Esercizi di Informatica Teorica. Sommario

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Informatica Teorica. Sommario"

Transcript

1 Esercizi di Informtic Teoric Grmmtiche formli 1 Sommrio esercizi su grmmtiche e derivzioni esercizi su grmmtiche ed espressioni regolri esercizi su grmmtiche non regolri 2 1

2 Grmmtiche e derivzioni esercizio 1 si consideri l seguente grmmtic G V T = {, b} V N = {S, A}, dove S è l ssiom produzioni S S A A A A A b A ba 1. di che tipo è l grmmtic? 1.b mostrre un derivzione per bb ed un per bb 1.c descrivere il linguggio generto dll grmmtic? 3 Grmmtiche e derivzioni esercizio 2 si consideri l seguente grmmtic G non contestule V T = {} V N = {S, A}, dove S è l ssiom produzioni: S AA A AAA A 2. mostrre due diverse derivzioni per 2.b mostrre due diverse derivzioni per 2.c qul è il linguggio generto d G? 2.d esiste un grmmtic regolre che gener lo stesso linguggio? 4 2

3 Grmmtiche e derivzioni esercizio 3 si consideri l seguente grmmtic G V T = {, b, c} V N = {S, X}, dove S è l ssiom produzioni S X S X X X bxb X c 3. di che tipo è l grmmtic? 3.b mostrre lcune stringhe generte dll grmmtic 3.c qul è il linguggio generto d G? 5 Grmmtiche e derivzioni esercizio 4 si consideri l seguente grmmtic G V T = {, b} V N = {S, A, B}, dove S è l ssiom produzioni S A S B A A A A ba B b B B B bb 4. di che tipo è l grmmtic? 4.b mostrre un derivzione per bb ed un per bb 4.c qul è il linguggio generto d G? 6 3

4 Grmmtiche e derivzioni esercizio 5 si consideri l seguente grmmtic G V T = {, b} V N = {S, A}, dove S è l ssiom produzioni S AA A AAA A A ba A Ab 5. di che tipo è l grmmtic? 5.b mostrre lcune derivzioni per bbbb 5.c qul è il linguggio generto d G? 7 Grmmtiche e derivzioni esercizio 6 si consideri l seguente grmmtic G V T = {, b} V N = {S, T, A, B}, dove S è l ssiom produzioni S AT T AT T ABT T AB BA BA AB A B b 6. di che tipo è l grmmtic? 6.b verificre che G gener tutte e sole le stringhe su {, b} tli che il numero di è mggiore del numero di b 8 4

5 Grmmtiche ed espressioni regolri esercizio 7 si L il linguggio descritto dll seguente espressione regolre: (+b) * b 7. mostrre un grmmtic (di qulsisi tipo) che gener L 7.b esiste un grmmtic regolre che gener L? esercizio 8 mostrre un grmmtic che gener l insieme di tutte le espressioni regolri su {, b} 9 Grmmtiche ed espressioni regolri esercizio 9 qul è il linguggio generto dll seguente grmmtic? quli sono i significti dei vri non terminli? V T = {, b,, +,, *, (, ) } V N = {S, E, T, F, A}, dove S è l ssiom produzioni S E E T T + T T F F F F (E) A F * A b 10 5

6 Grmmtiche di tipo 2, 1 e 0 esercizio 10 si consideri il linguggio L={ n b 2n : n > 0} mostrre un grmmtic non contestule che gener L esercizio 11 mostrre un grmmtic non limitt che gener L={1 2n : n 0} 11 Grmmtiche regolri esercizio 12 mostrre un grmmtic regolre per ciscun delle seguenti espressioni regolri 12. (b+) * 12.b (b) * b * (b) * esercizio mostrre un grmmtic che gener il linguggio dei numeri pri in bse 3 13.b esiste un grmmtic regolre per tle linguggio? 12 6

7 soluzione esercizio 1 1. l grmmtic è regolre (cioè di tipo 3) 1.b derivzione per bb S S A ba bba bb l string bb non è genert dll grmmtic 1.c il linguggio delle stringhe su {, b} che inizino per b (2) A b A (6) (6) A (3) lbero di derivzione 13 soluzione esercizio 2 2. non esistono derivzioni per 2.b derivzioni per S AA AAAA AAA AA A S AA A AAA AA A S (1) S (1) AA (2) (3) AA (3) (2) AAA (3) (3) (3) AAA (3) (3) (3) 14 7

8 2.c l insieme delle stringhe su {} di lunghezz non null e con un numero pri di 2.d un grmmtic regolre che gener lo stesso linguggio è l seguente: V T = {} V N = {S, A, X}, dove S è l ssiom produzioni S A A A X X A 15 soluzione esercizio 3 3. l grmmtic è non contestule 3.b c, c, bcb, bcb, bbbcbbb,... esempio: derivzione di bcb : S X X bxb bcb 3.c il linguggio generto dll grmmtic è quello delle stringhe plindrome su {, b, c} con un ed un sol c l centro, più l string vuot 16 8

9 soluzione esercizio 7 (linguggio (+b) * b) 7. G non contestule per L V T = {, b} V N = {S, X}, dove S è l ssiom produzioni S Xb X X bx 7.b esiste un grmmtic regolre per L poiché l espressione che descrive L è regolre; un grmmtic regolre per L è l seguente V T = {, b} V N = {S, X}, dove S è l ssiom produzioni S X X b X X X bx 17 soluzione esercizio 8 G non contestule per L (espressioni regolri su{, b}) V T = {, b,, +,, *, (, ) } V N = {S}, dove S è l ssiom produzioni S (S) S b S S+S S S S S * S not: G non tiene conto delle precedenze tr opertori 18 9

10 soluzione esercizio 9 ncor un volt viene generto il linguggio delle espressioni regolri su {, b} in cui, però, si tiene conto delle precedenze tr opertori esempio di derivzione: ( + b) * ( * E + b) E = espressione T = termine F = fttore A = tomo F* (E)* F (T + T)* (F + F)* T (A + A)* ( + b)* F (E) (T + T) (F + F) (F* + A) (A* + b) (* + b) 19 soluzione esercizio 10 (CF che gener L={ n b 2n : n > 0}) grmmtic non contestule V T = {, b} V N = {S, X}, dove S è l ssiom produzioni S X X Xbb bb 20 10

11 soluzione esercizio 11 (grmmtic non limitt che gener L={12 n : n 0}) logic costruttiv si suppong di prtire d un form di frse del tipo LAA...AAR, in cui il numero di A è pri 2 n ; si vuol idere un meccnismo che consent di prendere, d ogni decisione, due strde distinte: trsformre tutte le A in 1 ed eliminre L ed R rddoppire il numero di A, cioè pssre ll form di frse LAAA...AAAR dove il numero di A è pri 2 n+1 21 grmmtic non limitt V T = {1} V N = {S, L, R, A, D, U, X, B}, dove S è l ssiom produzioni S LAR L U UA 1U L XD DA AAD AB BA UR DR BR XB L trsform le A in 1 rddoppi le A 22 11

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 richiami teorici sulle grammatiche di Chomsky esercizivari esercizi su grammatiche ed espressioni regolari

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica 03-utomi--stti-finiti-0 Esercizi di Informtic Teoric Automi stti finiti Autom stti finiti (ASF) richimi utom stti finiti ASF = dove Σ = {σ, σ 2,, σ n } è un lfeto (finito) di input K= {, q,,

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 curdi Luc Cio e Wlter Didimo Esercizi di Informtic teoric - Luc Cio e Wlter Didimo 1 espressioni regolri e grmmtiche regolri proprietà decidiili dei linguggi regolri teorem di Myhill-Nerode notzioni sul

Dettagli

ESERCITAZIONE I. Linguaggi Regolari

ESERCITAZIONE I. Linguaggi Regolari ESERCITAZIONE I Linguggi Regolri 2 INTRODUZIONE TIPI DI TRASFORMAZIONI ASFD ASFND ER GR Il percorso di trsformzioni in grigio srà il primo d essere nlizzto, mentre il rosso verrà trttto in seguito. Il

Dettagli

Fondamenti d Informatica: lavoriamo con le grammatiche. Barbara Re, Phd

Fondamenti d Informatica: lavoriamo con le grammatiche. Barbara Re, Phd Fondamenti d Informatica: lavoriamo con le grammatiche Barbara Re, Phd Esercizio Grammatica e generazione stringhe Data una Grammatica ed una Stringa, verificare che la Stringa sia generata dalla Grammatica:

Dettagli

LINGUAGGI FORMALI Esercizi

LINGUAGGI FORMALI Esercizi LINGUAGGI FORMALI Esercizi PPPPPP Nicol Fnizzi LINGUAGGI DI PROGRAMMAZIONE Corso di Informtic T.P.S. Diprtimento di Informtic Università di Bri Aldo Moro [2014/01/28-13:30:23] [ 2 / 14 ] Indice 1 Introduzione

Dettagli

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( )

Ambiguità D 11 = SS ( S S S ( S (S ) S ( S ((S )) S ( + S (( )) S (S (( )) (S) (S (( )) ( ) ( (( )) ( ) Amiguità D 11 = ( ( ( ) ( (( )) ( (( )) ( (( )) () ( (( )) ( ) ( (( )) ( )! ( ) ( )! Un Grmmti si die migu se medesime stringhe sono generte d leri sintttii di differente struttur ovvero on due distinte

Dettagli

" " # " $ $ $ $ % $&%% # $ # #' $" $$ $( $)

  #  $ $ $ $ % $&%% # $ # #' $ $$ $( $) ! "" " " # " $ $ $ $ % $&%% # $ # #' $" $$ $( $) (#** ( ( ( (( (" +,-./ 011-,,0 2-++/ 34-5-6,- 708-306- 96/ 5-4:- 2: 80.3+-55- ;9-5,:06:.-,020+01:8:+- 2-2:8/4-50+0/+896:

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio

fattibile con le tecniche elementari che imparerai in seguito. Ad esempio il polinomio Scomposizione di un polinomio in fttori Scomporre in fttori primi un polinomio signific esprimerlo come il prodotto di due più polinomi non più scomponibili Ad esempio 9 = ( 3) fttore 1 ( + 3) fttore +

Dettagli

Alcune mosse che utilizzano le proprietà delle operazioni in N

Alcune mosse che utilizzano le proprietà delle operazioni in N Operzioni in N Proprietà commuttiv dell ddizione + b b +,b N Proprietà ssocitiv dell ddizione ( + b) + c + (b + c) + b + c,b,c N Proprietà invrintiv dell sottrzione b ( + c) (b + c) b ( c) (b c),b,c N,b,c

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato

CORSO ANALISI MATEMATICA 1 A.A. 2015/2016. Testo consigliato Università degli studi di Cgliri CORSO ANALISI MATEMATICA 1 A.A. 2015/2016 Docente: Monic Mrrs 1 Anlisi Mtemtic 1 Testo consiglito con elementi di geometri e lgebr linere. M. Brmnti, C.D. Pgni, S. Sls

Dettagli

Fondamenti di informatica Esercizi Svolti Macchine di Turing. Realizzati da: Roberto Quaranta Matr

Fondamenti di informatica Esercizi Svolti Macchine di Turing. Realizzati da: Roberto Quaranta Matr Fondamenti di informatica Esercizi Svolti Macchine di Turing Realizzati da: Roberto Quaranta Matr. 449028 Macchina di Turing che calcola la funzione Max(x, y) Q= {q 0, q 1, q 2, q 3, q 4, q 5, q 6,q F

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica Esercizi di Informtic Teoric M.S.Pini, C.Pizzi Diprtimento di Ingegneri dell Informzione Università degli Studi di Pdov Esercizio 14 1. Costruire un PDA che riconosc il linguggio L = {0 n 1 n, n 1} per

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Temi speciali di bilancio

Temi speciali di bilancio Università degli Studi di Prm Temi specili di bilncio Le imposte (3) Il consolidto fiscle nzionle RIFERIMENTI Normtiv Artt. 117 129 del TUIR Art. 96 del TUIR Prssi contbile Documento OIC n. 25 Documento

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione ll lgebr E. Modic ersmo@glois.it Liceo Scientifico Sttle S. Cnnizzro Corso P.O.N. Modelli mtemtici e reltà A.S. 2010/2011 Premess Codificre e Decodificre Nell vit quotidin ci cpit spesso di

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore

Principi di economia Microeconomia. Esercitazione 3. Teoria del Consumatore Principi di economi Microeconomi Esercitzione 3 Teori del Consumtore Novembre 1 1. Considerimo uno studente indifferente tr il consumo di penne nere (x n ) e blu (x b ), e che cquist ogni nno un pniere

Dettagli

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler

Determinanti e caratteristica di una matrice (M.S. Bernabei & H. Thaler Determinnti e crtteristic di un mtrice (M.S. Bernbei & H. Thler Determinnte Il determinnte può essere definito solmente nel cso di mtrici qudrte Per un mtrice qudrt 11 (del primo ordine) il determinnte

Dettagli

Turnazione dei mezzi (vehicles-scheduling)

Turnazione dei mezzi (vehicles-scheduling) Turnzione dei mezzi (vehicles-scheduling) Definizione del prolem L fse di turnzione dei mezzi e del personle consiste nel pinificre l utilizzo nel tempo (e nello spzio) dei mezzi e del personle in modo

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, }

{ 1, 2,3, 4,5,6,7,8,9,10,11,12, } Lezione 01 Aritmetic Pgin 1 di 1 I numeri nturli I numeri nturli sono: 0,1,,,4,5,6,7,8,,10,11,1, L insieme dei numeri nturli viene indicto col simbolo. } { 0,1,,, 4,5,6,7,8,,10,11,1, } L insieme dei numeri

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

Aniello Murano NP- Completezza (seconda parte)

Aniello Murano NP- Completezza (seconda parte) Aniello Murno NP- Completezz (second prte) 15 Lezione n. Prole chive: Np-completezz Corso di Lure: Informtic Codice: Emil Docente: murno@ n.infn.it A.A. 2008-2009 Definizione di NP- COMPLETEZZA Si ricordi

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali.

I radicali. Cos è un radicale? ESERCIZIO 2.1. Determina le C.E. dei seguenti radicali e delle seguenti espressioni contenenti radicali. I rdicli Cos è un rdicle? Il simbolo si chim rdicle e si legge rdice ennesim di. - n si chim indice dell rdice e deve essere un numero nturle mggiore di zero. Qundo l indice si sottintende e il rdicle

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

George Boole ( )

George Boole ( ) Mtemtic Alger di Boole Cpitolo 5 Ivn Zivko George Boole (1815-1864) Mtemtico inglese del dicinnovesimo secolo, ffrontò in modo originle prolemi di logic. Le sue teorie trovno forte ppliczione un secolo

Dettagli

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica

Complementi di Matematica e Calcolo Numerico A.A. 20010-2011 Laboratorio 10 - Integrazione numerica Complementi di Mtemtic e Clcolo Numerico A.A. 20010-2011 Lbortorio 10 - Integrzione numeric Dtunfunzionef vlorireliperclcolre b fornisce l funzione predefinit qud Sintssi: q=qud(f,,b,tol) input: f funzione

Dettagli

Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO

Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO ANALISI SINTATTICA TIPO 1: Data un linguaggio scrivere una grammatica che lo generi TIPO 2: Verificare se una grammatica non contestuale è ambigua TiPO 3: Verificare se una grammatica e LL(1) e costruirne

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Strumenti Matematici per la Fisica

Strumenti Matematici per la Fisica Strumenti Mtemtici per l Fisic Strumenti Mtemtici per l Fisic Approssimzioni Notzione scientific (o esponenzile) Ordine di Grndezz Sistem Metrico Decimle Equivlenze Proporzioni e Percentuli Relzioni fr

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

Macchine elettriche in corrente continua

Macchine elettriche in corrente continua cchine elettriche in corrente continu Generlità Può essere definit mcchin un dispositivo che convert energi d un form un ltr. Le mcchine elettriche in prticolre convertono energi elettric in energi meccnic

Dettagli

Forma Normale di Chomsky

Forma Normale di Chomsky 2. Eliminazione delle produzioni unitarie Forma Normale di Chomsky Una produzione si dice unitaria se è della forma A! B. Le produzioni unitarie in pratica consistono in una ridenominazione di variabili,

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Erasmo Modica. : K K K

Erasmo Modica.  : K K K L insieme dei numeri reli L INSIEME DEI NUMERI REALI Ersmo Modic helthinsurnce@tin.it www.glois.it Per introdurre l insieme dei numeri reli si hnno disposizione diversi modi. Generlmente l iennio si preferisce

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

2a descrivere i materiali

2a descrivere i materiali 2a descrivere i materiali 2l descrivere i materiali 2m descrivere i materiali 2n descrivere i materiali 2o descrivere i materiali 2p descrivere i materiali 2q descrivere i materiali 2r descrivere i materiali

Dettagli

FUNZIONI LOGARITMICHE

FUNZIONI LOGARITMICHE FUNZIONI LOGARITMICHE Voglimo vedere come dl grfico δ di un funzione y=f(x) si può pssre l grfico δ dell funzione y = f (x). Dobbimo vere ben presente il grfico dell funzione y = x con x R + e con >0,

Dettagli

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria

PROGETTO SIRIO PRECORSO di MATEMATICA Teoria Vi Aldo Mo ro, 1097-300 15 Chioggi (VE) t el. 0414 965 81 1 - fx 0 414 96 54 3 - ww w. itisri ghi.com POTENZA i N... DIVISIBILITÀ e NUMERI PRIMI...3 MASSIMO COMUN DIVISORE e MINIMO COMUNE MULTIPLO...3

Dettagli

LINGUAGGI FORMALI E AUTOMI

LINGUAGGI FORMALI E AUTOMI LINGUAGGI FORMALI E AUTOMI (DISPENSE) ALBERTO BERTONI, BEATRICE PALANO 1 Cpitolo 1: Linguggi e Grmmtiche 1. Monoide delle prole, Linguggi e operzioni tr linguggi In generle, con linguggio si intende l

Dettagli

Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli

Componenti per l aritmetica binaria. Motivazioni. Sommario. Sommario. M. Favalli Sommrio Componenti per l ritmetic inri M. Fvlli Engineering Deprtment in Ferrr Introduzione 2 3 Appliczioni di n-it dder 4 Sommtore CLA Sommrio (ENDIF) Reti logiche / 27 Introduzione Motivzioni (ENDIF)

Dettagli

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1

acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 acuradi Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 proprietà delle grammatiche non contestuali pumping lemma forme normali notazioni sul livello degli

Dettagli

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO

E U Q A U Z A I Z O I N O I N DI SE S C E O C N O DO EQUAZIONI DI ECONDO GRADO Riepilogo delle soluzioni in bse l segno di < φ : b > : b b Prof I voi, EQUAZIONI DI ECONDO GRADO EQUAZIONI PURE DI ECONDO GRADO : EEMPI ) ) ) 7 7 ) > φ (impossibile) ) impossibil

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi sttistici per l nlisi dei dti Introduzione In ogni esperimento, possono essere presenti diversi fttori di disturo che mplificno l vriilità presente nei dti. In genere, si definisce fttore di disturo

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H

Soluzione a) La forza esercitata dall acqua varia con la profondita` secondo la legge di Stevino: H H eccnic Un bcino d cqu, profondo, e` contenuto d un prti verticle di lunghezz (orizzontle, lungo y) L, vincolt l terreno nel punto B. Per sostenere l prti si usno lcuni pli fissti d un estremit` sull prti,

Dettagli

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze

24 y. 6. ( 5 A. 1 B. 5 4 C D. 50 Applicando le proprietà delle potenze Alunno/.. Alunno/ Pgin Esercitzione in preprzione ll PROVA d ESAME Buon Lvoro Prof.ss Elen Sper. Il piccolo fermcrte dell figur è relizzto nel seguente modo. Si prende un cubo di lto cm e su un fcci si

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

certificazione antimafia : Tribunale Amministrativo Regionale per la Calabria (Sezione Prima) sentenza n. 480 del 2010

certificazione antimafia : Tribunale Amministrativo Regionale per la Calabria (Sezione Prima) sentenza n. 480 del 2010 ISSN 1127-8579 Pubblicato dal 22/04/2010 All'indirizzo http://www.diritto.it/docs/29425-certificazione-antimafia-tribunaleamministrativo-regionale-per-la-calabria-sezione-prima-sentenza-n-480-del-2010

Dettagli

Elementi grafici per Matematica

Elementi grafici per Matematica Elementi grfici per Mtemtic Sommrio: Sistemi di coordinte crtesine... Grfici di funzioni... 4. Definizione... 4. Esempi... 5.3 Verificre iniettività e suriettività dl grfico... 8.4 L rett... 9.5 Esempi

Dettagli

/1/ 22 9379"#98++9"3999389",&&.&

/1/ 22 9379#98++93999389,&&.& !!!"#" $%'())#)*+"#",* *()-.$ $/'(**(*(./0#) /1/ 22 *)(+3"++*4 *))#)*+"#"(5,*,**(*.).**!,,.,4 *(/*66(+77"78+"(5,.)!*.4 *(/*66(+)73"38"(5,.)!*.(*4 *(/*66(,73"##"(,) ').4 *()*.7)*"++"(5.9+9" 9379"#98++9"3999389",.

Dettagli

Successioni di Funzioni e Serie di Potenze

Successioni di Funzioni e Serie di Potenze Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni e Serie di Potenze 1 Successioni di Funzioni Nel corso di nlisi di bse si sono studite le successioni numeriche. Qui considerimo un

Dettagli

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x)

lim lim lim + Nome.Cognome Classe 4D 7 Aprile 2011 Verifica di matematica Problema (punti 3) Sono date le funzioni: f ( x) Nome.Cognome Clsse D 7 Aprile 0 Verific di mtemtic Problem (punti ) Sono dte le funzioni: f ( ) =, g ( ) = ( ) ) determinre il dominio di f() e di g() b) determinre, senz l uso dell clcoltrice f ( ) c)

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è:

1) In una equazione differenziale del tipo y (t)=a y(t), con a > 0, il tempo di raddoppio, cioè il tempo T tale che y(t+t)=2y(t) è: 1) In un equzione differenzile del tipo y (t)= y(t), con > 0, il tempo di rddoppio, cioè il tempo T tle che y(t+t)=y(t) è: A) T = B) 1 T = log e C) 1 T = log e ** D) 1 T = E) T = log e ) L equzione differenzile

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

Organizzazione della lezione

Organizzazione della lezione Costruzione di un unità ritmetico-logic Orgnizzzione dell lezione Operzioni logiche Addizione e sottrzione Hlf dder e Full dder ( bit) Complemento e sottrzione Altre operzioni Set on less thn, test di

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati:

Esercizio 1. Si supponga di aver assegnato ad una popolazione di N = 4 dattilografe un test e di aver ottenuto i seguenti risultati: Esercizio 1 Si suppoga di aver assegato ad ua popolazioe di N = 4 dattilografe u test e di aver otteuto i segueti risultati: Dattilografa N. Errori A 3 B C 1 D 4 La variabile, il umero di errori commessi

Dettagli

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione

Teoria di Jourawski. 1. Sezione ad T. Lê2 L Lê2. à Soluzione eori di Jourwski ü [A.. 0-03 : ultim revisione 4 gennio 03] Si pplic l teori di Jourwski l fine di clcolre l distribuzione di tensioni tngenzili su lcune sezioni soggette sforzo di tglio.. Sezione d ê

Dettagli

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale

Esercitazione di Matematica sulle equazioni di secondo grado (o ad esse riconducibili) nel campo reale Esercitzione di Mtemtic sulle equzioni di secondo grdo (o d esse riconducibili) nel cmpo rele 1. Risolvere, nel cmpo rele, le seguenti equzioni di secondo grdo: () 81x 0; (b) (x 1) 7x ; (c) 7x x 0; (d)

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

8 Controllo di un antenna

8 Controllo di un antenna 8 Controllo di un ntenn L ntenn prbolic di un rdr mobile è montt in modo d consentire un elevzione compres tr e =2. Il momento d inerzi dell ntenn, Je, ed il coefficiente di ttrito viscoso, f e, che crtterizzno

Dettagli

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in

a con base a maggiore di 1 Dominio Codominio Crescenza/decrescenza Funz Crescente in Concavità/convessità Strettamente convessa in Funzione esponenzile Dto un numero rele >0, l funzione si chim funzione esponenzile di bse e f prte dell fmigli delle funzioni elementri. Il suo ndmento (crescenz o decrescenz) è strettmente legto l vlore

Dettagli

N 02 B I concetti fondamentali dell aritmetica

N 02 B I concetti fondamentali dell aritmetica Uità Didttic N 0 I cocetti fodmetli dell ritmetic U.D. N 0 B I cocetti fodmetli dell ritmetic 0) Il cocetto di potez 0) Proprietà delle poteze 0) L ozioe di rdice ritmetic 0) Multipli e divisori di u umero

Dettagli

Cinematica ed equilibrio del corpo rigido

Cinematica ed equilibrio del corpo rigido inemtic ed equilirio del corpo rigido Spostmenti virtuli Lvori virtuli ed equilirio Determinzione sttic Numero dei vincoli e determinzione pprofondimenti: lvoro virtule pprofondimenti: forze e momenti

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Mnule di supporto ll utilizzo di Sintel per stzione ppltnte FORMULE DI AGGIUDICAZIONE gin 1 di 18 Indice AZIENDA REGIONALE CENTRALE ACQUISTI - ARCA S.p.A. 1 INTRODUZIONE... 3 1.1 Mtrice modlità offert/modlità

Dettagli

Prova n. 1 LEGER TEST

Prova n. 1 LEGER TEST Prov n. 1 LEGER TEST Descrizione L prov si svolge su un percorso delimitto d due coni, posti ll distnz di 20 mt l uno dll ltro. Il cndidto deve percorrere spol l distnz tr i due coni, pssndo dll velocità

Dettagli

Espressioni Regolari

Espressioni Regolari Espressioni Regolari Le espressioni regolari sono costituite dalle stringhe sull alfabeto Σ = Σ {+,,*,(,),φ} ottenute secondo le seguenti regole: 1. φ e ciascun membro di Σ sono Epressioni Regolari 2.

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Esercizi su spazi ed operatori lineari

Esercizi su spazi ed operatori lineari Esercizi su spzi ed opertori lineri Corso di Fisic Mtemtic 2,.. 2013-2014 Diprtimento di Mtemtic, Università di Milno 23 Ottobre 2013 1 Spzio L 2 Esercizio 1. Per = 0, b = 1, dire quli delle seguenti funzioni

Dettagli

I metodi formali dell Analisi Lessicale: Le Espressioni Regolar

I metodi formali dell Analisi Lessicale: Le Espressioni Regolar I metodi formali dell Analisi Lessicale: Le Espressioni Regolari (ER) N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Introduzione 2 3 4 5 Espressioni Regolari Dato un alfabeto finito X, una espressione regolare

Dettagli

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari

Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: Stefano Ferrari Corso di Laurea in icurezza dei sistemi e delle reti informatiche Fondamenti di informatica per la sicurezza anno accademico 2004 2005 docente: tefano Ferrari 23.02.2005 della seconda parte vers. A valutazioni

Dettagli

Le equazioni di grado superiore al secondo

Le equazioni di grado superiore al secondo Le equzioni di grdo superiore l secondo ITIS Feltrinelli nno scolstico 007-008 R. Folgieri 007-008 1 Teorem fondmentle dell lger Ogni equzione lgeric di grdo n h sempre n soluzioni, che possono essere

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli