ESERCIZI DI RIEPILOGO SULLE APPLICAZIONI DELLE EQUAZIONI DI BILANCIO PER SISTEMI APERTI A.A

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI RIEPILOGO SULLE APPLICAZIONI DELLE EQUAZIONI DI BILANCIO PER SISTEMI APERTI A.A"

Transcript

1 ESERCIZI DI RIEPILOGO SULLE APPLICAZIONI DELLE EQUAZIONI DI BILANCIO PER SISTEMI APERTI A.A

2 Esercizio A1 onodiensionale e regie stazionario, a) la pressione nella sezione 2 nel caso di trasforazione internaente reversibile; [p 2 =8.1 bar] b) se la trasforazione è reale, ideale o ipossibile nel caso in cui p 2 =1.80 bar; [reale] c) la pressione nella sezione 2 nel caso in cui la perdita di carico r è pari a 300 J/kg; [p 2 =5.1 bar] d) la teperatura nella sezione 2 nei casi b)e c). [T 2b =20.15 C; T 2c =20.07 C] A 1 =A 2 p 1 = 1.20 bar z 1 = 100 z 2 = 30.0 Q = L =0 Esercizio A2 a) la portata assica di acqua; [0.50 kg/s] b) la potenza eccanica assia ottenibile; [680 kw] c) la generazione entropica e la teperatura nella sezione 2, nel caso in cui la potenza eccanica ottenuta è pari all 80% di quella assia. [ S & gen = kw/k; T 2 = 46 C] Rappresentare le trasforazioni nei piani terodinaici (T,s), (p,v) e (p,h). A 1 =89 c 2 w 1 =2.0 /s p 1 = 100 bar T 1 =550 C p 2 = bar Q =0 2

3 Esercizio A3 a) la potenza eccanica e la teperatura T 2 nel caso di trasforazione internaente reversibile; [-90 kw; 20.0 C] b) la potenza eccanica e la teperatura T 2 nel caso in cui la generazione entropica è pari a 1.0 kw/k. [-383 kw; 20.7 C] Rappresentare le trasforazioni nei piani terodinaici (T,s), (p,v) e (p,h). =100 kg/s p 1 = 1.0 bar p 2 = 10.0 bar Q =0 Esercizio A4 a) la portata di R134a; [1.40 kg/s] b) la potenza terica scabiata tra i due fluidi; [300 kw] c) la generazione entropica relativa ad un volue di controllo che racchiude la sola aria; [1.28 kw/k] d) la generazione entropica relativa ad un volue di controllo che racchiude il solo R134a; [0 kw/k] e) la generazione entropica per cause eccaniche; [1.28 kw/k] f) la generazione entropica per cause teriche; [0.16 kw/k] g) la generazione entropica totale; [1.44 kw/k] h) il flusso entropico diffusivo con riferiento ad un volue di controllo che racchiude la sola aria; [-1.06 kw/k] i) il flusso entropico diffusivo con riferiento ad un volue di controllo che racchiude il solo R134a; [1.22 kw/k] Rappresentare le trasforazioni nei piani terodinaici (T,s), (p,v) e (p,h), separataente per i due fluidi. ARIA R134a Fluido: Aria A =20 kg/s p 1 = 5.0 bar p 3 = 4.0 bar T 3 =5.0 C R=287 J/kg K c p =1.01 kj/kg K Fluido: R134a p 2 = p 4 T 2 =-26.0 C x 2 = 0.0 x 4 = 1.0 3

4 Esercizio A5 a) la teperatura T 2 ; [8.9 C] b) la generazione entropica. [10 W/K] Rappresentare i 3 punti nei piani terodinaici (T,s), (p,v) e (p,h). Fluido: R134a =2.0 kg/s 1 R134a 2 =0.50 kg/s p 1 = p 2 = p 3 = 4.0 bar x 3 = 1.0 Q = L =0 Esercizio A6 a) il valore assoluto della potenza terica scabiata con l abiente; [147 kw] b) il valore assoluto della potenza eccanica scabiata con l abiente. [181 kw] Rappresentare la trasforazione nei piani terodinaici (T,s), (p,v) e (p,h). SET T A Fluido: R717 =0.50 kg/s T 1 =0.0 C x 1 = 1.0 T 2 =40.0 C p 2 =10.0 bar S & = 0.50 kw/k gen T A = C 4

5 Esercizio A7 valutare per i tre volui di controllo evidenziati: a) i flussi entropici; [Il flusso entropico convettivo è uguale per tutti e tre i V.C: e vale: kw/k; i flussi diffusivi valgono: Φ V.C.1 = kw/k; Φ V.C.2 = kw/k; Φ V.C.3 = 0 kw/k]. b) la generazione entropica; [ S & = kw/k; S & = kw/k; S & = gen, V. C.1 gen, V. C.2 kw/k]. c) l accuulo di entropia. [VC1= 0 kw/k; VC2=0 kw/k; VC3 = kw/k]. gen, V. C.3 SET A Q 1 2 V.C.3 V.C.2 V.C.1 Fluido: Aria; V 1 = /h; p 1 = 150 kpa; t 1 =20.0 C; p 2 = 110 kpa; t 2 =240 C; T A =500 C. Esercizio A8 onodiensionale, regie stazionario, trascurabilità delle variazioni di energia cinetica e potenziale e trasforazioni endoreversibili, valutare la potenza eccanica in questi casi due casi: a) trasforazione adiabatica; [ L e = kw] b) trasforazione isotera con cessione di calore ad un SET a 300 K. [ L e = kw] Rappresentare le trasforazioni sui piani terodinaici (T,s) e (p,v). Fluido: Aria (gas ideale a c costanti con la teperatura); V1 = /s; p 1 = 100 kpa; T 1 =350 K; p 2 = 6 p 1. 5

6 Esercizio A9 a) la potenza eccanica nel caso di trasforazione internaente reversibile; [ L e = - 15 kw]. b) la potenza eccanica nel caso in cui la generazione entropica è pari a 28 W/K. [ L e = - 23 kw]. Rappresentare le trasforazioni sui piani terodinaici (T,s) e (p,v). =1.0 kg/s p 1 = 50 kpa t 1 =27.0 C p 2 = 15.0 MPa Q =0. Esercizio A10 valutare la pressione di uscita. [p 2 =2.1 bar]. Rappresentare la trasforazione sui piani terodinaici (T,s) e (p,v). Fluido: Aria (gas ideale e c costanti con la T); V1 = /s; p 1 = 10 bar; T 1 =800 K; L = Q =0 Sgen 1.0 MW; = 0.50 kw/k. 6

7 Esercizio A11 onodiensionale, regie stazionario valutare la generazione di entropia totale. Rappresentare la trasforazione sui piani terodinaici (T,s) e (p,v). Fluido: Aria; V1 = 50 3 /h; p 1 = 250 kpa; T 1 = 400 K; z 1 = 1.00 ; z 2 = 15.0 ; D 1 = 4.0 c; D 2 = 4.0 c; w 2 = 18.6 /s. Esercizio A12 valutare la generazione di entropia del sistea. [ S & gen = 0 kw/k]. Individuare i punti di ingresso e di uscita sui piani terodinaici (T,s) e (p,h). R134a Fluido: R134a V3 = /s; p 1 = p 2 = p 3 = 50 kpa; x 1 = 0.0; x 2 = 1.0; x 3 = 0.25; Q = L =0. 7

Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Esercizi di Fisica Tecnica per il Corso di laurea in Ingegneria Gestionale

Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Esercizi di Fisica Tecnica per il Corso di laurea in Ingegneria Gestionale . SISTEMI APERTI Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Si considerino sempre valide le seguenti ipotesi. ) Regime stazionario. ) Flusso monodimensionale ed equilibrio locale,

Dettagli

Prova scritta di Macchine e Sistemi Energetici Tradizionali (n.o.) e Macchine I (v.o.) Cognome & Nome = Matricola = N = 0

Prova scritta di Macchine e Sistemi Energetici Tradizionali (n.o.) e Macchine I (v.o.) Cognome & Nome = Matricola = N = 0 Prova scritta di Macchine e Sistei Energetici Tradizionali (n.o.) e Macchine I (v.o.) Cognoe & Noe = Matricola = N = 0 22 Novebre 203. Un turbocopressore (adiabatico) coprie aria da p = 2.9 bar, T = 30

Dettagli

BIOLOGIA A. A CHIMICA

BIOLOGIA A. A CHIMICA Laurea triennale in BIOLOGIA A. A. 3-4 4 CHIMICA Lezioni di Chiica Fisica Principio e 3 3 Principio Prof. Antonio offoletti Alcune equazioni della lezione precedente Reazione chiica scritta in fora generale

Dettagli

ESERCIZI DI TERMODINAMICA

ESERCIZI DI TERMODINAMICA ESERCIZI DI TERMODINAMICA Un otore a cobustione eroga una otenza effettiva di k con un rendiento totale del 8% Il cobustibile utilizzato ha un otere calorifico inferiore di 000 k Calcolare la assa di cobustibile

Dettagli

Equazione dell'energia. Fenomeni di Trasporto

Equazione dell'energia. Fenomeni di Trasporto Equazione dell'energia Fenomeni di Trasporto 1 Trasporto convettivo di energia La portata volumetrica che attraversa l elemento di superficie ds perpendicolare all asse x è La portata di energia che attraversa

Dettagli

La lezione di oggi. Il comportamento microscopico dei gas. Il 1 principio della termodinamica

La lezione di oggi. Il comportamento microscopico dei gas. Il 1 principio della termodinamica 1 La lezione di oggi Il coportaento icroscopico dei gas Il 1 principio della terodinaica ! Equazione di stato dei gas! Applicazioni dell equazione di stato! La teoria cinetica dei gas! Il 1 principio della

Dettagli

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl

Termodinamica e trasmissione del calore 3/ed Yunus A. Çengel Copyright 2009 The McGraw-Hill Companies srl SOLUZIONI problemi cap.8 8.1 La pressione del vapore è mantenuta costante. Perciò, la temperatura del vapore rimane costante anche alla temperatura Se si suppone che la trasformazione non implichi irreversibilità

Dettagli

Applicazione al caso delle turbine a gas e a vapore. Applicazione al caso dei compressori:

Applicazione al caso delle turbine a gas e a vapore. Applicazione al caso dei compressori: Soario Equazione dell energia applicata alle acchine a fluido Applicazione al caso delle turbine a gas e a vapore Forula della potenza Rendienti isoentropici Applicazione al caso dei copressori: Rendiento

Dettagli

2. SISTEMI CHIUSI ESERCIZI SUL SOLO BILANCIO DI ENERGIA

2. SISTEMI CHIUSI ESERCIZI SUL SOLO BILANCIO DI ENERGIA 2. SISTEMI CHIUSI Università degli Studi di Napoli Federico II - Facoltà di Ingegneria In tutte le applicazioni, si ipotizzino, se non diversamente specificato, condizioni di quiete o comunque di trascurabilità

Dettagli

BIOLOGIA A. A CHIMICA

BIOLOGIA A. A CHIMICA Laurea triennale in BIOLOGIA A. A. 2013-14 14 CHIMICA Lezioni di Chiica Fisica Energia libera di Gibbs Prof. Antonio Toffoletti 1 Chiica Fisica per Biologia A.A. 2013-2014 Cioè: Alcune equazioni della

Dettagli

FISICA TECNICA - A.A. 99/00

FISICA TECNICA - A.A. 99/00 Termo-fluidodinamica applicata - 1 a Interprova del 30.3.2000 Cognome Nome Anno di Corso Matricola 1 T1=200 C p1=7,0 bar m1=40 kg/s 2 A2=25 cm 2 T2=40,0 C p2=7,0 bar 3 V3=0,060 m 3 /s p3=7,0 bar Q A) Due

Dettagli

Analisi dei volumi di controllo: - Conservazione della massa - Primo Principio della Termodinamica

Analisi dei volumi di controllo: - Conservazione della massa - Primo Principio della Termodinamica Analisi dei volumi di controllo: - Conservazione della massa - Primo Principio della Termodinamica Ingresso Uscita Sistema termodinamico aperto: Sistema che attraverso il proprio contorno comportano flusso

Dettagli

Kelvin K T [K] = T [ C] + 273,16. Fahrenheit F T [ F] = 1,8 T [ C] Atmosfera atm = Pa = 760 mm Hg

Kelvin K T [K] = T [ C] + 273,16. Fahrenheit F T [ F] = 1,8 T [ C] Atmosfera atm = Pa = 760 mm Hg LE UNITA DI MISURA Temperatura Pressione Energia Potenza Costanti Celsius C Kelvin K T [K] = T [ C] + 273,16 Fahrenheit F T [ F] = 1,8 T [ C] + 32 Pascal Pa = Kg/(m s 2 ) Atmosfera atm = 101325 Pa = 760

Dettagli

Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Esercizi di Fisica Tecnica per il Corso di laurea in Ingegneria Gestionale

Università degli Studi di Napoli Federico II - Facoltà di Ingegneria Esercizi di Fisica Tecnica per il Corso di laurea in Ingegneria Gestionale 2. SISTEMI CHIUSI Università degli Studi di Napoli Federico II - Facoltà di Ingegneria In tutte le applicazioni, si ipotizzino, se non diversamente specificato, condizioni di quiete o comunque di trascurabilità

Dettagli

Il secondo principio della termodinamica

Il secondo principio della termodinamica Lezione n.7n (Modulo di Fisica Tecnica) Il secondo principio della termodinamica Indice Limiti del primo principio della termodinamica Postulato entropico Entropia Equazioni di Gibbs Esempio 1 - Variazione

Dettagli

Relazione PV=mRT dove il volume e' quello complessivo, mentre la pressione è quella che deriverebbe dal singolo gas, detta pressione parziale P i

Relazione PV=mRT dove il volume e' quello complessivo, mentre la pressione è quella che deriverebbe dal singolo gas, detta pressione parziale P i Relazione PV=mRT dove il volume e' quello complessivo, mentre la pressione è quella che deriverebbe dal singolo gas, detta pressione parziale P i. Vale la legge di Dalton : P i = P Per le condizioni usuali

Dettagli

II. Bilanci di massa, primo principio e secondo principio

II. Bilanci di massa, primo principio e secondo principio I. II. Bilanci di massa, primo principio e secondo principio A. Bilancio di massa per sistemi aperti Facendo riferimento al serbatoio schematizzato di fianco, sono note le seguenti grandezze: z D = 1,00

Dettagli

CORSO DI FISICA TECNICA

CORSO DI FISICA TECNICA ESERCITAZIONE N. 1/02 MATERIALE DI RIFERIMENTO: VIDEOLEZIONI 1-6 1) VERO/FALSO Dire se le seguenti affermazioni sono vere o false: 1. Un sistema aperto consente scambi sia di massa che di energia con l

Dettagli

Idraulica e macchine idrauliche

Idraulica e macchine idrauliche Scheda riassuntiva 5 capitoli 0- Idraulica e acchine idrauliche Idrostatica Pressione nei fluidi 1 La pressione esercitata su un punto del contorno si trasette uguale in tutta la assa fluida. In un punto

Dettagli

Capitolo 3. Una massa m=0,424 kg di un gas sconosciuto (il cui comportamento può essere ritenuto ideale) è

Capitolo 3. Una massa m=0,424 kg di un gas sconosciuto (il cui comportamento può essere ritenuto ideale) è Esercizio 3.16 Una massa m=5 kg di un gas sconosciuto (il cui comportamento può essere ritenuto ideale) è contenuta in una bombola di volume V=80 dm 3 a temperatura T=300 K e pressione p=300 kpa. Determinare

Dettagli

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Nota bene: prima di cominciare scrivere chiaramente il proprio nome e cognome sui fogli e sui diagrammi allegati. I dati del compito sono personalizzati secondo le iniziali: nel seguito, N indica il numero

Dettagli

061473/ Macchine (a.a. 2014/15)

061473/ Macchine (a.a. 2014/15) 061473/090856 - Macchine (a.a. 2014/15) Nome: Matricola: Data: 02/04/2015 Prova da sostenere: II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova completa

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA SISTEMI ENERGETICI LM per allievi Ingegneri Meccanici Appello del 9 settembre 2014 per le sedi di Milano Bovisa e Piacenza Proff. Consonni S., Chiesa P., Martelli

Dettagli

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema

EQUAZIONE DELLA CONTINUITA = Bilancio di massa nel tempo dt. Massa accumulatasi nel sistema. Massa uscente dal sistema. Massa entrante nel sistema SISTEMI APERTI Ipotesi: EQUILIBRIO LOCALE in ogni punto del sistema aperto le proprietà termostatice assumono il valore ce avrebbero se nell intorno di quel punto il sistema fosse uniforme Ipotesi: MOTO

Dettagli

TESTI DELLE APPLICAZIONI

TESTI DELLE APPLICAZIONI Roberto Lensi Testi delle Applicazioni A.A. 2012-13 Pag. 1 di 7 TESTI DELLE APPLICAZIONI Settimana n. 1 1. Il ciclo termodinamico ideale Lenoir è un ciclo diretto a gas costituito da tre trasformazioni:

Dettagli

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche

Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Appunti ed Esercizi di Fisica Tecnica e Macchine Termiche Appendici -5 Paolo Di Marco Versione 2009.00 30.0.09.. Equazioni di stato per i gas ideali e per i liquidi incomprimibili 2. Trasformazioni reversibili

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2005/2006 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*.

Laurea in Ingegneria Elettrica, A.A. 2005/2006 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*. Laurea in Ingegneria Elettrica, A.A. 2005/2006 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno consegnate e discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite

Dettagli

mv x +MV x = 0. V x = mv x

mv x +MV x = 0. V x = mv x Università degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 15/16, Sessione di Gennaio/Febbraio 16, Esae di FISICA GENEALE 1 1 CFU Prio Appello, POVA SCITTA, 1 Febbraio 16 TESTI E SOLUZIONI

Dettagli

) [gas riscaldato a V cost fintanto che la sua p è tale da sollevare pistone]

) [gas riscaldato a V cost fintanto che la sua p è tale da sollevare pistone] BILANCIO ENERGETICO DEI SISTEMI CHIUSI 1 Principio della Termodinamica: (per più sottosistemi: ) BILANCIO ENERGETICO DEI SISTEMI APERTI I Principio per volumi di controllo: [W] Equazione di continuità:

Dettagli

Esercizio 1 Esercizio 2

Esercizio 1 Esercizio 2 GAS IDEALI Dell ossigeno, supposto gas ideale con k = 1.4 cost, evolve secondo un ciclo costituito dalle seguenti trasformazioni reversibili: Compressione isoterma dallo stato 1 (p1 = 0.9 bar; v1 = 0.88

Dettagli

A1. Soluzione. Ilcalore Q per unita di massa e negativo (ceduto all esterno) e vale:

A1. Soluzione. Ilcalore Q per unita di massa e negativo (ceduto all esterno) e vale: A. na maccina disosta su un asse orizzontale è alimentata da una ortata di 0 kg/s di aria (R = 87 J/kg K, c = 004 J/kg K) alla ressione P = 0 bar e alla temeratura T = 00 C, da un condotto circolare di

Dettagli

Relazione PV=mRT dove il volume e' quello complessivo, mentre la pressione è quella che deriverebbe dal singolo gas, detta pressione parziale P i

Relazione PV=mRT dove il volume e' quello complessivo, mentre la pressione è quella che deriverebbe dal singolo gas, detta pressione parziale P i Relazione V=mRT dove il volume e' quello complessivo, mentre la pressione è quella che deriverebbe dal singolo gas, detta pressione parziale i. Vale la legge di Dalton : i = er le condizioni usuali in

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*.

Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Impianto antincendio*. Laurea in Ingegneria Elettrica, A.A. 2008/2009 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite calcolatore.

Dettagli

Corso di Laurea in Ing. Gestionale ESERCIZI DI TERMODINAMICA PER IL CORSO DI FISICA TECNICA

Corso di Laurea in Ing. Gestionale ESERCIZI DI TERMODINAMICA PER IL CORSO DI FISICA TECNICA Corso di laurea in Ingegneria Gestionale Aggiornato a ottobre 2016 Corso di Laurea in Ing. Gestionale ESERCIZI DI TERMODINAMICA PER IL CORSO DI FISICA TECNICA 1. TERMODINAMICA DEGLI STATI 2. SISTEMI CHIUSI

Dettagli

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( ) " ( 1,50 "10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 "10 2 K.

CAPITOLO 20 IL MODELLO MICROSCOPICO DELLA MATERIA ( ) ( ) ( )  ( 1,50 10 #3 m 3 ) ( ) ( ) = 1,0!10 5 Pa 3! 0,20 m 3 = 3,0 10 2 K. Problei di paragrafo 1 Perché la assa inerziale di un granello di polline per quanto piccola è olto aggiore di quella di una olecola di acqua Perché gli urti sono nuerosissii e la loro intensità e frequenza

Dettagli

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg.

6. Determinare il titolo del vapor d acqua che ad 8,00 bar ha un entalpia specifica di 2000 kj/kg. ESERCIZI DI FISICA TECNICA TERMODINAMICA APPLICATA Termodinamica degli stati 1. Utilizzando il piano pt e le tabelle A.3 del vapor d acqua saturo, si dica quali sono le fasi presenti nei sistemi costituiti

Dettagli

FISICA TECNICA E MACCHINE

FISICA TECNICA E MACCHINE FISICA TECNICA E MACCHINE Prof. Lucio Araneo AA 2018/2019 ESERCITAZIONE N.10 Ing. Gabriele D Ippolito 1) Il circuito di un impianto industriale che necessita 10 kg/s di aria compressa alla pressione di

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008

FISICA per SCIENZE BIOLOGICHE, A.A. 2007/2008 Prova scritta del 21 luglio 2008 FISI per SIENZE IOLOGIHE,.. 007/008 Prova scritta del 1 luglio 008 1) Meccanica Un corpo di assa 0.4 kg poggia su un gradino d orizzontale di altezza H 1 e coprie di un tratto d 10 c una olla di costante

Dettagli

CORSO DI TERMODINAMICA E MACCHINE

CORSO DI TERMODINAMICA E MACCHINE CORSO DI TERMODINAMICA E MACCHINE Parte A (Termodinamica Applicata) - Tempo a disposizione 1 ora Problema N. 1A (punti 10/30) Una tubazione con diametro di 70 mm e lunga 2 km trasporta 20 kg/s di gasolio

Dettagli

Energia e termodinamica Applicazioni del Primo principio Le machine termiche

Energia e termodinamica Applicazioni del Primo principio Le machine termiche Energia e termodinamica Applicazioni del Primo principio Le machine termiche Prof. Piercarlo Romagnoni Dorsoduro 2206 3023 Venezia pierca@iuav.it 0 h m h m L j i e i e i i u i u,,,, U VC L j j u, k k,

Dettagli

Determinazione e confronto delle prestazioni di impianti geotermoelettrici

Determinazione e confronto delle prestazioni di impianti geotermoelettrici Determinazione e confronto delle prestazioni di impianti geotermoelettrici Si ipotizzi di avere una potenza geotermica disponibile pari a 600 MW. La temperatura dell'acqua di refrigerazione all'uscita

Dettagli

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica

Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale Termodinamica Ingegneria Edile-Architettura Esercizi di Fisica Tecnica Ambientale 2012-2013 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas (! = 1,29 ed R * = 190 J/(kg"K)) si espande da 5 bar e 90 C ad

Dettagli

Lezioni del Corso di Misure Meccaniche e Termiche

Lezioni del Corso di Misure Meccaniche e Termiche Facoltà di Ingegneria Lezioni del Corso di Misure Meccaniche e Teriche 02. Aria Uida Aria atosferica L'aria atosferica é costituita da un insiee di coponenti gassosi e da altre sostanze che possono presentarsi

Dettagli

Lecture 4. Text: Motori Aeronautici Mar. 6, Mauro Valorani Univeristà La Sapienza. Equazioni del moto dei fluidi

Lecture 4. Text: Motori Aeronautici Mar. 6, Mauro Valorani Univeristà La Sapienza. Equazioni del moto dei fluidi Lecture 4 Equazioni del Text: Motori Aeronautici Mar. 6, 2015 Equazioni del Mauro alorani Univeristà La Sapienza 4.39 Agenda Equazioni del 1 2 4.40 Modelli Macroscopico a Equazioni del Ipotesi: volume

Dettagli

Le Macchine Termiche. Termodinamica dell Ingegneria Chimica

Le Macchine Termiche. Termodinamica dell Ingegneria Chimica Le Macchine Termiche Termodinamica dell Ingegneria Chimica Bilancio di energia per sistemi chiusi: Conservazione dell energia in regime transitorio Normalmente, i termini relativi alle variazioni di energia

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Uniersità degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 206/207, Sessione di Gennaio/Febbraio 207, Esae di FISICA GENERALE (2 CFU) Prio Appello, PROVA SCRITTA, 27 Gennaio 207 TESTI

Dettagli

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1

ENERGIA INTERNA ENERGIA INTERNA SPECIFICA. e = E/m = cv T ENTALPIA. H = E + pv ENTALPIA SPECIFICA. h = H/m = cp T h = e + pv = e + p/d L-1 L - SISTEMI APERTI ENERGIA INTERNA E = n Cv T E = m cv T (Cv molare = J/kmol C) (cv massico = J/kg C) ENERGIA INTERNA SPECIFICA e = E/m = cv T ENTALPIA H = E + pv H = n Cp T H = m cp T (Cp molare = J/kmol

Dettagli

10.1 Sono date le frazioni molari dei costituenti dell'aria umida. Si devono determinare le frazioni di massa dei costituenti.

10.1 Sono date le frazioni molari dei costituenti dell'aria umida. Si devono determinare le frazioni di massa dei costituenti. 1 RISOLUZIONI cap.10 10.1 Sono date le frazioni molari dei costituenti dell'aria umida. Si devono determinare le frazioni di massa dei costituenti. Ipotesi Si trascurano le piccole quantità di gas nell'aria

Dettagli

I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test...

I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test... I Test di Autovalutazione... 2 Esiti I Test... 4 Statistiche per domanda I Test... 4 II Test di Autovalutazione... 5 Esiti II Test... 7 Statistiche per domanda II Test... 7 III Test di Autovalutazione...

Dettagli

Laurea in Archite:ura

Laurea in Archite:ura UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTÁ DI INGEGNERIA E ARCHITETTURA Laurea in Archite:ura IMPIANTI PER LA SOSTENIBILITA' ENERGETICA DEGLI EDIFICI A.A. 2018-2019 Le condizioni ambientali di comfort

Dettagli

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*.

Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE. TAVOLA 1 Ugello di De Laval*. Laurea in Ingegneria Elettrica, A.A. 2006/2007 Corso di FISICA TECNICA E MACCHINE TERMICHE Le tavole verranno consegnate e discusse in sede di esame. Lo studente è libero di redigerle manualmente o tramite

Dettagli

1.1.1 Termodinamica applicata, p Trasmissione del calore, p Termodinamica dell aria umida, p. 11

1.1.1 Termodinamica applicata, p Trasmissione del calore, p Termodinamica dell aria umida, p. 11 Indice XIII Prefazione XIV L Editore ringrazia 1 Capitolo Primo - Introduzione 1 1.1 Contenuti 1.1.1 Termodinamica applicata, p. 2-1.1.2 Trasmissione del calore, p. 8-1.1.3 Termodinamica dell aria umida,

Dettagli

PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI

PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI PSICROMETRIA PROPRIETÀ TERMODINAMICHE DEI GAS PERFETTI Un modello di comportamento interessante per la termodinamica è quello cosiddetto di gas perfetto. Il gas perfetto è naturalmente un astrazione, tuttavia

Dettagli

Dipartimento di Ingegneria dell'energia e dei Sistemi

Dipartimento di Ingegneria dell'energia e dei Sistemi Roberto Lensi 5. Sistemi a Ciclo Inverso Pag. 1 di 18 UNIVERSITÀ DEGLI STUDI DI PISA Dipartimento di Ingegneria dell'energia e dei Sistemi RISPARMIO ENERGETICO INDUSTRIALE (6 CFU) 5. Sistemi a Ciclo Inverso

Dettagli

061473/ Macchine (a.a. 2016/17)

061473/ Macchine (a.a. 2016/17) 061473/090856 - Macchine (a.a. 2016/17) Nome: Matricola: Data: 01/02/2017 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

Programmazione modulare a.s

Programmazione modulare a.s Programmazione modulare a.s. 2018-2019 Disciplina: MME Meccanica, Macchine ed Energia Docente prof.ssa Rita Muraglia, prof. Raniero Spinelli Classe 4 meccanica sez. A settimanali : 5 ore di cui 2 di laboratorio

Dettagli

061473/ Macchine (a.a. 2015/16)

061473/ Macchine (a.a. 2015/16) 061473/090856 - Macchine (a.a. 2015/16) Nome: Matricola: Data: 03/02/2016 Prova da sostenere: I parte II parte Prova completa Parte B (11 punti su 32). Punteggio minimo: 5/11. Per chi sostiene la prova

Dettagli

RELAZIONE TECNICO DESCRITTIVA IMPIANTI DI PROGETTO

RELAZIONE TECNICO DESCRITTIVA IMPIANTI DI PROGETTO RELAZIONE TECNICO DESCRITTIVA IMPIANTI DI PROGETTO 1 PREMESSA La seguente relazione ha lo scopo di precisare i dati tecnici a base di calcolo e descrivere in sintesi la tipologia degli ipianti eccanici

Dettagli

IMPIANTIDI CLIMATIZZAZIONE

IMPIANTIDI CLIMATIZZAZIONE IMPIANTIDI CLIMATIZZAZIONE FACOLTÀ DI ARCHITETTURA FISICA TECNICA E IMPIANTI A.A. 2012/2013 MASSIMILIANO PANCANI Ingegnere Energetico e Nucleare m.pancani@gmail.com ogni tanto Dopo il corso saprete tutto

Dettagli

Indice delle lezioni (Prof. Marchesi)

Indice delle lezioni (Prof. Marchesi) Lezione numero 1 Lezione numero 2 Lezione numero 3 Lezione numero 4 Lezione numero 5 Lezione numero 6 Lezione numero 7 Indice delle lezioni Introduzione al corso. Sistemi termodinamici. Pareti. La natura

Dettagli

Esame 20 Luglio 2017

Esame 20 Luglio 2017 Esae 0 Luglio 07 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartiento di ateatica Università degli Studi di Roa La Sapienza Anno Accadeico 06-07 Esae - Fisica Generale I 0 Luglio 07 R. Bonciani,

Dettagli

Entropia e secondo principio della termodinamica

Entropia e secondo principio della termodinamica Entroia e secondo rinciio della terodinaica Oltre alla conservazione dell'energia, le trasforazioni irreversibili hanno un ulteriore vincolo derivante dalla sontaneità secondo la freccia teorale. L inverso

Dettagli

CORSO DI FISICA TECNICA II

CORSO DI FISICA TECNICA II CORSO DI FISICA ECNICA II Eleenti di terodinaica Parte pria Michele Bottarelli - Dipartiento di Architettura di Ferrara ichele.bottarelli@unife.it PROGRAMMA Concetti fondaentali della terodinaica (sistei,

Dettagli

Termodinamica II. Secondo Principio della Termodinamica

Termodinamica II. Secondo Principio della Termodinamica Termodinamica II Secondo Principio della Termodinamica Dal primo al secondo principio della termodinamica Dal primo principio sappiamo che l energia non può essere né creata, né distru;a. Da questo deriva

Dettagli

Un abitazione consuma circa 8 10 kwh di energia elettrica al giorno. L ente di distribuzione assicura un prelievo contemporaneo massimo pari

Un abitazione consuma circa 8 10 kwh di energia elettrica al giorno. L ente di distribuzione assicura un prelievo contemporaneo massimo pari Applicazioni del primo principio Potenza ed energia Un abitazione consuma circa 8 0 kwh di energia elettrica al giorno. L ente di distribuzione assicura un prelievo contemporaneo massimo pari (ad esempio)

Dettagli

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE RACCOLTA di ESERCIZI con SOLUZIONI ESERCIZIO n.1 Del circuito idraulico rappresentato in Figura 1 in sono noti: Diametro delle tubazioni D 1 = D 2 = 0.5 m Lunghezza

Dettagli

TERMODINAMICA DEL CALORE SISTEMI APERTI

TERMODINAMICA DEL CALORE SISTEMI APERTI CAPITOLO QUINTO TERMODINAMICA DEL CALORE SISTEMI APERTI Sistemi aperti Essi possono essere considerati come una scatola, racchiudente organi di vario genere, che, oltre a scambiare calore e lavoro, sono

Dettagli

IL CICLO DI CARNOT. Scambi di energia durante il ciclo

IL CICLO DI CARNOT. Scambi di energia durante il ciclo IL CICLO DI CNO Consideriamo un gas ideale, contenuto nel solito cilindro, che compie un ciclo di 4 trasformazioni reversibili (2 isoterme + 2 adiabatiche) rappresentate nel piano -p come in figura. cambi

Dettagli

Potenziale Chimico e Stabilità. Come si valutano le condizioni di P e T per le quali una fase è più stabile di un altra?

Potenziale Chimico e Stabilità. Come si valutano le condizioni di P e T per le quali una fase è più stabile di un altra? Potenziale Chiico e Stabilità Coe si valutano le condizioni di P e T per le quali una fase è più stabile di un altra? Abbiao visto che : all equilibrio (a T,P costanti) il potenziale chiico di due fasi

Dettagli

Copyleft elettrix01. Svolgimento:

Copyleft elettrix01. Svolgimento: Esercizio: Una bombola del volume di 50 litri è adatta a contenere ossigeno (3 kg/kmol) ad elevata pressione. Attraverso la valvola di ricarica essa è collegata ad una rete di distribuzione in grado di

Dettagli

5. Indicare quale figura rappresenta i triangoli di velocitá di uno stadio di turbina assiale a reazione (χ =0.5) ideale, simmetrico ed ottimizzato:

5. Indicare quale figura rappresenta i triangoli di velocitá di uno stadio di turbina assiale a reazione (χ =0.5) ideale, simmetrico ed ottimizzato: Nome Cognome Matr. 1. Il rischio di cavitazione in una turbopompa é maggiore nella seguente condizione: basse perdite nel condotto di aspirazione posizionamento sotto battente della pompa elevate perdite

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini, PhD Ing.

Dettagli

FISICA TECNICA (Ingegneria Medica)

FISICA TECNICA (Ingegneria Medica) NOME N. MATRICOLA N. CREDITI E-MAIL Prova di esame del 11 Febbraio 2014 1. Sia dato un ciclo frigorifero, in cui il fluido evolvente è R134a, a cui in cascata è collegato un secondo ciclo il cui fluido

Dettagli

Esercizi di Fisica Tecnica 2013-2014. Termodinamica

Esercizi di Fisica Tecnica 2013-2014. Termodinamica Esercizi di Fisica Tecnica 2013-2014 Termodinamica TD1 In un sistema pistone-cilindro, 1 kg di gas ( = 1,29 ed R * = 190 J/(kg K)) si espande da 5 bar e 90 C ad 1 bar. Nell'ipotesi che la trasformazione

Dettagli

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico

Cap. 1 Richiami di termodinamica. 1.1 Concetti base 1.2 Principio di conservazione dell energia. Cap. 2 Il bilancio exergetico III Indice IX 1 1 2 3 5 6 7 9 11 12 12 13 13 Presentazione Cap. 1 Richiami di termodinamica 1.1 Concetti base 1.2 Principio di conservazione dell energia 1.2.1 Sistema con involucro chiuso allo scambio

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

Corso di Termofluidodinamica

Corso di Termofluidodinamica Corso di Termofluidodinamica Modulo di Termodinamica Tecnica A.A. 2014-2015 - Esercizi di preparazione alla prima prova intermedia Problema N. 1 Un serbatoio deve essere dimensionato per contenere 200

Dettagli

Esercitazione: Dimensionamento di una valvola termostatica

Esercitazione: Dimensionamento di una valvola termostatica Corso di Impianti Meccanici Laurea Triennale e Magistrale Esercitazione: Dimensionamento di una valvola termostatica Prof. Ing. Cesare Saccani Prof. Ing. Augusto Bianchini Ing. Marco Pellegrini PhD Ing.

Dettagli

Entropia e Secondo Principio della Termodinamica. Principi di Ingegneria Chimica Ambientale

Entropia e Secondo Principio della Termodinamica. Principi di Ingegneria Chimica Ambientale Entropia e Secondo Principio della Termodinamica Principi di Ingegneria Chimica Ambientale 1 Processi spontanei e non spontanei Un processo spontaneo è un processo che avviene senza che ci sia bisogno

Dettagli

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna

Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Roberto Lensi 1. Complementi sui sistemi termici Pag. 33 MOTORE DINAMICO A GAS Sistemi a combustione esterna o interna Ciclo termodinamico ideale Joule (Brayton) Ciclo termodinamico ideale Holzwarth Schema

Dettagli

Trasformazioni termodinamiche: Esercizi svolti

Trasformazioni termodinamiche: Esercizi svolti Trasformazioni termodinamiche: Esercizi svolti 9 aprile 2013 Esercizio 1 Si consideri un sistema chiuso in cui si abbia inizialmente aria a 5 C, ad una pressione p 1 = 1 bar, che venga in un secondo momento

Dettagli

CICLO A VAPORE CON RISURRISCALDAMENTO E 7 SPILLAMENTI

CICLO A VAPORE CON RISURRISCALDAMENTO E 7 SPILLAMENTI CICLO A VAPORE CON RISURRISCALDAMENTO E 7 SPILLAMENTI 1 DATI pressione di vaporizzazione 16,67 MPa pressione di condensazione 43 kpa teperatura di surriscaldaento 538 C teperatura di risurriscaldaento

Dettagli

Fisica Tecnica Numero Domanda Risposta L area sottesa dalla linea della trasformazione isocora in un diagramma p-v è:

Fisica Tecnica Numero Domanda Risposta L area sottesa dalla linea della trasformazione isocora in un diagramma p-v è: oncorso pubblico, per esami, a 20 posti nella qualifica di vice direttore del ruolo dei direttivi del.n. VV.F. 1 L area sottesa dalla linea della trasformazione isocora in un diagramma p-v è: ) nulla )

Dettagli

Macchina termica Q Q Q. η = L Q ass

Macchina termica Q Q Q. η = L Q ass Macchina termica Dispositivo che scambia calore Q con l ambiente e produce lavoro L: Ogni macchina termica contiene un fluido motore (per es. acqua, miscela aria-benzina); Per produrre lavoro in modo continuativo,

Dettagli

Una torre evaporativa deve raffreddare una portata di refrigerante 134a. Sono noti i seguenti parametri operativi:

Una torre evaporativa deve raffreddare una portata di refrigerante 134a. Sono noti i seguenti parametri operativi: Fisica Tecnica INE IGE Esercizio del 12/01/2007 Una torre evaporativa deve raffreddare una portata di refrigerante 134a. Sono noti i seguenti parametri operativi: M 1 200 kg/min portata R134a p 1 = p 2

Dettagli

CORSO DI FISICA TECNICA II

CORSO DI FISICA TECNICA II CORSO DI FISICA ECNICA II Eleenti di terodinaica Parte pria Michele Bottarelli - Dipartiento di Architettura di Ferrara ichele.bottarelli@unife.it PROGRAMMA Concetti fondaentali della terodinaica (sistei,

Dettagli

Termodinamica chimica

Termodinamica chimica I processi naturali hanno un verso spontaneo di evoluzione (es. gas si espandono, caduta dei gravi nell aria, una palla che rotola su di un piano inclinato) E possibile condurre i processi opposti solo

Dettagli

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas

Impianti a turbogas. Scheda riassuntiva 8 capitolo 15. Il ciclo ideale di riferimento. Impianto a turbogas. Volume 2 (cap. 15) Impianti a turbogas Scheda riassuntiva 8 capitolo 5 Impianti a turbogas Il ciclo ideale di riferimento È il ciclo Brayton-Joule ad aria, costituito da due adiabatiche isoentropiche e due scambi termici a pressione costante.

Dettagli

Richiami sulle trasformazioni di scambio di energia sotto forma di lavoro e calore Gli impianti motori termici: Definizioni Rendimenti

Richiami sulle trasformazioni di scambio di energia sotto forma di lavoro e calore Gli impianti motori termici: Definizioni Rendimenti Sommario Definizione di macchina e impianto motore Fonti energetiche geotermica solare Combustibili: solidi, liquidi, gassosi idraulico nucleare previsioni future Richiami sulle trasformazioni di scambio

Dettagli

FISICA per SCIENZE BIOLOGICHE -- A.A. 2006/2007 Prova scritta di Venerdi 16 Febbraio 2007

FISICA per SCIENZE BIOLOGICHE -- A.A. 2006/2007 Prova scritta di Venerdi 16 Febbraio 2007 FISI er SIENZE BIOLOGIHE --.. 006/007 Prova scritta di enerdi 16 Febbraio 007 Esercizio 1 Un coro di assa M Kg si uove lungo il ercorso B nella guida ostrata in igura. Il coro arte da ero, e lascia la

Dettagli

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA

POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA POLITECNICO DI MILANO DIPARTIMENTO DI ENERGIA LAUREA MAGISTRALE IN INGEGNERIA MECCANICA A.A 2012-13 - CORSO DI SISTEMI ENERGETICI LM proff. Paolo CHIESA, Stefano CONSONNI e Emanuele MARTELLI Prova scritta

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 29 Giugno 2005

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Appello di FISICA, 29 Giugno 2005 ORSO I LURE IN SIENZE IOLOGIHE eo di FISI, 9 Giugno 005 ) Un coro di assa 0.5 kg scivoa ungo un iano incinato iscio, artendo da fero da unto a quota h. I iano fora con orizzontae un angoo di 60 0. Giunto

Dettagli

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica

ESERCITAZIONI FISICA TECNICA. Prof. Fabio Polonara Prof. Gianni Cesini. Corso di Ingegneria Meccanica ESERCITAZIONI FISICA TECNICA Prof. Fabio Polonara Prof. Gianni Cesini Corso di Ingegneria Meccanica 2 TERMODINAMICA APPLICATA Termodinamica degli stati 3 ESERCIZIO TA-T8 Utilizzando il piano P-T e le tabelle

Dettagli

REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C)

REFRIGERAZIONE. Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (<8 C) Refrigerazione Riduzione e/o mantenimento della temperatura a valori più bassi della temperatura ambiente (

Dettagli

McGraw-Hill MECCANICA DEI FLUIDI. Mc Graw Hill. Education SOLUZIONI DEGLI ESERCIZI CAPITOLO

McGraw-Hill MECCANICA DEI FLUIDI. Mc Graw Hill. Education SOLUZIONI DEGLI ESERCIZI CAPITOLO g l i e s e r c i z i a r i d i McGraw-Hill Yunus A. Çengel John M. Cimbala per l'edizione italiana Giuseppe Cozzo Cinzia Santoro MECCANICA DEI FLUIDI III EDIZIONE SOLUZIONI DEGLI ESERCIZI CAPITOLO Mc

Dettagli

F. Gamma Corso di Motori per Aeromobili CAP. 2 ESEMPI NUMERICI. Ciclo base ideale

F. Gamma Corso di Motori per Aeromobili CAP. 2 ESEMPI NUMERICI. Ciclo base ideale CAP. ESEMPI NUMERICI ES. ) Ciclo base ideale ES. ) Ciclo ideale con interrefrigerazione 3 ES. 3) Ciclo ideale con postcombustione 4 5 ES. 4) Ciclo ideale con rigenerazione 6 7 ES. 5) Ciclo reale con interrefrigerazione,

Dettagli

Impianti di. Climatizzazione. ing. Massimiliano Pancani

Impianti di. Climatizzazione. ing. Massimiliano Pancani Impianti di Climatizzazione Indice delle dispense Capitolo 1 I fondamentali Unità di misura Temperatura Umidità Pressione Energia Potenza Capitolo 2 Sistemi energetici Sistemi energetici Impianti tecnici

Dettagli