Il campionamento e l inferenza

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il campionamento e l inferenza"

Transcript

1 e l fereza Popolazoe Campoe Da dat osservat medate scelta campoara s guge ad affermazo che rguardao la popolazoe da cu ess soo stat prescelt Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco e l fereza Ao accademco S defsce campoameto u procedmeto attraverso l quale Pop da u seme d utà costtuet l oggetto dello studo, s estrae u umero rdotto d cas Estrazoe scelt co crter tal da casuale cosetre la geeralzzazoe all tera popolazoe de C rsultat otteut. I fere za Il campoe po deve essere rappresetatvo a della popolazoe o campoameto casuale Il calcolo delle probabltà esama rsultat che s ottegoo sotto l flueza del caso Campoe Calcolo delle probabltà Popolazoe

2 probablstco bl Le utà soo scelte modo casuale (ma o a casacco!). La casualtà tervee ella selezoe delle utà e s ottee attrbuedo ad og utà della popolazoe ua probabltà ota e dversa da zero d essere selezoata. Quado la probabltà d estrazoe, oltre ad essere ota, è posta uguale per tutte le utà, s parla d campoameto casuale semplce. a. I partcolare, la casualtà tervee ella selezoe delle utà e s ottee: attrbuedo ad og utà della popolazoe ua probabltà ota e dversa da zero d essere selezoata; Campoameto casuale co retroduzoe (o beroullao) Og elemeto che vee estratto vee retrodotto ella popolazoe modo tale che ad og estrazoe successva o vega alterata t la composzoe della popolazoe ed og elemeto estratto ha sempre la stessa probabltà d vere scelto. Probabltà bltà d estrazoe d cascu elemeto:,,, N N N Uverso campoaro N b. utlzzado modo approprato le tecche per la selezoe. U esempo S cosder la popolazoe p costtuta da N=4 quattro permercat A, B, C, D. Le vedte effettuate da cascuo d ess el perodo 0/0/04-3//04 soo rportate ella seguete tabella: Ipermercato A B C D Vedte ( mlard d lre) 4 3 Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco Esempo X X Campo d ampezza estratt co rpetzoe Numero del campoe Prmo Elemeto Secodo Elemeto Uverso de campo (=) estratt co rpetzoe:

3 Campoameto casuale seza retroduzoe (o esaustvo) Og elemeto, ua volta estratto, o vee remmesso ella popolazoe per cu, dopo og estrazoe, la probabltà bltà che gl elemet restat t etro a far parte del campoe vee modfcata. Probabltà d estrazoe d cascu elemeto Uverso campoaro N N N,,..., N N N N! N! Esempo Campo d ampezza estratt seza rpetzoe Uverso de campo (=) estratt seza rpetzoe: 4! ( ) 4! X X Numero Prmo Secodo del campoe Elemeto Elemeto Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco U campoe casuale d elemet estratto da ua v.c. X è rappresetato dalle v.c X, X,, X dove X è la -esma estrazoe della v.c. X Popolazoe: Altezza X degl studet preset aula durate la lezoe d Statstca X : Altezza del prmo studete da estrarre X : Altezza del secodo studete da estrarre X : Altezza dell -esmo studete da estrarre Og v.c. X, X,, X ha la stessa fuzoe d destà d probabltà f(x ) che sarà uguale alla f(x) della popolazoe orgara Popolazoe XN(,) vc v.c. X N(,). v.c. X N(,) v.c. X N(,) Dopo aver effettuato t l espermeto, la determazoe umerca è rappresetata da umer real x, x,, x che rappresetao l campoe osservato X : Altezza dell -esmo studete da estrarre P X x P X x... P X x N Og x è la realzzazoe d ua v.c X detta v.c. della -esma estrazoe

4 Processo ferezale Ifereza: utlzza statstche del campoe per effettuare la stma de corrspodet ver valor della popolazoe I pratca, vee selezoato a caso dalla popolazoe u campoe uco d ampezza predetermata Bsogerebbe predere esame og campoe che avrebbe potuto t mafestars Dstrbuzo campoare U esempo S cosder la popolazoe p costtuta da N=4 quattro permercat A, B, C, D. Le vedte effettuate da cascuo d ess el perodo 0/0/04-3//04 soo rportate ella seguete tabella: Ipermercato A B C D Vedte ( mlard d lre) 4 3 4, 4 3, 5 U esempo Estrazoe casuale d u campoe d supermercat 4 Ipermercato B C Vedte ( mlard d lre) 3 Estrazoe casuale d u campoe d supermercat Ipermercato A B Vedte ( mlard d lre) , 5 Esempo X Campo d ampezza estratt co rpetzoe Numero del campoe Prmo Elemeto Secodo Elemeto Meda Campoara 4 4 4,0 4, , ,0 5 4,5 Uverso de campo (=) 0 estratt co rpetzoe: 4 6,0 7 3,0,5 E X, sqmx 0,79 8, ,5 0 3, ,0 3, ,0 4,5 5 3,5 6,0

5 Esempo Campo d ampezza estratt co rpetzoe 4,5 4 3,5 3,5,5 Meda Campoara 4,0,5 3,5 30 3,0,5,0 0,0,5 3,5 0,0 3,0,5 Esempo Campo d ampezza estratt seza rpetzoe Uverso de campo (=) estratt seza rpetzoe: 4! ( ) 4!,5 E X Numero Prmo Secodo Meda del campoe Elemeto Elemeto Campoara 4, , ,0 4 4,5 5 3,0 6, , ,0 9 3, ,0 0,5 0,5,5 3 3,5 4 3,0,5,5,0, sqmx 0,64 3,5 3,5 VC V.C. Meda Campoara Popolazoe XN() Campo casual d elemet: v.c X N(,) ( ). X N(,) ( ) campoe. campoe x x. x x 3 campoe x. x.. tutt possbl campo dell uverso campoaro vc v.c. X x x x Parametr e statstche t t Popolazoe o Parametr a Valor fss, spesso o ot Campoe Statstche o Stmator Varabl casual, le cu determazo dpedoo dalle partcolar osservazo scelte

6 Parametr e statstche t t Dstrbuzo b campoare Parametr: valor caratterstc della popolazoe Statstche o v.c. campoare o stmator o statstche test: fuzo delle osservazo campoare Statstca calcolata o stma: umero otteuto applcado la statstca al campoe osservato Dstrbuzoe b campoara: valor che la statstca t t assume al varare del campoe ell uverso campoaro Le cocluso ferezal, basate sull uco campoe osservato, devoo essere gudcate sulla base della dstrbuzoe d probabltà de possbl campo che potevao essere geerat e de qual quello osservato costtusce ua realzzazoe partcolare. Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco Replogo l sulla v.c. meda campoara Popolazoe o fta Campoameto co retroduzoe E X Var X Campoameto seza retroduzoe E Popolazoe fta X E X Var X Var X N N VC V.C. Meda Campoara V.C. meda campoara: mede artmetche calcolate su tutt campo apparteet allo spazo campoaro Le mede varao al varare del campoe estratto e, poché campo soo estratt casualmete, valor che può assumere la meda campoara soo realzzazo d ua v.c La dstrbuzoe della v.c meda campoara dpede dalla dstrbuzoe della popolazoe X Quado la dmesoe del campoe è suffcetemete grade, la dstrbuzoe della meda campoara può essere approssmata alla dstrbuzoe ormale qualuque sa la dstrbuzoe della popolazoe (Teorema del Lmte Cetrale).

7 Teorema del lmte t cetrale Se X, X,, X soo v.c. dpedet co meda e varaza, la v.c X=X +X + +X, somma delle v.c., può essere approssmata co ua v.c ormale co meda e varaza,se è suffcetemete grade Applcazo del teorema del lmte cetrale Approssmazoe ormale della dstrbuzoe della meda campoara Quado la dmesoe del campoe è suffcetemete grade, la dstrbuzoe campoara della meda artmetca può essere approssmata dalla dstrbuzoe ormale qualuque sa la dstrbuzoe della popolazoe. X N ; X- Z= N 0; Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco La dstrbuzoe ormale e la dstrbuzoe della meda campoara. Per la maggor parte delle popolazo, dpedetemete dalla forma della loro dstrbuzoe, la dstrbuzoe della meda campoara è approssmatvamete ormale, purché s cosdero campo d almeo 30 osservazo.. Se la dstrbuzoe della popolazoe è abbastaza smmetrca, la dstrbuzoe della meda campoara è approssmatvamete ua ormale, purché s cosdero campo d almeo 5 osservazo. 3. Se la popolazoe ha ua dstrbuzoe ormale, la meda campoara è dstrbuta secodo la legge ormale, dpedetemete dall ampezza ampezza del campoe. Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco Replogo l sulla v.c. meda campoara VC V.C. t e Z >30? SI NO X N? NO? SI oto? X- t NO s X N ; SI 0

8 VC V.C. t - Eserczo sulla v.c. Meda Campoara Nell'azeda Package sacchett d carta utlzzat per coteere geer almetar soo prodott modo che l carco d ressteza del sacchetto s dstrbusca ormalmete co ua meda artmetca d 35 gramm per cetmetro quadrato e s.q.m. d 70 gramm per cetmetro quadrato. a) Calcolare la probabltà che sacchett prodott abbao carco d ressteza tra 35 e 386 gramm per cetmetro quadrato. b) Selezoado u campoe casuale d 6 sacchett dalla produzoe dell'azeda, calcolare la probabltà che l carco d ressteza medo calcolato sul campoe sa compreso tra 35 e 386 gramm per cetmetro quadrato. Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco Ao accademco Eserczo sulla v.c. Meda Campoara X: carco d ressteza del sacchetto X~ N(35; 70) 35 Z X 70 P(35<X<386)?? a) P X 386 P Z P 0 Z b) X ~ N35; P35 X 386 P Z P Z

9 V.c. Proporzoe Campoara N= Espermeto: estrazoe casuale d due palle X: umero d palle rosse estrazo X B ; : umero d success prove X B ; : proporzoe d success prove proporzoe d success ella popolazoe p proporzoe d success u campoe d ampezza V.c. Proporzoe Campoara N= Espermeto: estrazoe casuale co rpetzoe d due palle X: umero d palle rosse estrazo p Prob. 4 EP Var P 8 V.c. Proporzoe Campoara X B ; : umero d success prove X B ; : proporzoe d success prove proporzoe d success ella popolazoe p proporzoe d success u campoe d ampezza P: v.c proporzoe campoara P N ; P - Z= N 0; Teorema del lmte t cetrale Se X, X,, X soo v.c. dpedet co meda e varaza, la v.c X=X +X + +X, somma delle v.c., può essere approssmata co ua v.c ormale co meda e varaza Applcazo del teorema del lmte cetrale Approssmazoe ormale della dstrbuzoe bomale (Teorema d De Movre-Laplace) Quado la dmesoe del campoe è suffcetemete grade, la dstrbuzoe d u v.c bomale può essere approssmata dalla dstrbuzoe ormale co parametr p e pq p pq Z Z0, X N, X p pq

10 Teorema del lmte t cetrale Se X, X,, X soo v.c. dpedet co meda e varaza, la v.c X=X +X + +X, somma delle v.c., può essere approssmata co ua v.c ormale co meda e varaza Applcazo del teorema del lmte cetrale Approssmazoe ormale della dstrbuzoe bomale relatva (Teorema d De Movre-Laplace) Quado la dmesoe del campoe è suffcetemete grade, la dstrbuzoe d u v.c bomale relatva può essere approssmata dalla dstrbuzoe ormale X X pq p N p, Z Z0, pq V.c. Proporzoe Campoara Campoameto co rpetzoe P N ; Campoameto seza rpetzoe P N ; N N Dove e come studare S. Borra, A. D Cacco (008) Statstca t t Metodologe per le sceze ecoomche e socal McGraw-Hll. Cap. 0 (escluso paragraf 0.3., 0.3.3). D. Pccolo (004) Statstca per le decso Il Mulo. Cap. (escluso paragraf.4,.5), Cap. (escluso paragraf.7,.8). Fle esercz varabl casual e dstrbuzo campoare.pdf Replogo Le dstrbuzo campoare Popolazoe e campoe ell fereza casuale semplce casuale co retroduzoe casuale seza retroduzoe Le dstrbuzo campoare La varable casuale meda campoara La varable casuale proporzoe campoara La v.c T d Studet Il teorema del Lmte Cetrale Applcazo del Teorema del Lmte Cetrale Approssmazoe ormale della dstrbuzoe bomale Approssmazoe ormale della dstrbuzoe bomale relatva

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Gli indici sintetici. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Facoltà d Sceze Poltche - Ao accademco 01-013013 Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe dpede dal

Dettagli

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione

Stima puntuale Quando un parametro della popolazione incognito è valutato (stimato) da una sola statistica (parametro) tratto da un campione STIMA PARAMTRICA TST DLL IPOTSI L fereza Statstca rguarda affermazo crca I parametr d ua popolazoe sulla base della metodologa statstca e del calcolo delle probabltà Stma putuale Quado u parametro della

Dettagli

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma

Gli indici sintetici Forma. Un caso studio. Gli indici sintetici. Qualche considerazione. Qualche considerazione. Tendenza centrale Forma Uverstà d Macerata Dpartmeto d Sceze Poltche, della Comucazoe e delle Relaz. Iterazoal Gl dc d varabltà Crsta Davo Gl dc stetc Qualche cosderazoe Tedeza cetrale Varabltà La scelta dell dce d tedeza cetrale/poszoe

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13

Teoria dei Fenomeni Aleatori AA 2012/13 La Legge de Grad Numer Cosderata ua sere d prove rpetute co p par alla probabltà d successo ua sgola prova, l rapporto tra l umero d success K ed l umero d prove tede a p quado tede ad fto: K P p ε per

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua

Università di Cassino Esercitazioni di Statistica 1 del 5 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 5 Febbrao 00. Dott. Mrko Bevlacqua ESERCIZIO N A partre dalla dstrbuzoe semplce del carattere peso rlevata su 0 studet del corso d Mcroecooma peso: { 4, 59, 65,

Dettagli

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto

CORSO DI LAUREA IN ECONOMIA AZIENDALE Metodi Statistici per le decisioni d impresa (Note didattiche) Bruno Chiandotto CORSO DI LAUREA IN ECONOMIA AZIENDALE Metod Statstc per le decso d mpresa (Note ddattche) Bruo Chadotto 5. Campo casual e dstrbuzo campoare - Campo casual Nel Cap. 3 d queste ote s è avuto modo d dstguere

Dettagli

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità

SIMULAZIONE DI SISTEMI CASUALI 1 parte. Variabili casuali e Distribuzioni di variabili casuali. Calcolo delle probabilità SIMULAZIONE DI SISTEMI CASUALI parte Varabl casual e Dstrbuzo d varabl casual Calcolo delle probabltà Defzo Il calcolo delle probabltà tede a redere razoale l comportameto dell uomo d frote all certezza;

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA A.A. 00/0 - Idc d dspersoe Sezoe d Epdemologa & Statstca Medca Uverstà degl Stud d Veroa La dspersoe o varabltà è la secoda mportate caratterstca d ua dstrbuzoe d dat. Essa

Dettagli

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE

ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Corso d Ifereza Statstca Eserctazo A.A. 009/0 ESERCIZI SU DISTRIBUZIONI CAMPIONARIE Eserczo I cosumator d marmellata ua data popolazoe soo l 40%. Determare la probabltà che, per u campoe beroullao d =

Dettagli

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1

Facoltà di Economia - STATISTICA - Corso di Recupero a.a Prof.ssa G. Balsamo CONCETTI di BASE Carattere X [o A ] i = 1 Facoltà d Ecooma - STATISTICA - Corso d Recupero a.a. 2012-13 Prof.ssa G. Balsamo CONCETTI d BASE Carattere X [o A ] caratterstca quattatva [o qualtatva] rappresetatva d u feomeo sottoposto ad dage Popolazoe

Dettagli

Istogrammi e confronto con la distribuzione normale

Istogrammi e confronto con la distribuzione normale Istogramm e cofroto co la dstrbuzoe ormale Suppoamo d effettuare per volte la msurazoe della stessa gradezza elle stesse codzo (es. la massa d u oggetto, la tesoe d ua pla, la lughezza d u oggetto, ecc.):

Dettagli

Variabilità = Informazione

Variabilità = Informazione Varabltà e formazoe Lo studo d u feomeo ha seso solo se esso s preseta co modaltà/testà varabl da u soggetto all altro. Ad esempo, se dobbamo studare l reddto ua certa regoe è ecessaro osservare utà statstche

Dettagli

Lezione 4. La Variabilità. Lezione 4 1

Lezione 4. La Variabilità. Lezione 4 1 Lezoe 4 La Varabltà Lezoe 4 1 Defzoe U valore medo, comuque calcolato, o è suffcete a rappresetare l seme delle osservazo effettuate (o l seme de valor assut dalla varable statstca); è ecessaro qud affacare

Dettagli

Calcolo delle Probabilità: esercitazione 4

Calcolo delle Probabilità: esercitazione 4 Argometo: Probabltà classca Lbro d testo pag. 1-7 e 7-77 e varable casuale uforme dscreta NB: asscurars d cooscere le defzo, le propretà rchamate e le relatve dmostrazo quado ecessaro Eserczo 1 S cosder

Dettagli

Esercizi su Rappresentazioni di Dati e Statistica

Esercizi su Rappresentazioni di Dati e Statistica Esercz su Rappresetazo d Dat e Statstca Eserczo Esprmete forma percetuale e traducete u aerogramma dat della seguete tabella: Nord Cetro Sud Isole Totale 5 58 866 0 95 36 4 35 30 6 79 56 57 399 08 Soluzoe

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA COSIDERAZIOI PRELIMIARI SULLA STATISTICA La Statstca trae suo rsultat dall osservazoe de feome che c crcodao. Gl stess feome per essere oggetto d statstca devoo essere adeguatamete umeros modo tale che

Dettagli

Lezione 4. Metodi statistici per il miglioramento della Qualità

Lezione 4. Metodi statistici per il miglioramento della Qualità Tecologe Iormatche per la Qualtà Lezoe 4 Metod statstc per l mglorameto della Qualtà Msure d Tedeza Cetrale Ultmo aggorameto: 30 Settembre 2003 Il materale ddattco potrebbe coteere error: la segalazoe

Dettagli

Caso studio 12. Regressione. Esempio

Caso studio 12. Regressione. Esempio 6/4/7 Caso studo Per studare la curva d domada d u bee che sta per essere trodotto sul mercato, s rlevao dat rguardat l prezzo mposto e l umero d pezz vedut 7 put vedta plota, ell arco d ua settmaa. I

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in due gruppi Le mede Italo Nofro LE MEDIE Statstca medca Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt el collettvo oggetto d

Dettagli

Un esempio. le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze empiriche.

Un esempio. le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze empiriche. I molte crcostaze l rcercatore s trova a dover decdere quale, tra le dverse stuazo possbl rferbl alla popolazoe, è quella meglo sosteuta dalle evdeze emprche. Ipotes statstca: supposzoe rguardate: u parametro

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi)

CORSO DI STATISTICA I (Prof.ssa S. Terzi) CORSO DI STATISTICA I (Prof.ssa S. Terz) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI Eserctazoe 2 2.1 Da u dage svolta su u campoe d lavorator dpedet co doppo lavoro è stata rlevata la dstrbuzoe coguta del reddto

Dettagli

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione?

Due distribuzioni, stessa media ma in quale delle due la media rappresenta, sintetizza meglio la situazione? Prma dstrb. Secoda dstrb. Totale Meda 0 5 8 35 85 63 63/5 =3,6 5 5 38 40 45 63 63/5 =3,6 Due dstrbuzo, stessa meda ma quale delle due la meda rappreseta, stetzza meglo la stuazoe? Le mede stetzzao la dstrbuzoe,

Dettagli

Voti Diploma Classico Scientifico Tecn. E Comm Altro

Voti Diploma Classico Scientifico Tecn. E Comm Altro 4 Data la seguete dstrbuzoe doppa de vot rportat ad u esame secodo l Dploma posseduto: Vot 8-3-5 6-8 9-30 Dploma Classco 8 4 5 Scetfco 5 7 7 5 Tec E Comm 8 0 0 Altro 3 a) s calcol la meda artmetca de vot

Dettagli

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio

Caso studio 2. Le medie. Esercizio. La media aritmetica. Esempio 8/02/20 Caso studo 2 U vesttore sta valutado redmet d due ttol del settore Petrolo e Gas aturale. Sulla base de redmet goraler della settmaa passata vuole cercare d prevedere l redmeto per la prossma settmaa

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

Francesco Ciatara ELEMENTI STATISTICA

Francesco Ciatara ELEMENTI STATISTICA Fracesco Catara ELEMENTI d STATISTICA 0 La dstrbuzoe statstca Per llustrare e defre gl uvers, per assemblare le utà grupp, sosttuedo a soggett class equvalet, o meglo, costrure collettv mor costtut da

Dettagli

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100)

La classe che mostra la distribuzione più elevata è quella 60-90, che corrisponde a un uso elevato dell automobile. f i fr (= f i/n) fr% (=fr*100) ESERCIZIO Il Moblty Maager d u azeda ha rlevato l umero d chlometr percors settmaalmete da 60 mpegat. I dat soo rportat ello schema successvo. 67 4 93 58 66 87 5 53 86 8 7 47 56 70 54 86 48 43 60 58 5

Dettagli

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in

LE MEDIE. Quadratica. Italo Nofroni. Statistica medica. Medie. Le medie vengono classificate in Le mede Italo Nofro LE MEDIE Le mede (o valor med) soo dc d tedeza cetrale e costtuscoo u modo semplce ed mmedato per stetzzare u solo valore dat eterogee raccolt u collettvo Statstca medca Le mede Le

Dettagli

INDICI DI VARIABILITA

INDICI DI VARIABILITA INDICI DI VARIABILITA Defzoe d VARIABILITA': la varabltà s può defre come l'atttude d u carattere ad assumere dverse modaltà quattatve. La varabltà è la quattà d dspersoe presete e dat. Idc d varabltà

Dettagli

Statistica descrittiva per l Estimo

Statistica descrittiva per l Estimo Statstca descrttva per l Estmo Paolo Rosato Dpartmeto d Igegera Cvle e Archtettura Pazzale Europa 1-34127 Treste. Itala Tel: +39-040-5583569. Fax: +39-040-55835 80 E-mal: paolo.rosato@da.uts.t 1 A cosa

Dettagli

La probabilità. Il campionamento e l inferenza. L inferenza e la probabilità. campionamento casuale. Dai dati osservati mediante scelta

La probabilità. Il campionamento e l inferenza. L inferenza e la probabilità. campionamento casuale. Dai dati osservati mediante scelta Uverstà d Macerata Dpartmeto d ceze oltche, della Comucazoe e delle Relaz. Iterazoal vee utlzzata per predere decso codzo d certezza L certezza rguarda espermet co pù d u rsultato possble La teora della

Dettagli

Capitolo 6 Gli indici di variabilità

Capitolo 6 Gli indici di variabilità Captolo 6 Gl dc d varabltà ommaro. Itroduzoe. -. Il campo d varazoe. - 3. La dffereza terquartle. - 4. Gl scostamet med. -. La varaza, lo scarto quadratco medo e la devaza. - 6. Le dffereze mede. - 7.

Dettagli

Variabili casuali. Esempio. Variabili casuali discrete. W discreto. W continuo. V.C. discreta. V.C. discreta o continua

Variabili casuali. Esempio. Variabili casuali discrete. W discreto. W continuo. V.C. discreta. V.C. discreta o continua //7 arabl casual Ua varable casuale X e ua fuzoe defta sullo spazo campoaro W che assoca ad og eveto W u uco umero reale. X Ua varable casuale può essere classfcata come dscreta o cotua. Ua varable casuale

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

I percentili e i quartili

I percentili e i quartili I percetl e quartl I percetl soo quelle modaltà che dvdoo la dstrbuzoe ceto part d uguale umerostà. I quartl soo quelle modaltà che dvdoo la dstrbuzoe quattro part d uguale umerostà. Il prmo quartle Q

Dettagli

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo.

Generalmente sia l ampiezza che il valore medio della sollecitazione sono variabili nel tempo. È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa l ampezza che l valore medo della sollectazoe soo varabl el tempo. max a a max m m m m Tempo

Dettagli

DI IDROLOGIA TECNICA PARTE II

DI IDROLOGIA TECNICA PARTE II FACOLTA DI INGEGNERIA Laurea Specalstca Igegera Cvle NO Guseppe T Aroca CORSO DI IDROLOGIA TECNICA PARTE II Aals e prevsoe statstca delle varabl drologche Lezoe X: Scelta d u modello probablstco Aals e

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

LE MEDIE. Le Medie. Medie razionali. Medie di posizione

LE MEDIE. Le Medie. Medie razionali. Medie di posizione LE MEDIE RAZIONALI LE MEDIE Msure stetche trodotte per valutare aspett compless e global d ua dstrbuzoe d u feomeo X medate u solo umero reale costruto modo da dsperdere al mmo le formazo su dat orgar.

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3

CORSO DI STATISTICA I (Prof.ssa S. Terzi) 1 STUDIO DELLE DISTRIBUZIONI SEMPLICI. Esercitazione n 3 ORSO I STTISTI I (Prof.ssa S. Terz) STUIO ELLE ISTRIUZIONI SEMPLII Eserctazoe 3 3. ata la seguete dstrbuzoe de reddt: lass d reddto Reddter Reddto medo 6.500-7.500 4 6.750 7.500-8.500 7.980 8.500-9.500

Dettagli

CALCOLO DEGLI INDICI STATISTICI

CALCOLO DEGLI INDICI STATISTICI CALCOLO DEGLI INDICI STATISTICI Premessa Le formule d calcolo de prcpal dc statstc (parlamo sostazalmete d meda campoara e varaza campoara) dpedoo dal caso esame qud zamo col fare luce sulla possble casstca.

Dettagli

Analisi dei Dati. La statistica è facile!!! Correlazione

Analisi dei Dati. La statistica è facile!!! Correlazione Aals de Dat La statstca è facle!!! Correlazoe A che serve la correlazoe? Mettere evdeza la relazoe esstete tra due varabl stablre l tpo d relazoe stablre l grado d tale relazoe stablre la drezoe d tale

Dettagli

Il disegno campionario per l indagine sul turismo delle isole Eolie. O. Giambalvo A.M. Milito

Il disegno campionario per l indagine sul turismo delle isole Eolie. O. Giambalvo A.M. Milito Il dsego campoaro per l dage sul tursmo delle sole Eole O. Gambalvo A.M. Mlto Struttura della presetazoe Obettv L dage campoara Le potes d lavoro L dage plota Il dsego campoaro Stratega campoara Alcu Rsultat

Dettagli

Indipendenza in distribuzione

Indipendenza in distribuzione Marlea Pllat - Semar d Statstca (SVIC) "Lo studo delle relazo tra due caratter" Aals delle relazo tra due caratter Dpedeza dstrbuzoe s basa sul cofroto delle dstrbuzo codzoate Dpedeza meda s basa sul cofroto

Dettagli

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma

x... Gli indici sintetici La media aritmetica Gli indici sintetici Indici assoluti Indici relativi Indici normalizzati Forma Gl dc stetc Tedeza cetrale Forma Varabltà Cosetoo l passaggo da ua pluraltà d formazo ad u uca msura umerca; Stetzzao l tera dstrbuzoe u sgolo valore, cosetedo così cofrot el tempo, ello spazo o tra crcostaze

Dettagli

Esercitazione 5 del corso di Statistica (parte 1)

Esercitazione 5 del corso di Statistica (parte 1) Eserctazoe 5 del corso d Statstca (parte 1) Dott.ssa Paola Costat 8 Novembre 011 I alcue crcostaze s poe u maggor teresse sullo studo della varabltà tra le sgole utà statstche, puttosto che lo studo della

Dettagli

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che:

dei quali si conoscono solo la media x e la deviazione standard σ e dato un valore reale positivo K, possiamo affermare che: Eserctazoe VI: Il teorema d Chebyshev Eserczo La statura meda d u gruppo d dvdu è par a 73,78cm e la devazoe stadard a 3,6. Qual è la frequeza relatva delle persoe che hao ua statura superore o ferore

Dettagli

Modelli di accumulo del danno dovuto a carichi ciclici

Modelli di accumulo del danno dovuto a carichi ciclici Modell d accumulo del dao dovuto a carch cclc Modell d accumulo del dao dovuto a carch cclc È molto raro che u compoete meccaco sa sollectato a fatca da u carco cclco ad ampezza costate. Geeralmete sa

Dettagli

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno

Indici di Posizione. Gli indici si posizione sono misure sintetiche ( valori caratteristici ) che descrivono la tendenza centrale di un fenomeno Idc d Poszoe Gl dc s poszoe soo msure stetche ( valor caratterstc ) che descrvoo la tedeza cetrale d u feomeo La tedeza cetrale è, prma approssmazoe, la modaltà della varable verso la quale cas tedoo a

Dettagli

Formulario e tavole. Complementi per il corso di Statistica Medica

Formulario e tavole. Complementi per il corso di Statistica Medica Complemet per l corso d Statstca Medca Formularo e tavole Ne è cosetto l uso all esame scrtto, ma og Studete deve cosultare solo l propro formularo, e essu altro materale! Statstca Descrttva destà ampea

Dettagli

Il modello di regressione multipla

Il modello di regressione multipla S. Borra A. D Cacco Statstca metodologe per le sceze ecoomche e socal McGraw Hll 4 ISBN 88-386-66-6 9 Il modello d regressoe multpla Relazoe statstca modello d regressoe leare multpla omoschedastctà superfce

Dettagli

Elementi di Statistica descrittiva Parte II

Elementi di Statistica descrittiva Parte II Elemet d Statstca descrttva Parte II Nella prma parte d queste ote s soo llustrate le tecche utlzzate per rappresetare dat, maera stetca, medate tabelle e grafc Tal tecche soo applcabl sa a caratter quattatv

Dettagli

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA

IL MODELLO DI REGRESSIONE LINEARE MULTIPLA Captolo 9 - Il modello d regressoe leare multpla 9 - IL MODELLO DI REGRESSIONE LINEARE MULTIPLA 9 9. Itroduzoe 9. Il modello d regressoe leare multpla 9.3 Il modello d regressoe leare multpla forma matrcale

Dettagli

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100

Classi di reddito % famiglie Fino a 15 5.3 15-25 16.2 25-35 21.1 35-45 18.6 45-55 13.6 Oltre 55 25.2 Totale 100 ESERCIZIO Data la seguete dstrbuzoe percetuale delle famgle talae per class d reddto, espresso mlo d lre, (ao 995, fote Istat): Class d reddto % famgle Fo a 5 5.3 5-5 6. 5-35. 35-45 8.6 45-55 3.6 Oltre

Dettagli

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

MISURE DI TENDENZA CENTRALE. Psicometria 1 - Lezione 2 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek MISURE DI TENDENZA CENTRALE Pscometra 1 - Lezoe Lucd presetat a lezoe AA 000/001 dott. Corrado Caudek 1 Suppoamo d dsporre d u seme d msure e d cercare u solo valore che, meglo d cascu altro, sa grado

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 9: Covarianza e correlazione Corso d laurea Sceze Motore Corso d Statstca Docete: Dott.ssa Immacolata Scacarello Lezoe 9: Covaraza e correlazoe Altr tp d dpedeza L dce Ch-quadro presetato ella lezoe precedete stablsce l grado d dpedeza

Dettagli

La distribuzione statistica doppia (o bivariata)

La distribuzione statistica doppia (o bivariata) Marlea Pllat - Semar d Statstca (SVIC) "Le dstrbuzo doppe" La dstrbuzoe statstca doppa (o bvarata) Se u seme d utà statstche s osservao gl stat d gradezza assut da due caratter e s ottee ua -pla statstca

Dettagli

Università della Calabria

Università della Calabria Uverstà della Calabra FACOLTA DI INGEGNERIA Corso d Laurea Igegera per l Ambete e l Terrtoro CORSO DI IDROLOGIA Ig. Daela Bod SCHEDA DIDATTICA N 5 ISOIETE E TOPOIETI A.A. 20-2 Calcolo della precptazoe

Dettagli

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale.

III Esercitazione: Sintesi delle distribuzioni semplici secondo un carattere qualitativo ordinale. III Eserctazoe: Stes delle dstrbuzo semplc secodo u carattere qualtatvo ordale. Eserczo 3 dvdu ao seguet ttol d studo: Lceza elemetare, Lceza elemetare, ploma, Lceza meda, Lceza elemetare, Lceza meda,

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso

Facoltà di Farmacia Corso di Matematica con elementi di Statistica Docente: Riccardo Rosso Facoltà d Farmaca Corso d Matematca co elemet d Statstca Docete: Rccardo Rosso Statstca descrttva: l coeffcete d cocetrazoe d G Quado s vuole rpartre ua certa somma d dearo, v soo due suddvso che soo,

Dettagli

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI

Università degli Studi di Milano Bicocca CdS ECOAMM Corso di Metodi Statistici per l Amministrazione delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI Uverstà degl Stud d Mlao Bcocca CdS ECOAMM Corso d Metod Statstc per l Ammstrazoe delle Imprese CARTE DI CONTROLLO PER ATTRIBUTI 1. Carta d cotrollo per frazoe d o coform (carta U resposable d produzoe,

Dettagli

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3)

Indici di asimmetria. Elementi di Statistica descrittiva Parte IV. Simmetria di una distribuzione di frequenze. Primo indice di asimmetria (1/3) Smmetra d ua dstrbuzoe d frequeze Ua dstrbuzoe s dce asmmetrca se o è possble dvduare (aalzzado u stogramma) u asse vertcale che tagl la dstrbuzoe due part specularmete ugual Idc d asmmetra Rferedoc a

Dettagli

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0)

Funzioni di più variabili Massimi e Minimi una funzione definita in un insieme E. Un punto ( x0, y0) Massm e Mm Fuzo d pù varabl Massm e Mm Dezoe: Sa z = (, ) ua uzoe deta u seme E U puto (, E s dce puto d massmo (rsp mmo) relatvo per (, ) se esste δ > tale che ((, ) B((, ), δ ) E (, ) (, ) (rsp (, )

Dettagli

Come cambia la distribuzione se consideriamo 5 classi equiampie (k=5)? Freq. relativa. Freq. Ass. n i

Come cambia la distribuzione se consideriamo 5 classi equiampie (k=5)? Freq. relativa. Freq. Ass. n i Come camba la dstrbuzoe se cosderamo 5 class equampe (k5)? xmax xm 2.02 03 d 38,80 k 5 Class x xl x + Ass. relatva N Frequeza relatva cumulata F l 03,0 -- 484,8 4 0,82 0,82 484,8 -- 866,6 5 0,0 0,92 866,6

Dettagli

frazione 1 n dell ammontare complessivo del carattere A x

frazione 1 n dell ammontare complessivo del carattere A x La Cocetrazoe Il cocetto d cocetrazoe rguarda l modo cu l ammotare totale d u carattere quattatvo trasferble s rpartsce tra utà statstche. Tato pù tale ammotare è addesato u sottoseme d utà, tato pù s

Dettagli

Dott.ssa Marta Di Nicola

Dott.ssa Marta Di Nicola RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quado s cosderao due o pù caratter (varabl) s possoo esamare ache l tpo e l'testà delle relazo che sussstoo tra loro. http://www.bostatstca.uch.tt Nel caso cu per

Dettagli

6. LA CONCENTRAZIONE

6. LA CONCENTRAZIONE UNIVERSITA DEGLI STUDI DI PERUGIA DIPARTIMENTO DI FILOSOFIA SCIENZE SOCIALI UMANE E DELLA FORMAZIONE Corso d Laurea Sceze per l'ivestgazoe e la Scurezza 6. LA CONCENTRAZIONE Prof. Maurzo Pertchett Statstca

Dettagli

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse.

2 si da eguale peso alle misure senza tener conto dell incertezza, che in generale possono essere diverse. 5 MEDIE PESTE Come combare msure separate? Esempo, msure Msura d : ± Msura d B: B ± B Se s effettua la meda artmetca: B s da eguale peso alle msure seza teer coto dell certezza, che geerale possoo essere

Dettagli

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento

Capitolo 17. Suggerimenti agli esercizi a cura di Elena Siletti. Esercizio 17.1: Suggerimento Captolo 17 Suggermet agl eercz a cura d Elea Slett Eerczo 17.1: Suggermeto S rcord che X 1, X 2, X 3 oo v.c. dpedet quado le etrazo oo co rpozoe. Uo tmatore T dce o dtorto e l uo valore atteo cocde co

Dettagli

ALCUNI ELEMENTI DI TEORIA DELLA STIMA

ALCUNI ELEMENTI DI TEORIA DELLA STIMA ALCUNI ELEMENTI DI TEORIA DELLA STIMA Quado s vuole valutare u parametro θ ad esempo: meda, varaza, proporzoe, oeffete d regressoe leare, oeffete d orrelazoe leare, e) d ua popolazoe medate u ampoe asuale,

Dettagli

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso

b) Relativamente alla variabile PREZZO, fornire una misura della variabilità della distribuzione attraverso ESERCIZIO Co rfermeto a dvers modell d auto del medesmo segmeto d mercato e cldrata s soo rlevat dat sul prezzo d lsto mglaa d euro (X), la veloctà massma dcharata km/h (Y) ed l peso kg (Z). I dat soo

Dettagli

Note di Statistica. ultimo aggiornamento: 15 ottobre CdS in Scienze e Tecniche Psicologiche. a cura di Bruno Bertaccini

Note di Statistica. ultimo aggiornamento: 15 ottobre CdS in Scienze e Tecniche Psicologiche. a cura di Bruno Bertaccini Note d Statstca ultmo aggorameto: 15 ottobre 017 segameto d Statstca (L-Z) CdS Sceze e Tecche Pscologche a cura d Bruo Bertacc Materale ddattco a dsposzoe degl studet, scarcable all drzzo http://local.dsa.uf.t/bertacc

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

valido se i dati E dato da max(x i )-min(x i )

valido se i dati E dato da max(x i )-min(x i ) Idc d Dspersoe o d Varabltà: Rage e DIQ No basta la coosceza d quale è la poszoe meda de dat statstc, serve ache cooscere quale è la varabltà de dat raccolt attoro al valore medo. Allo scopo d troducoo

Dettagli

Lezione 3. Gruppi risolubili.

Lezione 3. Gruppi risolubili. Lezoe 3 Prerequst: Lezo 1 2 Class d cougo e cetralzzat rupp rsolubl I questo captolo troducamo ua ozoe che come vedremo seguto fuge da raccordo tra la teora de grupp e la teora de camp Defzoe 31 Dato u

Dettagli

Verifica e scelta del modello probabilistico

Verifica e scelta del modello probabilistico Verfca e scelta del modello probablstco L elaborazoe statstca de dat comporta u certo umero d potes, qual ad esempo la forma della dstrbuzoe ed l metodo utlzzato per stmare parametr. Data ua qualsas potes

Dettagli

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica).

Il termine regressione fu introdotto da Francis Galton ( ), antropologo (promotore dell eugenetica). Regressoe leare Il terme regressoe fu trodotto da Fracs Galto (8-9), atropologo (promotore dell eugeetca). I u suo famoso studo (877-885), Galto scoprì che, sebbee c fosse ua tedeza de getor alt ad avere

Dettagli

Variabili casuali ( ) 1 2 n

Variabili casuali ( ) 1 2 n Varabl casual &. Valore edo. Data ua varable casuale = ( x,x 2, K,x ) (.) cu valor assuoo le rspettve probabltà P = p,p, K,p (.2) s defsce valore edo la quattà ( ) 2 = [ ] T M = M = P = xp (.3) Sgfcato:

Dettagli

STATISTICA Lezioni ed esercizi

STATISTICA Lezioni ed esercizi Uverstà d Toro QUADERNI DIDATTICI del Dpartmeto d Matematca MARIA GARETTO STATISTICA Lezo ed esercz Corso d Laurea Botecologe A.A. / Quadero # Novembre M. Garetto - Statstca Prefazoe I questo quadero

Dettagli

Le misure di variabilità

Le misure di variabilità arlea Pllat - Semar d Statstca (SVIC) "Le msure d varabltà e cocetrazoe" La varabltà L atttude d u carattere quattatvo X ad assumere valor dfferet tra le utà compoet u seme statstco è chamata varabltà

Dettagli

2. CAMPIONAMENTO CASUALE SEMPLICE 2.1 INTRODUZIONE

2. CAMPIONAMENTO CASUALE SEMPLICE 2.1 INTRODUZIONE . CAMPIOAMETO CASUALE SEMPLICE. ITRODUZIOE Sebbee o sa molto dffuso ella pratca delle dag, l campoameto casuale semplce rappreseta l aturale puto d parteza per lo studo d tutt gl altr dseg campoar. S cosder

Dettagli

Propagazione di errori

Propagazione di errori Propagazoe d error Gl error e dat possoo essere amplfcat durate calcol. Rspetto alla propagazoe degl error s può dstguere: comportameto del problema - codzoameto del problema: vedere come le perturbazo

Dettagli

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica

Definizioni. Unità strutturale. Massa dell unità strutturale (M 0.) = 100 a.m.u. Macromolecola o Catena polimerica Defzo Utà strutturale (massa o moomero) assa dell utà strutturale (.) a.m.u acromolecola o Catea polmerca grado d polmerzzazoe (DP) massa molecolare x.p. Luda ateral polmerc 6 Defzo Grado d polmerzzazoe

Dettagli

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X

Def. Si dice variabile aleatoria discreta X una variabile che può assumere valori X1, X Prof.ssa Emauela Baudo Fabrza De Berard VARIABILI ALEATORIE DISCRETE E DISTRIBUZIONI DI PROBABILITA Def. S dce varable aleatora dscreta X ua varable che può assumere valor X, X,... X corrspodet ad evet

Dettagli

Incertezza di misura

Incertezza di misura Icertezza d msura Itroduzoe e rcham Come gà detto rsultat umerc ottebl dalle msurazo soo trsecamete caratterzzat da aleatoretà è duque sempre ecessaro stmare ua fasca d valor attrbubl come msura al msurado;

Dettagli

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario

Modulo di Fisica Tecnica. Differenze finite per problemi di conduzione in regime instazionario Dpartmeto d Meccaca, Strutture, Ambete e Terrtoro UNIVERSITÀ DEGLI STUDI DI CASSINO Laurea Specalstca Igegera Meccaca: Modulo d Fsca Tecca Lezoe d: Dffereze fte per problem d coduzoe regme stazoaro /20

Dettagli

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia

Tabelle Statistiche. Massimo Alfonso Russo Dipartimento di Scienze Economiche, Matematiche e Statistiche Università di Foggia Tabelle Statstche Massmo Alfoso Russo Dpartmeto d Sceze Ecoomche, Matematche e Statstche Uverstà d Fogga STATISTICA I - 2009 - Fogga Cocett d base Serazoe Dat d tpo quattatvo. Sere Dat d tpo qualtatvo;

Dettagli

Analisi di dati vettoriali. Direzioni e orientazioni

Analisi di dati vettoriali. Direzioni e orientazioni Aals d dat vettoral Drezo e oretazo I tal caso, dat soo msurat term d agol e spesso soo rfert al ord geografco (statstca crcolare) Soo rappresetat su ua crcofereza Dat d drezoe: flusso ua specfca drezoe,

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA

ELEMENTI DI STATISTICA DESCRITTIVA ELEMENTI DI STATISTICA DESCRITTIVA S dce duzoe o metodo duttvo l metodo d dage scetfca caratterstco delle sceze spermetal: - s osservao feome che s presetao spotaeamete o che vegoo provocat co espermet,

Dettagli

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1

SIMULAZIONE DI ESAME ESERCIZI. Cattedra di Statistica Medica-Università degli Studi di Bari-Prof.ssa G. Serio 1 SIMULAZIONE DI ESAME ESERCIZI Cattedra d Statstca MedcaUverstà degl Stud d BarProf.ssa G. Sero ESERCIZIO. Alcu autor hao studato se la depressoe possa essere assocata a dc serologc d process autommutar

Dettagli

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente:

corrispondenza della generica i-esima modalità. Indicando con #(.) la cardinalità di un insieme, per esse si ha, rispettivamente: Corso d Statstca docete: Domeco Vstocco Le requeze cumulate S cosder ua varable qualtatva ordale X Per essa, oltre alle requeze assolute, relatve e ercetual, è ossble calcolare ache le requeze cumulate

Dettagli

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo

COMPLEMENTI DI STATISTICA. L. Greco, S. Naddeo COMPLEMENTI DI STATISTICA L. Greco, S. Naddeo INDICE. GENERALITA SULLA VERIFICA DI IPOTESI. Itroduzoe 4. I test d sgfcatvtà 5.3 Gl tervall d cofdeza 7.4 Le potes alteratve.5 La poteza del test 5.6 Il test

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva Grafc e tabelle permettoo d fare valutazo qualtatve, o quattatve. C è la ecesstà d stetzzare le caratterstche salet d ua varable: dc d locazoe o d poszoe dc d varabltà o dspersoe Questo

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma

STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI QUANTITATIVE Indici di centralità, dispersione e forma Matematca e statstca: da dat a modell alle scelte www.dma.uge/pls_statstca Resposabl scetfc M.P. Rogat e E. Sasso (Dpartmeto d Matematca Uverstà d Geova) STATISTICA DESCRITTIVA - SCHEDA N. 3 VARIABILI

Dettagli

Design of experiments (DOE) e Analisi statistica

Design of experiments (DOE) e Analisi statistica Desg of epermets (DOE) e Aals statstca L utlzzo fodametale della metodologa Desg of Epermets è approfodre la coosceza del sstema esame Determare le varabl pù sgfcatve; Determare l campo d varazoe delle

Dettagli