CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE"

Transcript

1 Esercitazione Finanza Aziendale n 1 : CAPITALIZZAZIONE, VALORE ATTUALE, RENDITE 1

2 Capitalizzazione: QUANTO VALE DOMANI IL CAPITALE CHE INVESTO OGGI? (determinazione del Montante) Attualizzazione: QUANTO DEVO INVESTIRE OGGI PER AVERE DOMANI UN CERTO CAPITALE? (determinazione del Valore Attuale) 2

3 CAPITALIZZAZIONE & ATTUALIZZAZIONE in regime SEMPLICE CAPITALIZZAZIONE I = C r t M = C + I = = C + C r t >> M = C (1 + r t) (1 + r t) = Fattore di Capitalizzazione in regime Semplice Es. C = 7500, r = 5,5% (0,055) t = 9 mesi = 9/12 M = 7500 (1 + 0,055 * 9/12) = 7.809,37 3

4 ATTUALIZZAZIONE C = M/(1 + r t) (formula inversa) 1/(1 + r t) = Fattore di Sconto in regime semplice Es. M = , r = 3% t = 2 anni C = /(1 + 0,03 * 2) = 9.433,96 4

5 CAPITALIZZAZIONE & ATTUALIZZAZIONE in regime COMPOSTO Reinvestimento degli interessi in ogni fase di capitalizzazione, per cui il capitale di ciascun periodo di capitalizzazione corrisponde al montante del periodo precedente. t M 1 = C (1 + r t) se t = 1 => M 1 = C (1 + r) M 2 = M 1 (1 + r) = = C (1 + r) (1 + r) = C (1 + r) 2.. M n = C (1 + r) n (n = numero periodi di capitalizzazione) (1 + r) n = Fattore di Capitalizzazione in regime Composto I = C r 5

6 Attualizzazione: C = M n /(1 + r) n = = M n * [(1 + r) n ] 1/(1 + r) n = [(1 + r) n ]= Fattore di Sconto (FS) in regime Composto 6

7 Capitalizzazione infrannuale (con tasso annuo) M = C [1 + (r/m)] m (m = periodi di capitalizzazione compresi in un anno) Es.: Obbligazione del valore nominale di $ 100 Tasso di interesse = 10% annuo Capitalizzazione semestrale M = 100 [1 + (0.10/2)] 2 (montante a fine anno) Capitalizzazione mensile M = 100 [1 + (0.10/12)] 12 Capitalizzazione nel continuo M = e rt = (2.718) 0,10 7

8 APPLICAZIONE DEL VALORE ATTUALE NELL IMPRESA (tasso di attualizzazione non noto) VA = C 1 (1/1+r) - Es. 1 C 0 = , C 1 = 1500 r = 0,07 costo opportunità del capitale VA = 1500/1,07 = Es > 1000 => Investimento Conveniente C 0 = , C 1 = 1010 VA = 1010/1,07 = < 1000 => Investimento Non Conveniente 8

9 - Es. 3 C 0 = -1000, C 1 = 1500, r = 0,12 Va = 1500/1,12 = >1000 =>Investimento Conveniente Costo opportunità del capitale = rendimento ottenuto da un investimento che presenta lo stesso grado di rischio 9

10 APPLICAZIONE DEL VALORE ATTUALE NETTO VAN = - C 0 + [C 1 /(1+r)] - Es. 1 VAN = (1500/1,07) = Es > 0 => Investimento Conveniente VAN = (1010/1,07) = < 0 => Investimento non Conveniente 10

11 Es. pag. 15 libro di testo M 1 = , r = 0,07, C 0 = VA = /1,07 = (valore attuale del progetto = somma che dovrei investire per avere un rendimento eguale dai titoli di Stato) Seppure vendo il progetto il rendimento è lo stesso VAN = = $

12 Es. pag. 35: M 2 = , r = 0,07 C 0 = , C 1 = , C 2 = Periodo t = 0 t = 1 t = 2 Terreno Costruzion e Entrate Totale

13 Periodo Fattore di Sconto Flusso di cassa Valore Attuale /1,07 = 0, /(1,07) 2 = 0, VAN

14 TASSO DI RENDIMENTO r = profitto/investimento = (C 1 - C 0 )/ C 0 es. pag. 17 ( )/ = 14% 14% > 7% (tasso d interesse garantito dai titoli sicuri) 14%> 12% (tasso d interesse garantito dai titoli rischiosi) Tasso di rendimento > costo opportunità del capitale => In entrambi i casi, l investimento è conveniente - Es. 3 ( )/1000 = 0,01 = 1% 1% < 7% => Investimento Non Conveniente (r p < r c ) 14

15 Convenienza ad Investire: VAN > 0 oppure r p > r c Indifferenza ad investire: VAN = 0 oppure r p = r c Inconvenienza ad investire VAN< 0 oppure r p < r c 15

16 Il RUOLO DEL VALORE ATTUALE per il confronto tra investimenti diversi: 16

17 Investimento A: profitto di Euro in perpetuo Investimento B: profitto di Euro in perpetuo Investimento C: Euro anno 1, Euro anno 2, Euro in tutti gli altri anni. 17

18 Tra A e B è preferito B, tra A e C è preferito C. Ma tra B e C? Per rendere confrontabili i due investimenti, bisogna calcolarne il Valore Attuale: Tasso di Sconto VA Investimento B 5% VA Investimento C 6% ,28 7% , ,86 18

19 Se il tasso di attualizzazione opportuno (costo opportunità del capitale) è del 5% o inferiore, conviene C. Se è del 6% o superiore, conviene B. 19

20 >> Conclusioni: - Il VAN (come il tasso di rendimento) serve non solo per valutare la convenienza o meno di un investimento ma anche quale tra diversi investimenti sia più conveniente. Il risultato dipende dal tasso di attualizzazione utilizzato. - l obiettivo dell imprenditore non deve essere la massimizzazione del profitto in un singolo anno bensì la massimizzazione del valore attuale dei profitti futuri. 20

21 INVESTIMENTI CON FLUSSI DI CASSA RIPETUTI tasso fisso VA = C 1 /(1+r) + C 2 /(1+r) C n /(1+r) n = = C t /(1+r) t tasso variabile VA = C 1 /(1+r 1 ) + C 2 /(1+r 2 ) C n /(1+r n ) n = = C t /(1+r t ) t VAN = C 0 + C t /(1+r) t => tasso fisso VAN = C 0 + C t /(1+r t ) t => tasso variabile 21

22 VA di una Rendita Perpetua Il Valore Attuale di una serie indefinita di flussi di cassa uguali, a cui viene applicato lo stesso tasso, dà luogo ad una Rendita Perpetua. In questo caso: VA= C/r Es. C t = , r = 0,10 VA = /0,10 = Perché? VA = C/(1+r) + C/(1+r) 2 + C/(1+r) 3 + C/(1+r) n dove l n-esimo termine è indefinito 22

23 Scomponiamo i fattori di sconto successivi al primo anno = C /(1+r) + C /(1+r)(1+r) + C/(1+r)(1+r) C/(1+r)(1+r) n-1 Ponendo: C/(1+r) = a, 1/(1+r) = x otteniamo VA = a + a x + a x a x n-1 (1) (SOMMATORIA DI UNA SERIE GEOMETRICA INFINITA) 23

24 VA = a + a x + a x a x n-1 (1) moltiplicando entrambi i membri per x: VA x = a x + a x a x n (2) Effettuando (1) (2): Differenza tra i primi membri = VA VAx = = VA (1 x) VA (1 x) = a - a x n ma l n-esimo termine è indefinito, quindi VA (1 x) = a da cui: VA = a/(1-x). 24

25 Riconvertendo i termini a ed x: VA = C/(1+r)_ = C/(1 + r) = C (1 + r) 1 [1/(1+r)] r/(1+r) (1 + r) r VA = C/r Lo stesso criterio è valido per ottenere la formula della rendita perpetua a rendimento crescente. 25

26 Valore Attuale di una Rendita Annua Il Valore Attuale di una serie limitata di flussi di cassa tutti uguali, cui è applicato lo stesso tasso, dà luogo ad una Rendita Annua. Una Rendita Annua che dura n anni si può calcolare: 1- come differenza tra una Rendita Perpetua che inizia oggi ed il Valore Attuale di una Rendita Perpetua che inizia tra n anni: C/r C/[r(1 + r) n ]= C [1/r 1/r (1 + r) n ] = = Prodotto tra Capitale e Fattore Rendita 26

27 27

28 2 - Il medesimo risultato si ottiene adottando lo stesso procedimento della Rendita Perpetua: - Si consideri la formula: VA = C/(1+r) + C/(1+r) 2 + C/(1+r) 3 + C/(1+r) t ponendo: C/1+r = a, 1/1+r = x VA (1 x) = a a x t (l ultimo termine stavolta è definito) 28

29 per cui VA = [a (1 - x t )]/ (1 x) Riconvertendo a ed x: VA = C [1 1 ] 1 = 1 + r (1 + r) t 1 [1/(1 + r)] = C [1-1 ] _ 1 = (1 + r) (1 + r) t r/(1 + r) = C [ 1-1_ ] (1 + r) = C [ 1 1 ] (1 + r) (1 + r) t r r r (1 + r) t 29

30 Applicazione della Rendita Annua per valutare titoli di debito Es. pag. 48 libro di testo: Acquistato nel settembre 2002 un BTP quinquennale (scadenza agosto 2007), interesse 6%, valore nominale Tasso di attualizzazione = 6,9% Cedola annua = 0,06 * 1000 = $ 60 VA = 60 [(1/0,069) 1/0,069(1,069) 5 ] /1,069 5 = 246, ,33 = $

31 Tassi d interesse nominali e reali Flussi di cassa reali = flussi di cassa nominali / (1 + tasso d inflazione) t Flussi di cassa nominali = flussi di cassa reali * (1 + tasso d inflazione) t C (1 + r nominale ) t = C (1 + r reale ) t (1 + tasso d inflazione) t da cui (dividendo entrambi i membri per C ed estraendo la radice t-esima) (1 + r nominale ) = (1 + r reale ) (1 + tasso d inflazione) 31

32 Es. un investimento mi offre un flusso di cassa annuo di Euro 1000 per 20 anni al tasso del 10% annuo, tasso d inflazione 6% annuo Flusso di cassa reale (montante a valori reali) = 1000 (1+0.10) 20 /( ) 20 = = Euro 6.727,50/3,2071 = 2097,69 (1 +tasso d interesse reale) = (1.10)/(1.06) = 1,0377 Tasso d interesse reale = 3,77% 32

Calcolo del valore attuale e principi di valutazione delle obbligazioni

Calcolo del valore attuale e principi di valutazione delle obbligazioni CAPITOLO 2 Calcolo del valore attuale e principi di valutazione delle obbligazioni Semplici PROBLEMI 1. a. Negativo; b. VA = C 1 /(1 + r); c. VAN = C 0 + [C 1 /(1 + r)]; d. r è la remunerazione a cui si

Dettagli

Come calcolare il. dott. Matteo Rossi

Come calcolare il. dott. Matteo Rossi Come calcolare il valore attuale dott. Matteo Rossi Argomenti trattati Valutazione delle attività a lungo termine Scorciatoie per il calcolo del VA Interesse composto Tasso di interesse reale e tasso di

Dettagli

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie

Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Le obbligazioni: misure di rendimento Tassi d interesse, elementi di valutazione e rischio delle attività finanziarie Economia degli Intermediari Finanziari 29 aprile 2009 A.A. 2008-2009 Agenda 1. Il calcolo

Dettagli

Equivalenza economica

Equivalenza economica Equivalenza economica Calcolo dell equivalenza economica [Thuesen, Economia per ingegneri, capitolo 4] Negli studi tecnico-economici molti calcoli richiedono che le entrate e le uscite previste per due

Dettagli

NEL MODELLO MICROECONOMICO

NEL MODELLO MICROECONOMICO NEL MODELLO MICROECONOMICO 1 solo periodo Output: flusso Input: flusso Decisioni dell impresa: raffrontare ricavi correnti con costi correnti Questo si adatta bene ad alcuni fattori (il LAVORO) Meno soddisfacente

Dettagli

1. I Tassi di interesse. Stefano Di Colli

1. I Tassi di interesse. Stefano Di Colli 1. I Tassi di interesse Metodi Statistici per il Credito e la Finanza Stefano Di Colli Strumenti (in generale) Un titolo rappresenta un diritto sui redditi futuri dell emittente o sulle sue attività Un

Dettagli

Capitolo Terzo Valore attuale e costo opportunità del capitale

Capitolo Terzo Valore attuale e costo opportunità del capitale Capitolo Terzo Valore attuale e costo opportunità del capitale 1. IL VALORE ATTUALE La logica di investimento aziendale è assolutamente identica a quella adottata per gli strumenti finanziari. Per poter

Dettagli

Argomenti. Domande importanti. Teori della Finanza Aziendale. Il valore finanziario del tempo: tecniche di valutazione

Argomenti. Domande importanti. Teori della Finanza Aziendale. Il valore finanziario del tempo: tecniche di valutazione Teori della Finanza Aziendale Il valore finanziario del tempo: tecniche di valutazione 3-2 Argomenti La valutazione delle attività a lungo termine Tecniche per il calcolo del valore attuale Rate costanti,

Dettagli

Calcolo del valore attuale e principi di valutazione delle obbligazioni

Calcolo del valore attuale e principi di valutazione delle obbligazioni PROGRAMMA 0. Introduzione 1. Valore: Pianificazione finanziaria Valore attuale Valutazione delle obbligazioni e delle azioni, Valore attuale netto ed altri criteri di scelta degli investimenti 2. Valutazione

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite. Analisi degli Investimenti 2015/16 Lorenzo Salieri

Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite. Analisi degli Investimenti 2015/16 Lorenzo Salieri Lezione 1: Richiami ai concetti di base: Valore Attuale, VAN, Rendite Analisi degli Investimenti 2015/16 Lorenzo Salieri Il valore dell impresa come una torta Debito Capitale Azionario 2 Struttura Finanziaria

Dettagli

1 MATEMATICA FINANZIARIA

1 MATEMATICA FINANZIARIA 1 MATEMATICA FINANZIARIA 1.1 26.6.2000 Data la seguente operazione finanziaria: k = 0 1 2 3 4 F k = -800 200 300 300 400 a. determinare il TIR b. detreminare il VAN corrispondente ad un interesse periodale

Dettagli

Tempo e rischio Tempo Rischio

Tempo e rischio Tempo Rischio Il Valore Attuale Tempo e rischio Tempo: i 100 euro di oggi valgono di meno dei 100 euro di domani perché i primi possono essere investiti nel mercato dei capitali e fruttare un tasso di interesse r. Rischio:

Dettagli

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1

Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1 Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.

Dettagli

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A

Matematica (prof. Paolo Pellizzari) Corso di laurea COMES 3 Novembre 2011 A Novembre 2011 A f (x) = ( 6 + 8 x ) x + 4. (2) Sia f definita in [0,5] come segue (x 2) 2 + 1 se 0 x x + 5 se < x 5 (c) Enunciate il teorema di Weierstrass. () Sia f (x) = log(2 + e x 4 ). (a) Calcolate

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

Gli investimenti, il tempo e il mercato dei capitali

Gli investimenti, il tempo e il mercato dei capitali Capitolo 15 Gli investimenti, il tempo e il mercato dei capitali A.A. 005-006 Microeconomia - Cap. 15 1 Questo file (con nome secondo_semestre.pdf) può essere scaricato da www.klips.it siti e file Provvisoriamente

Dettagli

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009

Le obbligazioni: misure di rendimento e rischio. Economia degli Intermediari Finanziari 4 maggio 2009 A.A. 2008-2009 Le obbligazioni: misure di rendimento e rischio Economia degli Intermediari Finanziari 4 maggio 009 A.A. 008-009 Agenda 1. Introduzione ai concetti di rendimento e rischio. Il rendimento delle obbligazioni

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elementi di matematica finanziaria Venezia, 12 maggio 2010 Il problema La matematica finanziaria fornisce gli strumenti necessari per il confronto di flussi di moneta o capitali che si verificano in momenti

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

IL VALORE FINANZIARIO DEL TEMPO. Docente: Prof. Massimo Mariani

IL VALORE FINANZIARIO DEL TEMPO. Docente: Prof. Massimo Mariani IL VALORE FINANZIARIO DEL TEMPO Docente: Prof. Massimo Mariani 1 SOMMARIO Il concetto di tempo Il valore finanziario del tempo Le determinanti del tasso di interesse La formula di Fisher I flussi di cassa

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

Corso di Economia degli Intermediari Finanziari

Corso di Economia degli Intermediari Finanziari Corso di Economia degli Intermediari Finanziari Elementi di matematica finanziaria utili alla comprensione di alcune parti del Corso Definizione di operazione finanziaria Successione di importi di segno

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Leggi di capitalizzazione

Leggi di capitalizzazione Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge

Dettagli

Regime finanziario dell interesse semplice: formule inverse

Regime finanziario dell interesse semplice: formule inverse Regime finanziario dell interesse semplice: formule inverse Il valore attuale di K è il prodotto del capitale M disponibile al tempo t per il fattore di sconto 1/(1+it). 20 Regime finanziario dell interesse

Dettagli

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta

1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1 Esercizi di Riepilogo sulla Capitalizzazione Semplice e Composta 1. Un capitale C = 15 000 euro viene investito in RIC per anni al tasso di interesse trimestrale i 1 = 0.03. Il montante che si ottiene

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

LA CASSETTA DEGLI ATTREZZI

LA CASSETTA DEGLI ATTREZZI LA CASSETTA DEGLI ATTREZZI I TASSI DI INTERESSE TASSO DI RENDIMENTO EFFETTIVO ALLA SCADENZA (TRES) O YIELD-TO- MATURITY (YTM) Lezione 3 1 I PUNTI PRINCIPALI DELLA LEZIONE o o Misurazione dei tassi di interesse

Dettagli

987-88-386-6873-9 Saunders, Cornett, Anolli, Alemanni, Economia degli intermediari finanziari 4e 2015 McGraw-Hill Education (Italy) S.r.

987-88-386-6873-9 Saunders, Cornett, Anolli, Alemanni, Economia degli intermediari finanziari 4e 2015 McGraw-Hill Education (Italy) S.r. 987-88-386-6873-9 Saunders, Cornett, Anolli, Alemanni, Economia degli intermediari finanziari 4e 015 McGraw-Hill Education (Italy) S.r.l SOLUZIONI ESERCIZI CAPITOLO 3 1. Il concetto del valore temporale

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Calcolo del Valore Attuale Netto (VAN)

Calcolo del Valore Attuale Netto (VAN) Calcolo del Valore Attuale Netto (VAN) Il calcolo del valore attuale netto (VAN) serve per determinare la redditività di un investimento. Si tratta di utilizzare un procedimento che può consentirci di

Dettagli

Matematica finanziaria

Matematica finanziaria Matematica finanziaria La matematica finanziaria studia le cosiddette operazioni finanziarie Le operazioni finanziarie sono situazioni nelle quali una persona cede denaro in condizioni di certezza e per

Dettagli

Argomenti. Teoria della Finanza Aziendale. Il valore finanziario del tempo

Argomenti. Teoria della Finanza Aziendale. Il valore finanziario del tempo Teoria della Finanza Aziendale Il valore finanziario del tempo 2 Argomenti Valore attuale Valore attuale netto Come si calcola il VAN Il rendimento di un investimento Il costo opportunità del capitale

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Argomenti. Il valore finanziario del tempo: principi essenziali

Argomenti. Il valore finanziario del tempo: principi essenziali 1-1 Teoriq della Finanza Aziendale Prof. Arturo Capasso 2 Il valore finanziario del tempo: principi essenziali Argomenti Valore attuale Valore attuale netto Come si calcola il VAN Il rendimento di un investimento

Dettagli

Argomenti. Il valore finanziario del tempo: principi fondamentali. Domande chiave. Teoria della Finanza Aziendale

Argomenti. Il valore finanziario del tempo: principi fondamentali. Domande chiave. Teoria della Finanza Aziendale 1-1 2 Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2007-2008 Il valore finanziario del tempo: principi fondamentali Argomenti Valore attuale Valore attuale netto Come si calcola il VAN Il rendimento

Dettagli

COSA STUDIA LA MATEMATICA FINANZIARIA?

COSA STUDIA LA MATEMATICA FINANZIARIA? COSA STUDIA LA MATEMATICA FINANZIARIA? STUDIA LE RELAZIONI CHE INTERCORRONO FRA IL CAPITALE E IL TEMPO IN QUANTO IL CAPITALE NEL TEMPO PRODUCE UN INTERESSE CHE COSA É L INTERESSE? È IL PREZZO D USO DEL

Dettagli

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ]

Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 1 Calcolare il montante F di 10.000 con un interesse semplice del 15% annuo, dopo 4 anni. [16.000 ] Esercizio 2 Del precedente esercizio calcolare il montante in regime di capitalizzazione composta.

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO

UNIVERSITÀ DEGLI STUDI DI BERGAMO UNIVERSITÀ DEGLI STUDI DI BERGAMO Corso di prof.ssa Maria Sole Brioschi TAN, TAE e TAEG DLP-L Addendum Corso 20085 Corso di Laurea Triennale in Ingegneria Edile Anno Accademico 2012/2013 TAN, TAE e TAEG

Dettagli

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di

Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di Capitalizzazione e attualizzazione finanziaria Una percentuale di una certa importanza nel mondo economico è il tasso di interesse. Il tasso di interesse rappresenta quella quota di una certa somma presa

Dettagli

Valore attuale, obiettivi dell impresa e corporate governance. dott. Matteo Rossi

Valore attuale, obiettivi dell impresa e corporate governance. dott. Matteo Rossi Valore attuale, obiettivi dell impresa e corporate governance dott. Matteo Rossi Prospetto F/I Happy Finance Conto Economico 2008 2009 Reddito Netto 350-500 Ammortamenti 800 800 Accantonamenti 2000 300

Dettagli

Saggio di attualizzazione, tasso di rendimento interno e saggio di capitalizzazione

Saggio di attualizzazione, tasso di rendimento interno e saggio di capitalizzazione Saggio di attualizzazione, tasso di rendimento interno e saggio di capitalizzazione 27.XI.2013 Scopo e temi della lezione I principali tassi per la misura del valore degli investimenti sono: il saggio

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 10 Contenuti della lezione Valutazione di titoli obbligazionari

Dettagli

UNIVERSITA DEGLI STUDI DI SASSARI DIPARTIMENTO DI SCIENZE ECONOMICHE E AZIENDALI MACROECONOMIA - Anno accademico 2015-2016, I semestre

UNIVERSITA DEGLI STUDI DI SASSARI DIPARTIMENTO DI SCIENZE ECONOMICHE E AZIENDALI MACROECONOMIA - Anno accademico 2015-2016, I semestre UNIVERSIT DEGLI STUDI DI SSSRI DIPRTIMENTO DI SCIENZE ECONOMICHE E ZIENDLI MCROECONOMI - nno accademico 2015-2016, I semestre Soluzioni esercitazione (seconda parte del programma), 11122015 PRTE ) 1) Si

Dettagli

Finanza Aziendale. tempo

Finanza Aziendale. tempo Teoria della Finanza Aziendale Il valore finanziario del tempo 2 Argomenti Valore attuale Valore attuale netto Come si calcola il VAN Il rendimento di un investimento Il costo opportunità del capitale

Dettagli

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI

PERCORSI ABILITANTI SPECIALI 2014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI PERCORSI ABILITANTI SPECIALI 014 DIDATTICA DELL ECONOMIA DEGLI INTERMEDIARI FINANZIARI A cura Dott.ssa Federica Miglietta ESERCITAZIONE CALCOLO FINANZIARIO: Nel caso degli investimenti si parla genericamente

Dettagli

FINANZA AZIENDALE. Lezione n. 7

FINANZA AZIENDALE. Lezione n. 7 FINANZA AZIENDALE Lezione n. 7 Valutare i titoli obbligazionari 1 SCOPO DELLA LEZIONE L obbligazione è il titolo più semplice che si possa trovare sul mercato. Il suo valore dipende da due elementi: i

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

Gli ambiti della finanza aziendale

Gli ambiti della finanza aziendale LA FUNZIONE FINANZA Finanza aziendale Governo delle risorse di capitale dell azienda, attuato regolando tutti i movimenti di acquisizione e di impiego dei mezzi finanziari Gli ambiti della finanza aziendale

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi: lezione 09/10/2015 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi: lezione 09/10/2015 Regimi semplice e composto Esercizio 1. Dopo quanti mesi un capitale C, impiegato

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

OPERAZIONI DI PRESTITO

OPERAZIONI DI PRESTITO APPUNTI DI ESTIMO La matematica finanziaria si occupa delle operazioni finanziarie, delle loro valutazioni, nonché del loro confronto. Si definisce operazione finanziaria, qualsiasi operazione che prevede

Dettagli

Elementi di Matematica Finanziaria. Mercati e operazioni finanziarie

Elementi di Matematica Finanziaria. Mercati e operazioni finanziarie Elementi di Matematica Finanziaria Mercati e operazioni finanziarie Mercati finanziari Punti di vista 1. Tipologie dei beni scambiati; 2. Partecipanti; 3. Ubicazione; 4. Regole e modalità contrattuali.

Dettagli

ECONOMIA Sanna-Randaccio (Lez 5)

ECONOMIA Sanna-Randaccio (Lez 5) ECONOMIA Sanna-Randaccio (Lez 5) Scelta intertemporale n periodi di tempo Flusso e Stock Calcolo del valore attuale e del valore futuro (2 periodi) Vincolo di bilancio intertemporale Scelta intertemporale

Dettagli

Istituto Statale Istruzione Secondaria Superiore Piedimonte Matese. Prof.ssa A. Malinconico 1

Istituto Statale Istruzione Secondaria Superiore Piedimonte Matese. Prof.ssa A. Malinconico 1 Istituto Statale Istruzione Secondaria Superiore Piedimonte Matese 1 Rendimento, tassi di interesse, commissioni Istituto Statale Istruzione Secondaria Superiore Piedimonte Matese 25 febbraio 2016 Prof.ssa

Dettagli

Guida al modello pensioni CNPADC (11mar2014)

Guida al modello pensioni CNPADC (11mar2014) Guida al modello pensioni CNPADC (11mar2014) Valutazione delle future pensioni e dei relativi tassi di sostituzione In relazione alle tre variabili decisionali di tipo previdenziale, ossia Pensione (oppure

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA

CLASSE TERZA - COMPITI DELLE VACANZE A.S. 2014/15 MATEMATICA Risolvere le seguenti disequazioni: 0 ) x x ) x x x 0 CLASSE TERZA - COMPITI DELLE VACANZE A.S. 04/ MATEMATICA x 6 x x x x 4) x x x x x 4 ) 6) x x x ( x) 0 x x x x x x 6 0 7) x x x EQUAZIONI CON I MODULI

Dettagli

Capitolo 2. Valore attuale e costo opportunità del capitale. Principi di finanza aziendale. Richard A. Brealey Stewart C. Myers Sandro Sandri

Capitolo 2. Valore attuale e costo opportunità del capitale. Principi di finanza aziendale. Richard A. Brealey Stewart C. Myers Sandro Sandri Principi di finanza aziendale Capitolo 2 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Valore attuale e costo opportunità del capitale 2-2 Argomenti trattati Valore attuale Valore attuale

Dettagli

Argomenti. Domande chiave. Valore finanziario del tempo. I principi fondamentali

Argomenti. Domande chiave. Valore finanziario del tempo. I principi fondamentali 1-1 2 Teoria della Finanza Aziendale Prof. Arturo Capasso A.A. 2006-2007 Valore finanziario del tempo A. I principi fondamentali McGraw Hill/Irwin Copyright 2003 by The McGraw-Hill Companies, Inc. All

Dettagli

Ministero dell Economia e delle Finanze

Ministero dell Economia e delle Finanze Ministero dell Economia e delle Finanze Quale titolo di Stato per quale profilo di investitore? Forum della PA - 25 maggio 2007 Dott.ssa Maria Cannata Direttore Generale del Debito Pubblico -1- Introduzione

Dettagli

Il calcolo finanziario è utilizzato per rendere epoche diverse.

Il calcolo finanziario è utilizzato per rendere epoche diverse. Economia delle Risorse Naturali A COSA SERVE? Il calcolo finanziario è utilizzato per rendere omogenei tra loro valori che si verificano in epoche diverse. L interesse è il prezzo d uso del capitale. Il

Dettagli

SOLUZIONI IV PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI IV PLICO DI ESERCIZI DI RAGIONERIA SOLUZIONI IV PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N.1 DETERMINAZIONE DEL VALORE DEL MARCHIO 1. Determinazione del fatturato in moneta omogenea ed ipotesi di sviluppo 1997 1998 1999 000 001 fatturato

Dettagli

APPLICAZIONI DELLA PROPORZIONALITA

APPLICAZIONI DELLA PROPORZIONALITA APPLICAZIONI DELLA PROPORZIONALITA PROBLEMI DEL TRE SEMPLICE DIRETTO Sono problemi in cui si individuano chiaramente due grandezze variabili direttamente proporzionali di cui si conoscono 3 valori e si

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale

IL CAPITALE. 1) Domanda di capitale 2) Offerta di capitale IL CAPITALE 1) Domanda di capitale 2) Offerta di capitale CAPITALE FINANZIARIO E CAPITALE REALE Col termine capitale i si può riferire a due concetti differenti Il capitale finanziario è costituito dalla

Dettagli

Valutazione delle obbligazioni e delle. dott. Matteo Rossi

Valutazione delle obbligazioni e delle. dott. Matteo Rossi Valutazione delle obbligazioni e delle azioni dott. Matteo Rossi Argomenti trattati Valutazione di un obbligazione Come vengono negoziate le azioni Come valutare le azioni Tasso di capitalizzazione Prezzo

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Ministero dell Economia e delle Finanze

Ministero dell Economia e delle Finanze Ministero dell Economia e delle Finanze Quale titolo di Stato per quale profilo di investitore? Forum della PA - 25 maggio 2007 Dott.ssa Maria Cannata Direttore Generale del Debito Pubblico -1- Introduzione

Dettagli

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI A TASSO STEP UP

CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI A TASSO STEP UP CONDIZIONI DEFINITIVE ALLA NOTA INFORMATIVA PER L OFFERTA DEI PRESTITI OBBLIGAZIONARI A TASSO STEP UP Banca Popolare del Lazio Step Up 24/11/2009 24/11/2012, Codice Isin IT0004549686 Le presenti Condizioni

Dettagli

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12 Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso

Dettagli

Misure finanziarie del rendimento: il Van

Misure finanziarie del rendimento: il Van Misure finanziarie del rendimento: il Van 6.XI.2013 Il valore attuale netto Il valore attuale netto di un progetto si calcola per mezzo di un modello finanziario basato su stime circa i ricavi i costi

Dettagli

Investimenti. In questa lezione: studieremo quali sono le determinanti degli investimenti. determiniamo l investimento ottimale

Investimenti. In questa lezione: studieremo quali sono le determinanti degli investimenti. determiniamo l investimento ottimale Investimenti In questa lezione: studieremo quali sono le determinanti degli investimenti determiniamo l investimento ottimale determiniamo le variabili che fanno variare l investimento ottimale 36 La Domanda

Dettagli

I tassi di interesse e il loro ruolo nella valutazione PAS 2014: Mishkin Eakins Forestieri, Istituzioni e mercati finanziari, Pearson, 2010.

I tassi di interesse e il loro ruolo nella valutazione PAS 2014: Mishkin Eakins Forestieri, Istituzioni e mercati finanziari, Pearson, 2010. I tassi di interesse e il loro ruolo nella valutazione PAS 2014: Mishkin Eakins Forestieri, Istituzioni e mercati finanziari, Pearson, 2010. 1 Anteprima I tassi di interesse sono tra le variabili più attentamente

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

Moneta, titoli e tasso di interesse. Antonella Stirati

Moneta, titoli e tasso di interesse. Antonella Stirati Moneta, titoli e tasso di interesse Antonella Stirati Principali attività finanziarie Esistono diversi tipi di attività finanziarie che possono essere acquistate e detenute da famiglie, banche e imprese

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

Misure finanziarie del rendimento: il Van

Misure finanziarie del rendimento: il Van Misure finanziarie del rendimento: il Van 12.XI.2014 Il valore attuale netto Il valore attuale netto di un progetto si calcola l per mezzo di un modello finanziario basato su stime circa i ricavi i costi

Dettagli

i criteri di valutazione

i criteri di valutazione La fattibilità economica dei progetti: i criteri di valutazione 14.XII.2011 I criteri di fattibilità del progetto La convenienza di un investimento t immobiliare per il promotore può avvenire attraverso

Dettagli

Capitolo 3. Come calcolare il valore attuale. Principi di finanza aziendale. Richard A. Brealey Stewart C. Myers Sandro Sandri.

Capitolo 3. Come calcolare il valore attuale. Principi di finanza aziendale. Richard A. Brealey Stewart C. Myers Sandro Sandri. Principi di finanza aziendale Capitolo 3 IV Edizione Richard A. Brealey Stewart C. Myers Sandro Sandri Come calcolare il valore attuale 3-2 Argomenti trattati Valutazione delle attività a lungo termine

Dettagli

Prima Emissione Esempi di calcolo

Prima Emissione Esempi di calcolo BTP Italia Prima Emissione Esempi di calcolo Calcolo del coefficiente di indicizzazione, delle cedole e della rivalutazione del capitale Vediamo nel dettaglio come funziona il meccanismo di costruzione

Dettagli

Fondamenti e didattica di Matematica Finanziaria

Fondamenti e didattica di Matematica Finanziaria Fondamenti e didattica di Matematica Finanziaria Silvana Stefani Piazza dell Ateneo Nuovo 1-20126 MILANO U6-368 silvana.stefani@unimib.it 1 Unità 9 Contenuti della lezione Operazioni finanziarie, criterio

Dettagli

PRESTA DENARO INTERESSE = COMPENSO SPETTANTE PER LA TEMPORANEA CESSIONE DI UN CAPITALE MONETARIO COMMISURATO A CAPITALE PRESTATO DURATA DEL PRESTITO

PRESTA DENARO INTERESSE = COMPENSO SPETTANTE PER LA TEMPORANEA CESSIONE DI UN CAPITALE MONETARIO COMMISURATO A CAPITALE PRESTATO DURATA DEL PRESTITO PRESTA DENARO MUTUANTE MUTUATARIO INTERESSE = COMPENSO SPETTANTE PER LA TEMPORANEA CESSIONE DI UN CAPITALE MONETARIO COMMISURATO A CAPITALE PRESTATO DURATA DEL PRESTITO 1 LA SUA MISURA, RAPPORTATA A 100

Dettagli

POLITECNICO DI TORINO DIPLOMA UNIVERSITARIO TELEDIDATTICO Polo di Torino

POLITECNICO DI TORINO DIPLOMA UNIVERSITARIO TELEDIDATTICO Polo di Torino POLITECNICO DI TORINO DIPLOMA UNIVERSITARIO TELEDIDATTICO Polo di Torino COSTI DI PRODUZIONE E GESTIONE AZIENDALE A.A. 1999-2000 (Tutore: Ing. L. Roero) Scheda N. 10 ANALISI DEGLI INVESTIMENTI In questa

Dettagli

a) È più conveniente acquistare 3 paia di calzini a dicembre che a gennaio

a) È più conveniente acquistare 3 paia di calzini a dicembre che a gennaio RB0001B Un negozio offre a dicembre in promozione tre paia di calzini al prezzo di due. A gennaio questa offerta è stata sostituita da uno sconto del 35% su ogni singolo prezzo. Sapendo che il prezzo di

Dettagli

INFORMATIVA SUGLI STRUMENTI FINANZIARI OBBLIGAZIONI STEP-UP

INFORMATIVA SUGLI STRUMENTI FINANZIARI OBBLIGAZIONI STEP-UP CONDIZIONI DEFINITIVE alla NOTA INFORMATIVA SUGLI STRUMENTI FINANZIARI OBBLIGAZIONI STEP-UP Banca Popolare del Lazio Step Up 11/12/2012-2015 59a DI 20.000.000,00 ISIN IT0004873235 Le presenti Condizioni

Dettagli

Esercizio + 0,05 (1 0,05) 1. Calcolare la rata annua necessaria per costituire in 11 anni al tasso del 5% il capitale di 9800. 7-1

Esercizio + 0,05 (1 0,05) 1. Calcolare la rata annua necessaria per costituire in 11 anni al tasso del 5% il capitale di 9800. 7-1 Esercizio Calcolare la rata annua necessaria per costituire in anni al tasso del 5% il capitale di 9800. ( 0,05) + 9800 = R 4,2068R 0,05 R 689,8 7- Esercizio Calcolare la rata di una rendita semestrale

Dettagli

Sistemi di Controllo di Gestione

Sistemi di Controllo di Gestione Sistemi di Controllo di Gestione Decisioni di lungo termine: la scelta degli investimenti 1 Che cosa è un investimento Un investimento è un impegno di risorse monetarie di lungo periodo a fronte del quale

Dettagli

Lezione 2: L investimento in strumenti finanziari I drivers dell analisi del valore L analisi dei titoli obbligazionari:

Lezione 2: L investimento in strumenti finanziari I drivers dell analisi del valore L analisi dei titoli obbligazionari: Lezione 2: L investimento in strumenti finanziari I drivers dell analisi del valore L analisi dei titoli obbligazionari: Analisi degli Investimenti 2014/15 Lorenzo Salieri L investimento in strumenti finanziari

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA Introduzione Definizione. La matematica finanziaria studia le operazioni finanziarie. Definizione. Una operazione finanziaria è un contratto che prevede scambi di danaro (tra i contraenti)

Dettagli

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà:

Il piano d ammortamento (francese) prevede un totale di 20 rate semestrali pari a: D 300.000 a 14, 2888 Il debito residuo dopo 10 semestri sarà: Gli esercizi sono suddivisi per argomenti. A) Piani d ammortamento. ) I esonero 003. Un individuo si accorda per restituire un importo di 300 mila euro mediante il versamento di rate costanti semestrali

Dettagli