Primo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Primo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti."

Transcript

1 Primo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n Tot. Cognome e nome in stampatello codice persona o n di matricola n d ordine v. elenco. Numeri complessi. Risolvere la seguente equazione nel campo complesso, scrivendo tutte le soluzioni in forma algebrica e dicendo esplicitamente quante sono: z = iz z.. Limiti di funzioni. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: + 5 lim. + e + e. Derivata di funzione inversa. Sia f = log log + a. Calcolare f e dimostrare che f è strettamente monotona su, + e quindi invertibile in tale intervallo. b. Detta g la funzione inversa di f su tale intervallo, calcolare g log e g log.. Studio di funzione. Studiare la seguente funzione e tracciarne il grafico. E richiesto in particolare: insieme di definizione, limiti alla frontiera dell insieme di definizione, eventuali asintoti, studio del segno della derivata prima, determinazione dei punti di massimo e minimo, studio degli eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda, determinare in altro modo la concavità plausibile. f = 5 e +.

2 5. Serie numeriche. Studiare il carattere della seguente serie, giustificando con precisione le proprie conclusioni in base ai criteri studiati. n= n e n cos n 6. Calcolare il seguente integrale definito: e d. 7. Calcolare il seguente integrale indefinito: cos sin + d.

3 Primo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola n d ordine v. elenco. Numeri complessi. Risolvere la seguente equazione nel campo complesso, scrivendo tutte le soluzioni in forma algebrica o trigonometrica e dicendo esplicitamente quante sono: z iz = i.. Stima all infinito e asintoto obliquo. Dare una stima asintotica di f per ± ; stabilire quindi se f possiede un asintoto obliquo, in caso affermativo determinandolo. + 5 f = log.. Calcolo di limiti. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: arctan π lim + arctan.. Studio di funzione. Studiare la seguente funzione e tracciarne il grafico. E richiesto in particolare: insieme di definizione, limiti alla frontiera dell insieme di definizione, eventuali asintoti, studio del segno della derivata prima, determinazione dei punti di massimo e minimo, studio degli eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda, determinare in altro modo la concavità plausibile. f = e log.

4 5. Serie numeriche. Studiare il carattere della seguente serie, giustificando con precisione le proprie conclusioni in base ai criteri studiati. n= n + n n! 6. Calcolare il seguente integrale definito: d. 7. Discutere la convergenza o meno del seguente integrale generalizzato, giustificando le proprie affermazioni in base ai criteri studiati. a. f = f d; b. log + 5/ sin. + f d, dove in entrambi i casi

5 Primo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 5/6. Prof. M. Bramanti Svolgimento Tema n Es Tot. Punti. Numeri complessi. Risolvere la seguente equazione nel campo complesso, scrivendo tutte le soluzioni in forma algebrica e dicendo esplicitamente quante sono: z = iz z. Poniamo z = ρe iϑ e riscriviamo l equazione nella forma da cui { ρ = ρ ρ e iϑ = e i π ρ e iϑ ρ ρ e iϑ = ρ e i π ϑ ϑ = π ϑ + kπ { ρ =, ρ = Perciò le soluzioni sono 7 in tutto: ϑ = π + kπ, k =,,,,, 5. z k = ei π + kπ, con k =,,,,, 5 z 6 =.. Limiti di funzioni. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: + 5 lim. + e + e + 5 = + 5 poiché per + 5, 5 =. e + e = e e + 5

6 poiché per + +, + e = e e, quindi e questo è il limite cercato. f e = 6e,. Derivata di funzione inversa. Sia f = log log + a. Calcolare f e dimostrare che f è strettamente monotona su, + e quindi invertibile in tale intervallo. b. Detta g la funzione inversa di f su tale intervallo, calcolare g log e g log. f = log log log + log + per ogni > perché: = log log log + log + > log log + > perché log + > perché + > perché > inoltre 6 >, log + > e log + > perché è >. quindi g log = f = log log = log, g log = f = log log + 6 log log = log + log = log log +.. Studio di funzione. Studiare la seguente funzione e tracciarne il grafico. E richiesto in particolare: insieme di definizione, limiti alla frontiera dell insieme 6

