA per l cotrollo qualtà campo tessle g. Pero D Grolamo prefazoe PREFAZIONE I l cotrollo d qualtà el tessle-abbglameto, u sstema ecoomco globalzzato, che da

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore)

ANOVA (ANalysis Of VAriance) Un caso di studio. ANOVA (Analisi della varianza ad un fattore) ANOVA (Analisi della varianza ad un fattore) /0/00 ANOVA (ANaly Of VArace U cao d tudo Coro d Stattca per l prea I put vedta d u azeda oo clafcat bae all ubcazoe (cetro, ecetro, perfera Prof. A. Regol a.a. 00-0 Sulla bae delle oervazo capoare vuole

Dettagli

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility

La volatilità storica, le misure di rischio asimmetrico e la tracking error volatility Ecooma degl termedar fazar Lors Nadott, Claudo Porzo, Daele Prevat Copyrght 00 The McGraw-Hll Compaes srl Approfodmeto 4.3w La msurazoe del rscho (a cura d Atoo Meles Uverstà Partheope) La volatltà storca,

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

Sommario. Corso di Statistica Economia e Commercio. Distribuzioni (cont Distribuzioni di frequenza. Distribuzioni

Sommario. Corso di Statistica Economia e Commercio. Distribuzioni (cont Distribuzioni di frequenza. Distribuzioni Corso d Statstca Ecooma e Commerco Lezoe a.a. - Fracesco Mola z z z Sommaro Dstrbuzo d frequeza Rappresetazo grafche Dagramm a barre Istogramm Fuzoe d rpartzoe emprca a.a. - statstca-fracesco mola Dstrbuzo

Dettagli

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti.

Interpolazione. Definizione: per interpolazione si intende la ricerca di una funzione matematica che approssima l andamento di un insieme di punti. Iterpolazoe Defzoe: per terpolazoe s tede la rcerca d ua fuzoe matematca che approssma l adameto d u seme d put. Iterpolazoe MATEMATICA Calcola ua fuzoe che passa PER tutt put Tp d terpolazoe Iterpolazoe

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione

STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI QUANTITATIVE Trasformazioni lineari Indici di covarianza e correlazione Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 4 VARIABILI

Dettagli

Verifica e scelta del modello probabilistico

Verifica e scelta del modello probabilistico Verfca e scelta del modello probablstco L elaborazoe statstca de dat comporta u certo umero d potes, qual ad esempo la forma della dstrbuzoe ed l metodo utlzzato per stmare parametr. Data ua qualsas potes

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli