[A-E] IST. DI MATEMATICA I. 3. Lezione. giovedì 6 ottobre Massimo e minimo.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "[A-E] IST. DI MATEMATICA I. 3. Lezione. giovedì 6 ottobre Massimo e minimo."

Transcript

1 IST. DI MATEMATICA I [A-E] giovedì 6 ottobre Lezione 3.1. Massimo e minimo. Definizioni di minimo e/o massimo per un insieme E di numeri reali: il numero min si dice minimo dell insieme E se min E x E : min x il numero max si dice massimo dell insieme E se max E x E : x max possono avere minimo e massimo solo gli insiemi limitati. PROPOSIZIONE 3.1. Sia A finito (cioè con un numero finito di elementi) allora A ammette massimo. DIMOSTRAZIONE. Per induzione: se A ha un solo elemento allora ha ovviamente massimo. Supponiamo che abbiano massimo tutti gli insiemi con n elementi e sia B = {b 1,b 2,...,b n,b n+1 } un insieme con n + 1 elementi. Il maggiore tra i due numeri max({b 1,b 2,...,b n }) e b n+1 è massimo di B. Quindi se hanno massimo gli insiemi con n elementi lo hanno anche gli insiemi con n + 1 elementi. Quindi hanno massimo tutti gli insiemi finiti. Un insieme E di numeri reali limitato ma non non finito può non avere massimo o non avere minimo. ESEMPIO 3.2. L insieme E = {1,1/2,1/3,1/4,...} è limitato ma non ha minimo. Ha invece massimo. ESEMPIO 3.3. L insieme E = {0, 1/2, 2/3, 3/4,...} è limitato ma ha minimo ma non ha massimo Maggioranti e minoranti. Definizioni di maggioranti e minoranti per un insieme E di numeri reali. ESEMPIO 3.4. Sia E = (,4]: i numeri 10, 7, 4 sono maggioranti di E,

2 2 il numero 3 non è un maggiorante di E, non ci sono minoranti di E. ESEMPIO 3.5. Sia F = {1,1/2,1/3,1/4,...}: i numeri 0, 7, 4 sono minoranti di F, i numeri 1, 2, 3, 4 sono maggioranti di F. ESEMPIO 3.6. Siano E ed F i due insiemi precedenti: l insieme E non è limitato, perchè non ha minoranti, l insieme F è limitato, perchè ha minoranti e maggioranti Estremo inferiore e estr.superiore. Definizione di estremo inferiore e di estremo superiore: con terminologia naif si può dire che l estremo inferiore è il minorante migliore, cioè più vicino all insieme, l estremo superiore è il maggiorante migliore, cioè più vicino all insieme. Gli estremi inferiore e superiore di un insieme E si indicano con λ = inf(e), Λ = sup(e) Si usa anche dire per un insieme E che non ha minoranti che λ = inf(e) = Analogamente per un insieme E che non ha maggioranti si usa dire che Λ = sup(e) = + In ogni caso l insieme E è contenuto nell intervallo chiuso che ha estremi λ = inf(e) e Λ = sup(e) E [λ, Λ] Se l estremo inferiore λ = inf(e) è un numero di E allora ovviamente esso è il minimo di E. Analogo discorso per l estremo superiore Λ = sup(e): se è un numero di E allora ovviamente esso è il massimo di E. ESEMPIO 3.7. Sia F = {1,1/2,1/3,1/4,...} tra i minoranti di F lo 0, è il minorante migliore, cioè più vicino all insieme. 0 = inf(f) 0 non è il minimo di F perchè è un numero che non appartiene a F

3 3. LEZIONE 3 ESEMPIO 3.8. Sia F = {1,1/2,1/3,1/4,...} tra i maggioranti di F il maggiorante migliore, cioè più vicino all insieme. 1 = sup(f) 1 è anche il massimo di F perchè è un numero che appartiene a F TEOREMA: 1, è TEOREMA 3.9. Nell ambito dei numeri reali ogni insieme E inferiormente limitato possiede estremo inferiore λ, ogni insieme F superiormente limitato possiede estremo superiore Λ. NOTA:Nell ambito dei numeri razionali il precedente teorema non vale, si pensi all insieme E dei numeri positivi e di quadrato minore di 2: si tratta di un insieme superiormente limitato, se ammettesse estremo superiore tale numero dovrebbe avere quadrato 2, siccome non esistono razionali con quadrato 2... se ne conclude che l insieme E non ha (nell ambito dei numeri razionali) estremo superiore. Le definizioni di minimo, massimo, estremo inferiore, estremo superiore sono ovvie se E è un intervallo limitato: { inf(e) = a = min(e), intervallo chiuso [a, b] : sup(e) = b = max(e) intervallo aperto (a, b) : inf(e) { = a, sup(e) = b inf(e) = a = min(e), intervallo semichiuso [a, b) : sup(e) = b ESEMPIO Sia E = {0,1 + 1/2, 1 + 1/3,1 + 1/4,...} = {( 1) n + 1/n} inf(e) = 1, sup(e) = max(e) = 1 + 1/2 PROPOSIZIONE sup(a B) = max(supa,supb), inf(a B) = min(infa,infb) Una proprietà degli estremi. Sia λ = inf(e), sia cioè il minorante migliore: comunque si prenda un numero a più grande di λ ci sarà qualche elemento x E che risulta minore di a. Essere infatti il minorante migliore significa che i numeri più grandi non sono più minoranti... Discorso analogo per l estremo superiore Λ = sup(e): comunque si prenda un numero b più piccolo di Λ ci sarà qualche elemento x E che risulta maggiore di b.

4 Una proprietà di monotonia. I due insiemi E ed F siano allora, in ogni caso E F inf(f) inf(e) sup(e) sup(f) 3.6. Una proprietà di simmetria. Assegnato l insieme E consideriamo l insieme F formato dagli opposti dei numeri di E: F = { x, x E} si ha inf(f) = sup(e), sup(f) = inf(e) La proprietà indicata si riconosce facilmente sperimentandola nel caso di un intervallo, per esempio E = [ 2,5] che implica F = [ 5,2] inf(f) = 5 = sup(e), sup(f) = 2 = inf(e) 3.7. Numeri grandi, numeri piccoli. Multiplo Prefisso Simbolo Multiplo Prefisso Simbolo 10 deca da 10 1 deci d 10 2 hecto h 10 2 centi c 10 3 kilo k 10 3 milli m 10 6 mega M 10 6 micro µ 10 9 giga G 10 9 nano n tera T pico p

5 3. LEZIONE 5 Alfabeto greco minuscola maiuscola nome suono corrispondente α A alfa a β B beta b γ Γ gamma g δ delta d ɛ, ε E epsilon ĕ (e breve) ζ Z zeta z η N eta ē (e lunga) θ, ϑ Θ theta th inglese ι I iota i κ K cappa k λ Λ lambda l µ M mi m ν V ni n ξ Ξ xi x φ, ϕ Φ fi f o O omicron ŏ (o breve) π, ϖ Π pi (pi greco) p ρ, ϱ P ro r σ, ς Σ sigma s τ T tau t υ U üpsilon u francese χ X chi ch tedesco ψ Ψ psi ps ω Ω omega ō (o lunga)

Università degli Studi di Milano

Università degli Studi di Milano Università degli Studi di Milano Laurea in Sicurezza dei sistemi e delle reti informatiche Note di Matematica STEFANO FERRARI Fondamenti di informatica per la sicurezza Note di Matematica Pagina 2 di 8

Dettagli

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche.

delta δ mu (mi) µ M iupsilon υ Y eta η H omicron o O psi ψ Ψ 1. Scrivere il proprio nome e cognome in lettere greche. Capitolo 1 Numeri 1.1 Alfabeto greco Un ingrediente indispensabile per lo studente che affronta un corso di analisi matematica è la conoscenza dell alfabeto greco, di cui verranno usate a vario titolo

Dettagli

Corso di greco biblico (koiné) livello base

Corso di greco biblico (koiné) livello base Corso di greco biblico (koiné) livello base 1 Introduzione A volte dimentichiamo i nostri primi passi: quando andiamo così in là da farci sembrare di non esserci nemmeno mossi dalla partenza e di essere

Dettagli

Volume 2A. Antonino Giambò Roberto Giambò M A T E M A T I C A. per la scuola superiore. Integrazione al primo biennio

Volume 2A. Antonino Giambò Roberto Giambò M A T E M A T I C A. per la scuola superiore. Integrazione al primo biennio Volume 2A Antonino Giambò Roberto Giambò M A T E M A T I C A per la scuola superiore Integrazione al primo biennio 2 SOMMARIO Presentazione Simbologia Alfabeto greco pag MODULO 1 COMPLEMENTI DI GEOMETRIA

Dettagli

Descrizione della realtà che ci circonda come insieme di elementi geometrici fondamentali. Indice del capitolo

Descrizione della realtà che ci circonda come insieme di elementi geometrici fondamentali. Indice del capitolo Capitolo 3 Forme e Dimensioni Descrizione della realtà che ci circonda come insieme di elementi geometrici fondamentali Indice del capitolo 3.1 Elementi geometrici fondamentali........... 20 3.1.1 Il punto...........................

Dettagli

! # %# & # & # #( # & % & % ( & )!+!,!++

! # %# & # & # #( # & % & % ( & )!+!,!++ ! # %# & # & # #( # &! # % & % ( & )!+!,!++ ! # % & & ( ) +,.! / ( # / # % & ( % &,. %, % / / 0 & 1.. #! # ) ) + + + +) #!! # )! # # #.. & & 8. 9 1... 8 & &..5.... < %. Α < & & &. & % 1 & 1.. 8. 9 1.

Dettagli

Aldebaran α Tauri Mirfak α Persei. Altair α Aquilae Mizar α Ursae Majoris. Antares α Scorpii Polluce β Geminorum

Aldebaran α Tauri Mirfak α Persei. Altair α Aquilae Mizar α Ursae Majoris. Antares α Scorpii Polluce β Geminorum G CARTE CELESTI Quando si deve fare un viaggio in una regione sconosciuta, è indispensabile portarsi dietro una carta geografica, dove si possono riconoscere i fiumi, i monti, le strade. Anche chi guarda

Dettagli

Meccanica. 1. Vettori. Domenico Galli. Dipartimento di Fisica e Astronomia

Meccanica. 1. Vettori.  Domenico Galli. Dipartimento di Fisica e Astronomia Meccanica 1. Vettori http://campus.cib.unibo.it/2421/ Domenico Galli Dipartimento di Fisica e Astronomia 3 febbraio 2017 Traccia 1. Grandezze Fisiche 2. Vettori 3. Calcolo Vettoriale 4. Somma e Differenza

Dettagli

Meccanica. 1. Vettori. Domenico Galli. Dipartimento di Fisica e Astronomia. 5 maggio 2017

Meccanica. 1. Vettori.  Domenico Galli. Dipartimento di Fisica e Astronomia. 5 maggio 2017 Meccanica 1. Vettori http://campus.cib.unibo.it/2421/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Grandezze Fisiche 2. Vettori 3. Calcolo Vettoriale 4. Somma e Differenza

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi

1 - Estremo superiore ed estremo inferiore di insiemi - Estremo superiore ed estremo inferiore di insiemi Prima di affrontare gli esercizi su estremo superiore ed inferiore, ricordiamo alcune definizioni ed alcuni teoremi che ci verranno utili. Definizione.

Dettagli

Brevi cenni storici sull Elettromagnetismo

Brevi cenni storici sull Elettromagnetismo Brevi cenni storici sull Elettromagnetismo Fenomeni concernenti elettricità e magnetismo sono noti fin da tempi molto remoti... Ad es., gli antichi Greci sapevano che, per effetto dello strofinio, l ambra

Dettagli

Appunti di Elettronica I Lezione 1 Introduzione all elettronica; grandezze elettriche e unità di misura

Appunti di Elettronica I Lezione 1 Introduzione all elettronica; grandezze elettriche e unità di misura Appunti di Elettronica I Lezione 1 Introduzione all elettronica; grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema

Dettagli

3. Massimo, minimo, maggioranti e minoranti. Insiemi limitati. Estremi superiori ed inferiori.

3. Massimo, minimo, maggioranti e minoranti. Insiemi limitati. Estremi superiori ed inferiori. 3. assimo, minimo, maggioranti e minoranti. Insiemi limitati. Estremi superiori ed inferiori. Definizione: assimo Sia un insieme di numeri reali. Def. Si dice massimo di, se esiste, quel numero che appartiene

Dettagli

Massimo e minimo limite di successioni

Massimo e minimo limite di successioni Massimo e minimo limite di successioni 1 Premesse Definizione 1.1. Definiamo R esteso l insieme R = R { } {+ }. In R si estende l ordinamento tra numeri reali ponendo < a < +, a R. In base a tale definizione,

Dettagli

FONDAMENTI DELL INFORMATICA a.a. 2005/2006 Prof. Donato Malerba Dipartimento di Informatica Università degli Studi Bari

FONDAMENTI DELL INFORMATICA a.a. 2005/2006 Prof. Donato Malerba Dipartimento di Informatica Università degli Studi Bari FONDAMENTI DELL INFORMATICA a.a. 2005/2006 Prof. Donato Malerba Dipartimento di Informatica Università degli Studi Bari tel.: 080 5443269 email: malerba@di.uniba.it http://www.di.uniba.it/~malerba/ All

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

MATEMATICA per l ECONOMIA

MATEMATICA per l ECONOMIA ESAMI e CONCORSI COLLANA TIMONE 201/1 ELEMENTI di MATEMATICA per l ECONOMIA EDIZIONI GIURIDICHE SIMONE Excerpt Gruppo of Editoriale the full Esselibri publication - Simone TUTTI I DIRITTI RISERVATI Vietata

Dettagli

Insiemi numerici. Definizioni

Insiemi numerici. Definizioni 1 Insiemi numerici Gli insiemi numerici sono insiemi i cui elementi sono numeri, cioè appartengono all'insieme N dei naturali, degli interi Z, dei razionali Q, dei reali R o dei complessi C ( es.: A =

Dettagli

UNITÀ DI MISURA NEI DIVERSI SISTEMI NORMATIVI NAZIONALI E INTERNAZIONALI METROLOGIA

UNITÀ DI MISURA NEI DIVERSI SISTEMI NORMATIVI NAZIONALI E INTERNAZIONALI METROLOGIA UNITÀ DI MISURA NEI DIVERSI SISTEMI NORMATIVI NAZIONALI E INTERNAZIONALI METROLOGIA Il termine Metrologia deriva dalle parole greche metron e logos. La prima ha il significato di misura, la seconda ha

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R.

COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. COMPLETEZZA DELL INSIEME DEI NUMERI REALI R. FABIO CIPRIANI 1. Completezza dell insieme dei numeri reali R. Nell insieme dei numeri reali R la condizione di Cauchy e necessaria e sufficiente per la convergenza

Dettagli

Principali insiemi di numeri

Principali insiemi di numeri Principali insiemi di numeri N = {0,1,2,...} insieme dei numeri naturali o anche interi non negativi Z = N { 1, 2, 3,...} insieme dei numeri interi Q = { n m } : n,m Z, m 0 insieme dei numeri razionali

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 02 - I Numeri Reali Anno Accademico 2013/2014 D. Provenzano, M.

Dettagli

IL LINGUAGGIO MATEMATICO

IL LINGUAGGIO MATEMATICO 1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni

Dettagli

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI

CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI CLASSE LIMITE DI UNA SUCCESSIONE DI NUMERI REALI C. MADERNA, G. MOLTENI, M. VIGNATI Consideriamo l insieme R = R {, + } ottenuto aggiungendo all insieme dei numeri reali i simboli e +. Introduciamo in

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

Luciano Battaia. Corsi Matematica OFA. Esercizi e quesiti a risposta multipla. Università Ca Foscari di Venezia - Dipartimento di Economia

Luciano Battaia. Corsi Matematica OFA. Esercizi e quesiti a risposta multipla. Università Ca Foscari di Venezia - Dipartimento di Economia Luciano Battaia Corsi Matematica OFA Esercizi e quesiti a risposta multipla Università Ca Foscari di Venezia - Dipartimento di Economia Corsi Matematica OFA Esercizi e quesiti a risposta multipla Luciano

Dettagli

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca

ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio. A. Figà Talamanca ESERCIZI E COMPLEMENTI DI ANALISI MATEMATICA: quinto foglio A. Figà Talamanca 14 ottobre 2010 2 0.1 Ancora limiti di funzioni di variabile reale Esercizio 1 Sia f(x) = [sin x] definita nell insieme [0,

Dettagli

RICHIAMI DI CINEMATICA

RICHIAMI DI CINEMATICA RICHIAMI DI CINMATICA Prof. Paolo Biondi Dip. GMINI Macchina MACCHINA qualsiasi dispositivo fisico in grado di ampliare le capacità (buone? cattive?) umane MOTOR una macchina in grado di convertire una

Dettagli

Fisica Tecnica Ambientale per l Architettura. Facoltà Architettura Roma Sapienza Laurea Magistrale a Ciclo Unico

Fisica Tecnica Ambientale per l Architettura. Facoltà Architettura Roma Sapienza Laurea Magistrale a Ciclo Unico Fisica Tecnica Ambientale per l Architettura Facoltà Architettura Roma Sapienza Laurea Magistrale a Ciclo Unico Unità e Sistemi di Misura Fisica Tecnica Ambientale Prof. Davide Astiaso Garcia 02/03/2015

Dettagli

Alcuni elementi di Analisi Matematica I

Alcuni elementi di Analisi Matematica I Alcuni elementi di Analisi Matematica I Prof. Carlo Alberini 20 novembre 206 Indice Indice Elenco delle figure Il sistema dei numeri reali 2. Proprietà fondamentali del sistema dei numeri reali.................

Dettagli

Gli insiemi N, Z e Q. I numeri naturali

Gli insiemi N, Z e Q. I numeri naturali Università Roma Tre L. Chierchia 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici (si veda ad esempio 2.3 in [Giusti,

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

Complemento 1 Gli insiemi N, Z e Q

Complemento 1 Gli insiemi N, Z e Q AM110 Mat, Univ. Roma Tre (AA 2010/11 L. Chierchia) 30/9/10 1 Complemento 1 Gli insiemi N, Z e Q Il sistema dei numeri reali (R, +,, ) può essere definito tramite sedici assiomi: quindici assiomi algebrici

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

1-Forme Differenziali

1-Forme Differenziali 1-Forme Differenziali 30 novembre 2011 1 Definizioni di base Siano n N e A R n un insieme aperto. Con (R n ) denotiamo il duale topologico di R n, cioè l insieme (R n ) = {p : R n R : R-lineari e continue}.

Dettagli

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE

Fisicaa Applicata, Area Tecnica, M. Ruspa. GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE GRANDEZZE FISICHE e MISURA DI GRANDEZZE FISICHE 1 LA FISICA COME SCIENZA SPERIMENTALE OSSERVAZIONI SPERIMENTALI Studio di un fenomeno MISURA DI GRANDEZZE FISICHE IPOTESI VERIFICA LEGGI FISICHE Relazioni

Dettagli

Alcuni Teoremi sulle funzioni continue e uniforme continuità

Alcuni Teoremi sulle funzioni continue e uniforme continuità Alcuni Teoremi sulle funzioni continue e uniforme continuità Teorema 0. Una funzione f(x) è continua in x 0 se e solo se per ogni sucessione {x n } dom(f) con x n x 0 dom(f), risulta f(x n ) f(x 0 ). (Non

Dettagli

GRANDEZZE FISICHE - UNITÀ DI MISURA

GRANDEZZE FISICHE - UNITÀ DI MISURA GRANDEZZE FISICHE - UNITÀ DI MISURA DOWNLOAD Il pdf di questa lezione (0227b.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 27/02/2012 2 3 4 UNITÀ DI MISURA Ogni buona unità di misura

Dettagli

Matematica e Statistica

Matematica e Statistica Aritmetica - Appunti v. 10 ottobre 1 1 Dipartimento di Matematica Sapienza, Università di Roma Roma, Ottobre 2013 I fondamenti della geometria euclidea La geometria elementare si basa su pochi concetti

Dettagli

Massimo limite e minimo limite di una funzione

Massimo limite e minimo limite di una funzione Massimo limite e minimo limite di una funzione Sia f : A R una funzione, e sia p DA). Per ogni r > 0, l insieme ) E f p r) = { fx) x A I r p) \ {p} } è non vuoto; inoltre E f p r ) E f p r ) se 0 < r r.

Dettagli

tastiera greco politonico - istruzioni per l'uso

tastiera greco politonico - istruzioni per l'uso Sul Mac (OS X 10.11.5 nel mio caso) per scrivere i caratteri diacritici del greco antico si usa tastiera greco politonico (tastiera che si instal a partire dalle preferenze di sistema, è un'opzione del

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1

LIMITI DI FUNZIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 LIMITI DI FUNZIONI c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Limiti di funzioni cap3a.pdf 1 Intorni Def. Siano 0 R e r R +. Chiamiamo intorno di centro 0 e raggio r l intervallo aperto e limitato

Dettagli

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato.

Osservazione 1.1 Si verifica facilmente che esiste un unica relazione d ordine totale su Q che lo renda un campo ordinato. 1 Numeri reali Definizione 1.1 Un campo ordinato è un campo K munito di una relazione d ordine totale, compatibile con le operazioni di somma e prodotto nel senso seguente: 1. a, b, c K, a b = a + c b

Dettagli

3 LA RETTA REALE ESTESA

3 LA RETTA REALE ESTESA 3 LA RETTA REALE ESTESA Abbiamo visto che i concetti di sup e inf sono utili per descrivere proprietà di insiemi superiormente/inferiormente limitati. Per coprire con questi concetti tutti gli insiemi

Dettagli

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1

Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = n : n N,n>0 } A è composto dai numeri. 4,... Vediamo subito che 1 A e 1 n 2, 1 3, 1 Lezioni -4 8 Esempi 1. Troviamo, se esistono, sup/inf, max/min dell insieme A = A è composto dai numeri { 1 n : n N,n>0 }. 1, 1 2, 1, 1 4,... Vediamo subito che 1 A e 1 n 1 per ogni n N, n > 0. Questa

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE

TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE DI IMMAGINI Ivan Gerace, Francesca Martinelli e Patrizia Pucci Università degli Studi di Perugia Giornate di Algebra Lineare e Applicazioni 2009 Martinelli

Dettagli

reti generatori ed utilizzatori maglie, rami e nodi. rami nodo nodi rami maglie nodo nodo

reti generatori ed utilizzatori maglie, rami e nodi. rami nodo nodi rami maglie nodo nodo Reti Elettriche Si chiamano reti elettriche quegli insiemi di collegamenti elettrici destinati a scambiare energia elettrica fra generatori ed utilizzatori e realizzate a mezzo di maglie, rami e nodi.

Dettagli

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia

Insiemi, Numeri, Terminologia. Prof. Simone Sbaraglia Insiemi, Numeri, Terminologia Prof. Simone Sbaraglia Corso Rapido di Logica Matematica La logica formale definisce le regole cui deve obbedire qualsiasi teoria deduttiva. Una proposizione e` una affermazione

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Analisi Matematica di Base, 2a edizione: errata corrige

Analisi Matematica di Base, 2a edizione: errata corrige Analisi Matematica di Base, 2a edizione: errata corrige (ultimo aggiornamento*: 13 marzo 2017) Di norma ogni correzione indicata ha la struttura p/r/e/c ove p e r sono due numeri interi e E e C due testi.

Dettagli

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI

LIBRO ADOTTATO. G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI LIBRO ADOTTATO G.M. PIACENTINI CATTANEO: MATEMATICA DISCRETA, ed. ZANICHELLI LIBRI CONSIGLIATI A. FACCHINI: ALGEBRA E MATEMATICA DISCRETA, ed. ZANICHELLI M.G. BIANCHI, A. GILLIO: INTRODUZIONE ALLA MA-

Dettagli

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali NUMERI Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali N NUMERI Per contare i soldi del proprio conto in banca! 0,+1, 1,+2, 2,+3, 3,... Numeri interi Z NUMERI Per tagliare le torte! 0,1,-1,1/2,-1/2,2,-2,1/3,-1/3,2/3.-2/3,...

Dettagli

Svolgimento degli esercizi del Capitolo 1

Svolgimento degli esercizi del Capitolo 1 Analisi Matematica a edizione Svolgimento degli esercizi del Capitolo a) Si ha perciò si distinguono due casi: I) se x < 7,siha x 7 se x 7 x 7 7 x se x < 7, x 7 7 x x x 5 x 5, e poiché 5 > 7 la disequazione

Dettagli

Un giunto per fusione viene ottenuto semplicemente fondendo insieme i due tronconi di fibra. Ne risulta una fibra unica senza interruzioni.

Un giunto per fusione viene ottenuto semplicemente fondendo insieme i due tronconi di fibra. Ne risulta una fibra unica senza interruzioni. INTRODUZIONE: CONNETTORI E GIUNTI OTTICI Un giunto per fusione viene ottenuto semplicemente fondendo insieme i due tronconi di fibra. Ne risulta una fibra unica senza interruzioni. Il punto di saldatura

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. La funzione di Green Sia, indicati con x e y due punti di R 3 E(x, y) = x y Consideriamo la rappresentazione integrale di u(x) C 2 (), anche rinunciando all ipotesi che sia armonica

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte Limiti e continuità Richiami sulle unzioni - parte II Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

LA SCACCHIERA DI POLIBIO. Museo della Matematica Lucio Lombardo Radice

LA SCACCHIERA DI POLIBIO. Museo della Matematica Lucio Lombardo Radice LA SCACCHIERA DI POLIBIO Museo della Matematica Lucio Lombardo Radice PRESENTAZIONE L'importanza di comunicare senza essere intercettati è sempre stata una necessità molto sentita fin dalla più remota

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 15/04/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 5/04/03 D.BARTOLUCCI, D.GUIDO. Integrali Impropri Esercizio. (CRITERIO DEL CONFRONTO). Dimostrare che se f : (a, b] R e g(x) : (a, b] R sono integrabili

Dettagli

Statistica in tasca. area. Statistica descrittiva Teoria della probabilità Statistica inferenziale PK 24. Estratto della pubblicazione EDIZIONI

Statistica in tasca. area. Statistica descrittiva Teoria della probabilità Statistica inferenziale PK 24. Estratto della pubblicazione EDIZIONI PK 24 area Statistica......in tasca Statistica descrittiva Teoria della probabilità Statistica inferenziale EDIZIONI SIMONE Gruppo Editoriale Esselibri - Simone Copyright 2006 Esselibri S.p.A. Via F.

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Derivazione Numerica

Derivazione Numerica Derivazione Numerica I metodi alle differenze finite sono basati sull approssimazione numerica di derivate parziali. Per questo consideriamo come problema iniziale quello di approssimare le derivate di

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo.

Analisi Matematica 1. Serie numeriche. (Parte 2) Dott. Ezio Di Costanzo. Facoltà di Ingegneria Civile e Industriale Analisi Matematica 1 Serie numeriche (Parte 2) Dott. Ezio Di Costanzo ezio.dicostanzo@sbai.uniroma1.it Definizione Data la serie + n=0 a n si definisce resto

Dettagli

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume).

Tutte le altre grandezze fisiche derivano da queste e sono dette grandezze DERIVATE (es. la superficie e il volume). Grandezze fisiche e misure La fisica studia i fenomeni del mondo che ci circonda e ci aiuta a capirli. Tutte le grandezze che caratterizzano un fenomeno e che possono essere misurate sono dette GRANDEZZE

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

La Misura Esercizi guida con soluzioni

La Misura Esercizi guida con soluzioni La misura Esercizi guida (UbiMath) - 1 La Misura Esercizi guida con soluzioni Grandezze e sistema metrico decimale Scrivi in forma di numerica e come potenza di dieci i seguenti prefissi SI. 1. mega- =

Dettagli

Analisi Matematica 1 A.A. 2017/18

Analisi Matematica 1 A.A. 2017/18 Analisi Matematica 1 A.A. 2017/18 Ingegneria Informatica Ingegneria Elettronica e delle Telecomunicazioni cognomi M-Z Paola Gervasio orario di ricevimento: MER. 10:30-11:30, GIO. 11:30 12:30 Edificio di

Dettagli

Approssimazione di Stirling

Approssimazione di Stirling Approssimazione di Stirling Marcello Colozzo - http://www.extrabyte.info 1 Rappresentazione integrale della funzione gamma Ricordiamo il teorema: Teorema 1 Sia ψ (t) la funzione complessa della variabile

Dettagli

Successioni, massimo e minimo limite e compattezza in R

Successioni, massimo e minimo limite e compattezza in R Università di Roma Tor Vergata Corso di Laurea in Scienze e Tecnologie per i Media Successioni, massimo e minimo limite e compattezza in R Massimo A. Picardello BOZZA 10.11.2011 21:24 i CAPITOLO 1 Successioni

Dettagli

X (o equivalentemente rispetto a X n ) è la

X (o equivalentemente rispetto a X n ) è la Esercizi di Calcolo delle Probabilità della 5 a settimana (Corso di Laurea in Matematica, Università degli Studi di Padova). Esercizio 1. Siano (X n ) n i.i.d. di Bernoulli di parametro p e definiamo per

Dettagli

La costruzione dei numeri reali

La costruzione dei numeri reali Indice 1 Nozione di campo Archimedeo ordinato..................... 1 2 Richiami sui numeri razionali........................... 3 3 Inadeguatezza dei razionali e completezza di un insieme numerico.......

Dettagli

Gli intervalli di R. (a, b R, a b)

Gli intervalli di R. (a, b R, a b) Deinizione (Funzione continua (A.Cauchy, 180)) Siano D R una unzione, D R, x 0 D. Si dice che è continua nel punto x 0 D, se per ogni ε > 0 esiste un δ > 0 per il quale è soddisatta questa condizione:

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I

APPUNTI DI TEORIA DEGLI INSIEMI. L assioma della scelta e il lemma di Zorn Sia {A i } i I APPUNTI DI TEORIA DEGLI INSIEMI MAURIZIO CORNALBA L assioma della scelta e il lemma di Zorn Sia {A i } i I un insieme di insiemi. Il prodotto i I A i è l insieme di tutte le applicazioni α : I i I A i

Dettagli

I NUMERI. Si dice "radice quadrata" di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a.

I NUMERI. Si dice radice quadrata di un numero positivo a, quel numero positivo b che elevato al quadrato dà come risultato a. Questa dispensa rappresenta una breve introduzione ai numeri reali e alla loro Topologia, minimo necessario per affrontare serenamente lo studio dell ANALISI MATEMATICA. Inoltre non si ha la pretesa che

Dettagli

Le Grandezze e il Sistema Internazionale di misura

Le Grandezze e il Sistema Internazionale di misura Le Grandezze e il Sistema Internazionale di misura Si dice GRANDEZZA tutto ciò ce si può misurare. Esempio L altezza di una torre, il volume di una stanza, la superficie di un muro, l ampiezza di un angolo,

Dettagli

Serie Borlini Alex

Serie Borlini Alex Serie numerica >> Prefazione Progressione lista ordinata e finita di elementi. Successione lista ordinata e infinita di elementi (numeri reali chiamati termini), {a n }=a 1, a 2, a 3 Successione di Fibonacci:

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

Il Teorema di Mountain-Pass

Il Teorema di Mountain-Pass Capitolo 4 Il Teorema di Mountain-Pass Descriviamo ora un altro metodo per trovare soluzioni non nulle di alcuni tipi di problemi, per esempio { u = u p 1 u in u = 0 su (4.1) con p > 1, utilizzando dei

Dettagli

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali

NUMERI. q Per contare le caramelle. 0, 1, 2,3, 4,.. Numeri naturali Contare, misurare. q Quanti denti ha un cane? Da adulto 42, se cucciolo 28 q Quanto è lunga la coda di una marmotta? Circa 20 cm q Quanto liquido contiene un cucchiaio da minestra? Circa 15 ml q Quanto

Dettagli

Fisica in tasca. area tecnico-scientifica PK 23/1 II EDIZIONE. Chiara Pranteda

Fisica in tasca. area tecnico-scientifica PK 23/1 II EDIZIONE. Chiara Pranteda Chiara Pranteda PK 3/1 II EDIZIONE Fisica 1......in tasca area tecnico-scientifica Vettori Forze Cinematica Dinamica Lavoro ed energia Gravitazione universale EDIZIONI SIMONE Gruppo Editoriale Esselibri

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata.

Esempi. La successione {cos n} è limitata; {n ¾ } è limitata inferiormente ma non è limitata superiormente, quindi non è limitata. Analisi 2 Successioni numeriche -1- ÔÔÙÒØ Ô Ö Ð ÓÖ Ó Ò Ð ¾ º ËÙ ÓÒ ÒÙÑ Ö Proposizione (unicità del limite). Se {a n } è convergente, allora il limite è unico. Dimostrazione. Supponiamo che la tesi sia

Dettagli

1 Numeri reali. Esercizi.

1 Numeri reali. Esercizi. Politecnico di Milano. Scuola di Ingegneria Industriale. Corso di Analisi e Geometria 1 (Docente: Federico Lastaria) Settembre 2012 1 Numeri reali. Esercizi. Esercizio 1.1 (Un numero moltiplicato per zero

Dettagli

Disuguaglianza di Cramér-Rao

Disuguaglianza di Cramér-Rao Disuguaglianza di Cramér-Rao (Appunti per gli studenti Silvano Holzer Dipartimento di Scienze Economiche, Aziendali, Matematiche e Statistiche Bruno de Finetti Università degli studi di Trieste Un esperimento

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

La radice quadrata di 2

La radice quadrata di 2 G.Gorni 8/9 La radice quadrata di. Preliminari: completezza dei numeri reali Sia dato un sottinsieme A non vuoto di R. Definizione. Un numero reale M si dice massimo di A se () M A e () ogni altro elemento

Dettagli