7 di definizione, eventuali asintoti, studio del segno della derivata prima, determinazione dei punti di massimo e minimo, studio degli eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda, determinare in altro modo la concavità plausibile. Definita per. Per ±, f = 5 e +. f e + { + + = asintoto verticale da destra, punto d arresto a tangente orizzontale perché f si annulla con velocità esponenziale da sinistra. Per ±, f 5 + con crescita lineare. Cerchiamo eventuali asintoti obliqui. f 5 = 5 e + 5 = 5 e + e +. e + per ± 5 e + 5 Quindi per ± e la funzione ha gli asintoti obliqui: + 5 = ±5 per ± { f 5 ±5 = 9 y = 5 + per + y = 5 9 per. Calcoliamo, per, f = e sgn + = e per < + = Per > e per > + e per > e per < = e + + f per sempre sgn 7

8 La funzione è sempre crescente per >. Per < f per < < quindi = 5 5 è punto di minimo relativo, = 5+ 5 è punto di massimo relativo. f + = 9e; f = e, quindi = è punto angoloso, e punto di minimo relativo. f = per = 5, = ± 5. Grafico qualitativo: 5. Serie numeriche. Studiare il carattere della seguente serie, giustificando con precisione le proprie conclusioni in base ai criteri studiati. n e n cos n n e n cos = n n n= e n = n + n + o n cos n = n +!n + o n = n + n +!n + o n n + n + o n = n n + o n + n +!n + o n 6n 8

9 quindi la serie è a termini almeno definitivamente positivi, e per confronto asintotico con la serie armonica generalizzata convergente 6n, converge. 6. Calcolare il seguente integrale definito: e d. e d = e d + e d. e d = e + e d = e e + c g f = e + c e d = [ e ] + [ e ] = e + e + e = + e e. 7. Calcolare il seguente integrale indefinito: cos sin + d cos sin + d = sin cos d = sin + [sin = t; cos d = dt] t = t + dt = + t + 5 t + t + t + = t + t + t + dt = t + log t + + t + + c = t + log t + + t + + c = sin + + log sin + + dt t + dt sin + + c. 9

10 Primo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 5/6. Prof. M. Bramanti Svolgimento Tema n Es. 5 6 Tot. Punti. Numeri complessi. Risolvere la seguente equazione nel campo complesso, scrivendo tutte le soluzioni in forma algebrica o trigonometrica e dicendo esplicitamente quante sono: z iz = i. Risolviamo prima in z : z + 8 = i + iz z = 8 i8 z = 8 i8 da cui e poiché si ha: arg z = 8 i8 8 i8 = 6 8 i8 = 6 i = π z = π 6 cos + kπ π = cos + kπ + i sin i π + i sin π + kπ + kπ

11 con k =,,,, e le soluzioni sono in tutto: z = + i = + i z = + i = + i z = i = i z = i = i.. Stima all infinito e asintoto obliquo. Dare una stima asintotica di f per ± ; stabilire quindi se f possiede un asintoto obliquo, in caso affermativo determinandolo. + 5 f = log. Per ± è f log ± con crescita lineare, perciò cerco eventuale asintoto obliquo. [ ] + 5 f log = log log [ ] + 5 = log [ e poiché +5 ] per ±, [ ] = 6 6 = 6 perciò esiste l asintoto obliquo di equazione y = log Calcolo di limiti. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: arctan π lim + arctan.

12 Applico De L Hospital: ma: lim + lim + arctan π arctan = = + + = + + = = [ ] [ ], + quindi e questo è il limite cercato =,. Studio di funzione. Studiare la seguente funzione e tracciarne il grafico. E richiesto in particolare: insieme di definizione, limiti alla frontiera dell insieme di definizione, eventuali asintoti, studio del segno della derivata prima, determinazione dei punti di massimo e minimo, studio degli eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda, determinare in altro modo la concavità plausibile. f = e log. Definita per. f > per ogni. Per, log e f. Quindi f è prolungabile con continuità ponendo f =. { Per ±, log + con crescita sopralineare senza asintoto obliquo ± e f y = asintoto orizzontale per. Per calcoliamo f = e log log log + = e log log + log per log, log, e perciò: = punto di massimo relativo = e punto di minimo relativo = e punto di massimo relativo +

13 = punto di minimo relativo. Per ±, f log + log log +, quindi = è punto di flesso a tangente verticale, ascendente. Grafico qualitativo: 5. Serie numeriche. Studiare il carattere della seguente serie, giustificando con precisione le proprie conclusioni in base ai criteri studiati. Serie a termini positivi, n= n + n n! a n = n + n n! n n! b n. Studio la convergenza di n= b n col criterio del rapporto. b n+ n+ n! = b n n +! n =, n + quindi n= b n converge per il criterio del rapporto, e n= a n converge per il criterio del confronto asintotico. 6. Calcolare il seguente integrale definito: d

14 d = d = [ = t; = t ; d = tdt] Oppure = = t + t tdt = [ t arctan t ] t dt + = π d = [ = Ch t; d = ] Sh tdt SettCh Sh t = Sh tdt Ch t SettCh = Sh t + Sh Ch tdt t = [Sh t = u; Ch tdt = du] = u + u du = = [u arctan u] = π. + u du 7. Discutere la convergenza o meno del seguente integrale generalizzato, giustificando le proprie affermazioni in base ai criteri studiati. a. f = f d; b. log + 5/ sin. + f d, dove in entrambi i casi La funzione f è continua in, +, illimitata in, positiva in, ma di segno variabile in, +. a. f è integrabile in [ε, ] per ogni ε > in quanto continua. Per + è f = 5/, / integrabile in perché / <. Per il criterio del confronto asintotico, l integrale in a converge.

15 b. f è integrabile in [, k] per ogni k > in quanto continua. f log + 5/ definitivamente, e poiché è integrabile a + in quanto >, per il criterio del confronto f è assolutamente integrabile, e quindi integrabile. 5

16 Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola n d ordine v. elenco. Numeri complessi. Risolvere la seguente equazione nel campo complesso, scrivendo tutte le soluzioni in forma algebrica e dicendo esplicitamente quante sono: z = iz z. 6

17 . Operazioni sui grafici. Tracciare il grafico della seguente funzione, a partire dal grafico noto della funzione Sh, applicando esclusivamente successive operazioni sul grafico traslazione, dilatazione, riflessione, valore assoluto. Riportare anche i vari grafici di passaggio utilizzati per costruire il grafico della funzione, mettendo ben in evidenza il grafico di f. Segnare sugli assi ascissa o ordinata di qualche punto noto della funzione ad esempio di intersezione con gli assi, di ma./min, ecc. f = arcsin + π.. Limiti di funzioni.calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: lim e + e. 7

18 . Stima all infinito e asintoto obliquo. Dare una stima asintotica di f per ± ; stabilire quindi se f possiede un asintoto obliquo, in caso affermativo determinandolo. + 5 f = log. 5. Studio qualitativo di funzione. Tracciare il grafico qualitativo della seguente funzione, in base alla conoscenza delle proprietà delle funzioni elementari ed utilizzando opportunamente limiti e stime asintotiche non calcolare derivate. In particolare, è richiesta la stima asintotica nei punti in cui f si annulla e alla frontiera dell insieme di definizione, e la determinazione degli eventuali asintoti. Evidenziare nel grafico eventuali punti notevoli a tangente orizzontale o verticale, angolosi, di asintoto, ecc., e l andamento all infinito. f = arctan log. 8

19 6. Derivata di funzione inversa. Sia f = log log + a. Calcolare f e dimostrare che f è strettamente monotona su, + e quindi invertibile in tale intervallo. b. Detta gla funzione inversa di f su tale intervallo, calcolare g log e g log. 9

20 Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 5/6. Prof. M. Bramanti Svolgimento Tema n Es Tot. Punti. Numeri complessi. Risolvere la seguente equazione nel campo complesso, scrivendo tutte le soluzioni in forma algebrica e dicendo esplicitamente quante sono: z = iz z. Poniamo z = ρe iϑ e riscriviamo l equazione nella forma da cui { ρ = ρ ρ e iϑ = e i π ρ e iϑ ρ ρ e iϑ = ρ e i π ϑ ϑ = π ϑ + kπ { ρ =, ρ = Perciò le soluzioni sono 7 in tutto: ϑ = π + kπ, k =,,,,, 5. z k = ei π + kπ, con k =,,,,, 5 z 6 =.. Operazioni sui grafici. Tracciare il grafico della seguente funzione, a partire dal grafico noto della funzione Sh, applicando esclusivamente successive operazioni sul grafico traslazione, dilatazione, riflessione, valore assoluto. Riportare anche i vari grafici di passaggio utilizzati per costruire il grafico della funzione, mettendo ben in evidenza il grafico di f. Segnare sugli assi ascissa o ordinata di qualche punto noto della funzione ad esempio di intersezione con gli assi, di ma./min, ecc. f = arcsin + π.

21 arcsin arcsin + arcsin + arcsin + π arcsin + π. Limiti di funzioni. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: + 5 lim. + e + e + 5 = + 5 poiché per + 5, e + e = e 5 =. e +

22 poiché per + +, + e = e e, quindi e questo è il limite cercato. f e = 6e,. Stima all infinito e asintoto obliquo. Dare una stima asintotica di f per ± ; stabilire quindi se f possiede un asintoto obliquo, in caso affermativo determinandolo. + 5 f = log. Per ± è f log ± con crescita lineare, perciò cerco eventuale asintoto obliquo. [ ] + 5 f log = log log [ ] + 5 = log [ e poiché +5 ] per ±, [ ] = 6 6 = 6 perciò esiste l asintoto obliquo di equazione y = log Studio qualitativo di funzione. Tracciare il grafico qualitativo della seguente funzione, in base alla conoscenza delle proprietà delle funzioni elementari ed utilizzando opportunamente limiti e stime asintotiche non calcolare derivate. In particolare, è richiesta la stima asintotica nei punti in cui f si annulla e alla frontiera dell insieme di definizione, e la determinazione degli eventuali asintoti. Evidenziare nel grafico eventuali punti notevoli a tangente orizzontale o verticale, angolosi, di asintoto, ecc., e l andamento all infinito. f = arctan log.

23 Definita per,. Per ±, f log log ±, quindi = è punto di discontinuità eliminabile, f =. D altro canto la funzione log tende a zero più lentamente di, ossia con tangente verticale: = è punto di flesso a tangente verticale. Per ±, f arctan ± π, quindi = è punto angoloso e di minimo relativo. f = per = ±,. Per, f arctan, che si annulla linearmente il punto è regolare. Per ±, log f log +. y = asintoto orizzontale per ±. Grafico qualitativo:

24 6. Derivata di funzione inversa. Sia f = log log + a. Calcolare f e dimostrare che f è strettamente monotona su, + e quindi invertibile in tale intervallo. b. Detta g la funzione inversa di f su tale intervallo, calcolare g log e g log. f = log log log + log + per ogni > perché: = log log log + log + > log log + > perché log + > perché + > perché > inoltre 6 >, log + > e log + > perché è >. quindi g log = f = log log = log, g log = f = log log + 6 log log = log + log = log log +.

25 Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 5 6 Tot. Cognome e nome in stampatello codice persona o n di matricola n d ordine v. elenco. Problemi di massimo e minimo. Impostare e risolvere col calcolo differenziale il seguente problema di massimo. Si consideri un parallelepipedo a base quadrata, sia lil lato della base e hl altezza. Tra tutti i parallelepipedi di questo tipo aventi diagonale dfissata, determinare quello di volume massimo. Ossia: calcolare in funzione di di valori di l, hper cui tale volume è massimo. Fare una figura per impostare il problema. [NB. Diagonale del parallelepipedo è ogni segmento che unisce due vertici del parallelepipedo senza essere interamente contenuto su una sua faccia; il parallelepipedo ha diagonali, tutte di uguale lunghezza]. 5

26 . Studio di funzione. Studiare la seguente funzione e tracciarne il grafico. E richiesto in particolare: insieme di definizione, limiti alla frontiera dell insieme di definizione, eventuali asintoti, studio del segno della derivata prima, determinazione dei punti di massimo e minimo, studio degli eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda, determinare in altro modo la concavità plausibile. f = 5 e +. 6

27 . Calcolo di limiti. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: arctan π lim + arctan.. Serie numeriche. Studiare il carattere della seguente serie, giustificando con precisione le proprie conclusioni in base ai criteri studiati. n= n e n cos n 7

28 5. Calcolare il seguente integrale definito: e d. 6. Calcolare il seguente integrale indefinito: cos sin + d 8

29 Recupero compitino di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 5/6. Prof. M. Bramanti Svolgimento Tema n Es. 5 6 Tot. Punti. Problemi di massimo e minimo. Impostare e risolvere col calcolo diff erenziale il seguente problema di massimo. Si consideri un parallelepipedo a base quadrata, sia l il lato della base e h l altezza. Tra tutti i parallelepipedi di questo tipo aventi diagonale d fissata, determinare quello di volume massimo. Ossia: calcolare in funzione di d i valori di l, h per cui tale volume è massimo. Fare una figura per impostare il problema. [NB. Diagonale del parallelepipedo è ogni segmento che unisce due vertici del parallelepipedo senza essere interamente contenuto su una sua faccia; il parallelepipedo ha diagonali, tutte di uguale lunghezza]. Per Pitagora si ha: h + l + l = d dove d è la diagonale fissata. Il volume del parallelepipedo è perciò ricaviamo così che dobbiamo massimizzare Calcoliamo V = l h l = d h V h = d h h = d h h per < h < d. V h = d h per Il volume è massimo per h d, h d h = d, d h l = = d d = d. 9

30 Perciò il volume è massimo quando il parallelepipedo è un cubo.. Studio di funzione. Studiare la seguente funzione e tracciarne il grafico. E richiesto in particolare: insieme di definizione, limiti alla frontiera dell insieme di definizione, eventuali asintoti, studio del segno della derivata prima, determinazione dei punti di massimo e minimo, studio degli eventuali punti di non derivabilità. Non è richiesto lo studio della derivata seconda, determinare in altro modo la concavità plausibile. Definita per. Per ±, f = 5 e +. f e + { + + = asintoto verticale da destra, punto d arresto a tangente orizzontale perché f si annulla con velocità esponenziale da sinistra. Per ±, f 5 + con crescita lineare. Cerchiamo eventuali asintoti obliqui. f 5 = 5 e + 5 = 5 e + e +. e + per ± 5 e + 5 Quindi per ± e la funzione ha gli asintoti obliqui: + 5 = ±5 per ± { f 5 ±5 = 9 y = 5 + per + y = 5 9 per. Calcoliamo, per, f = e sgn + = e per < + = e per > + e per > e per < = e sgn

31 Per > f per sempre. La funzione è sempre crescente per >. Per < f per < < quindi = 5 5 è punto di minimo relativo, = 5+ 5 è punto di massimo relativo. f + = 9e; f = e, quindi = è punto angoloso, e punto di minimo relativo. f = per = 5, = ± 5. Grafico qualitativo:. Calcolo di limiti. Calcolare il seguente limite, riportando i passaggi in modo chiaro e giustificandoli brevemente: Applico De L Hospital: lim + arctan π lim + arctan. arctan π lim + arctan = = [ ] [ ],

32 ma: = + + = + + = + quindi e questo è il limite cercato =,. Serie numeriche. Studiare il carattere della seguente serie, giustificando con precisione le proprie conclusioni in base ai criteri studiati. n e n cos = n n n= n e n cos n e n = n + n + o n cos n = n +!n + o n = n + n +!n + o n n + n + o n = n n + o n + n +!n + o n 6n quindi la serie è a termini almeno definitivamente positivi, e per confronto asintotico con la serie armonica generalizzata convergente 6n, converge.

33 5. Calcolare il seguente integrale definito: e d. e d = e d + e d. e d = e + e d = e e + c g f = e + c e d = [ e ] + [ e ] = e + e + e = + e e. 6. Calcolare il seguente integrale indefinito: cos sin + d cos sin + d = sin cos d = sin + [sin = t; cos d = dt] t = t + dt = + t + 5 t + t + t + = t + t + t + dt = t + log t + + t + + c = t + log t + + t + + c = sin + + log sin + + dt t + dt sin + + c.

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 0/06. Prof. M. Bramanti Tema n 4 6 Tot. Cognome e nome (in stampatello) codice persona (o n di

Dettagli

Primo Appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano A.A. 2008/2009. Prof. M. Bramanti Svolgimento Tema n 1

Primo Appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano A.A. 2008/2009. Prof. M. Bramanti Svolgimento Tema n 1 Es. 3 4 5 6 7 8 Tot. Punti Primo Appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano A.A. 008/009. Prof. M. ramanti Svolgimento Tema n 0 crediti (ord. L.70). Numeri complessi. Risolvere

Dettagli

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2011/2012. Prof. M.

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2011/2012. Prof. M. Es. 5 6 Tot. Punti Prima prova in itinere di Analisi Matematica Ingegneria Elettronica Politecnico di Milano A.A. 0/0. Prof. M. ramanti Tema n Cognome e nome (in stampatello) n di matricola n d'ordine

Dettagli

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Tema n 1

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2011/2012. Prof. M. Bramanti Tema n 1 Es. 4 6 7 Tot. Punti Secondo appello di Analisi Matematica Ingegneria Elettronica Politecnico di Milano A.A. 0/0. Prof. M. ramanti Tema n Cognome e nome in stampatello) n di matricola n dordine v. elenco)

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2011/2012. Prof. M.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2011/2012. Prof. M. Es. 2 3 4 5 6 Tot. Punti Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica Politecnico di Milano A.A. 20/202. Prof. M. ramanti Tema n Cognome e nome (in stampatello) n di matricola

Dettagli

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2013/2014. Prof. M. Bramanti Tema n 1

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2013/2014. Prof. M. Bramanti Tema n 1 Es. 2 3 4 5 6 7 8 Tot. Punti Secondo appello di Analisi Matematica Ingegneria Elettronica Politecnico di Milano A.A. 203/204. Prof. M. ramanti Tema n Cognome e nome (in stampatello) n di matricola n d'ordine

Dettagli

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2008/2009. Prof. M.

Prima prova in itinere di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2008/2009. Prof. M. Es. 5 6 Tot. Punti Prima prova in itinere di Analisi Matematica Ingegneria Elettronica Politecnico di Milano A.A. 008/009. Prof. M. Bramanti Tema n Cognome e nome (in stampatello) n di matricola n d'ordine

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2. Politecnico di Milano Ingegneria Industriale Analisi e Geometria Esercizi sul calcolo integrale. Calcolare l area della regione Ω contenuta nel primo quadrante, deitata dalle seguenti curve γ : y + γ :

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1

Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto 1 Esercizi di Analisi Matematica Paola Gervasio Esercizi su serie numeriche, integrali ed equazioni differenziali utili per la preparazione all esame scritto Es Determinare il carattere delle seguenti serie

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B)

Esercizi su: insiemi, intervalli, intorni. 4. Per ognuna delle successive coppie A e B di sottoinsiemi di Z determinare A B, A B, a) A C d) C (A B) Esercizi su: insiemi, intervalli, intorni. Per ognuna delle successive coppie A e B di sottoinsiemi di N determinare A B, A B, A c e B c. a) A = { N + = 0}, B = { N = 6}, b) A = { N < 5}, B = { N < },

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Recupero sul 1 compitino di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2013/2014. Prof. M.

Recupero sul 1 compitino di Analisi Matematica 1 Ingegneria Elettronica Politecnico di Milano A.A. 2013/2014. Prof. M. Es. 2 4 5 6 Tot. Punti Recupero sul compitino di Analisi Matematica Ingegneria Elettronica Politecnico di Milano A.A. 20/204. Prof. M. Bramanti Tema n Cognome e nome (in stampatello) codice persona (o

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1)

Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa (1) Corso di Metodi Matematici per l Ingegneria A.A. 2016/2017 Esercizi svolti sulle funzioni di variabile complessa 1) Marco Bramanti Politecnico di Milano November 7, 2016 1 Funzioni olomorfe e campi di

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del secondo appello, 1 febbraio 2017 Testi 1 Analisi Matematica I per Ingegneria Gestionale, a.a. 206-7 Scritto del secondo appello, febbraio 207 Testi Prima parte, gruppo.. Trovare le [0, π] che risolvono la disequazione sin(2) 2. 2. Dire se esistono

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione su: teoria e definizioni Indice 1 Dominio e segno 2 1.1 Esercizi di teoria......................................... 2 1.2 Impostazione

Dettagli

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale

PER LA COMMISSIONE D ESAME 1E 2E 3E 4E 5E Totale Esame di Analisi Matematica Uno 31 Gennaio 2014 Fila: A 1 Università di Padova - Scuola di Ingegneria - Esame di Analisi Matematica Uno Lauree: Chimica e Materiali 31 Gennaio 2014 (Primo appello, a.a.

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali)

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali) a Prova parziale di Analisi Matematica I () ) Data la funzione f ( ) = tg + ln( cos ) a) determinare il campo di esistenza, b) calcolare il limite lim f ( ) π ) Definizione di limite finito: lim f ( )

Dettagli

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento

Traccia n.1 Studiare il comportamento della funzione: 3x + ex 3x e x. Svolgimento Traccia n. Studiare il comportamento della funzione: Svolgimento f(x) = 3x + ex 3x e x Determinazione del campo di esistenza, E[f]. La funzione si presenta come rapporto di due funzioni; il campo di esistenza

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino

Analisi I Ingegneria Chimica e Aerospaziale 1 o compitino 1 o compitino 1 febbraio 215 1 Si consideri la funzione f : R R definita da { f) = 2 log se se = a) Si dimostri che f è continua e derivabile su tutto R b) Si dica se f ammette derivata seconda in ogni

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Simboli logici. Predicati, proposizioni e loro negazioni.

Simboli logici. Predicati, proposizioni e loro negazioni. PROGRAMMA di Analisi Matematica A.A. 202-203, canale, prof.: Francesca Albertini, Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M. Bramanti,

Dettagli

ESERCITAZIONI PER ESAMI DI ANALISI MATEMATICA

ESERCITAZIONI PER ESAMI DI ANALISI MATEMATICA ESERCITAZIONI PER ESAMI DI ANALISI MATEMATICA SVOLTI DAL PROF. GIANLUIGI TRIVIA Eercise. Studia le caratteristiche della seguente funzione e tracciane il grafico 4 + y = Soluzione la funzione va studiata

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002

Università di Foggia - Facoltà di Economia. Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 2002 Università di Foggia - Facoltà di Economia Prova scritta di Matematica Generale - Vecchio Ordinamento - 04 giugno 00 Cognome e nome............................................ Numero di matricola...........

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Esercizi di Analisi Matematica Prof. G.Cardone. Numeri comlessi Calcolare le radici comlesse delle seguenti equazioni: z + i z + = z 4 6 + 6i = i z + i + = (z + ) = i z ( + i) z + i = z = + i i z i + i

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte

ANALISI MATEMATICA 1. (Ingegneria Industriale, corsi A e B) Esempi di prove scritte ANALISI MATEMATICA 1 (Ingegneria Industriale, corsi A e B) Esempi di prove scritte Rispondere ai quesiti a risposta multipla Qi, risolvere gli esercizi Ei, enunciare le definizioni Di e svolgere le dimostrazioni

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Argomenti delle lezioni.

Argomenti delle lezioni. Argomenti delle lezioni. 1 settimana Lunedì 1 ottobre Presentazione del corso. Martedì 2 ottobre Il campo ordinato dei numeri reali. Utilizzo degli assiomi nelle dimostrazione di alcune proprietà. Equazioni

Dettagli

Diario del corso di Analisi Matematica 1 (a.a. 2016/17)

Diario del corso di Analisi Matematica 1 (a.a. 2016/17) Diario del corso di Analisi Matematica 1 (a.a. 2016/17) 16 settembre 2016 (2 ore) Presentazione del corso. Numeri naturali, interi, razionali, reali. 2 non è razionale. Come si risolve 2 + 1 = 0? 19 settembre

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

DERIVATE. 1.Definizione di derivata.

DERIVATE. 1.Definizione di derivata. DERIVATE Definizione di derivata Sia y = f( una funzione continua Fissato un punto o appartenente all insieme di definizione della funzione y = f(,sia Po = (; f(o il punto di ascissa o appartenente al

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio 1. Si consideri il seguente sistema 2x 3y + z =5 x ky +2z = k kx y z = 1 Si trovino il numero delle soluzioni al variare del parametro

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Analisi Matematica 1 Nome... N. Matricola... Ancona, 12 gennaio 2013 1. Sono dati i numeri complessi z 1 = 1 + i; z 2 = 2 3 i; z 3 =

Dettagli

Scritto d esame di Analisi Matematica I

Scritto d esame di Analisi Matematica I Capitolo 2: Scritti d esame 07 Pisa, 8 Gennaio 999. Studiare il comportamento della serie al variare del parametro α > /2. ( ) n n sin α n 2α 2. Sia ( ) f(x) = log + sin3 x. 2 (a) Determinare la derivata

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

Analisi Matematica I

Analisi Matematica I Esercizi di Analisi Matematica I Università degli Studi di Tor Vergata - Roma Facoltà di Ingegneria Corsi di Laurea: Ingegneria Civile, Medica, dei Modelli e dei Sistemi a cura di Ciolli Fabio I testi

Dettagli

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni

Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 18 Gennaio Soluzioni Primo Compito di Analisi Matematica Corso di laurea in Informatica, corso B 8 Gennaio 06 Soluzioni Esercizio Siano z e z due numeri complessi con modulo e argomento rispettivamente (ρ, θ ) e (ρ, θ ) tali

Dettagli

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI

Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. 2002/2003) Docente: Prof. Piero MONTECCHIARI Università degli Studi di Ancona Corso di Laurea in SS.FF.NN. Corso di MATEMATICA (A.A. /3) Docente: Prof. Piero MONTECCHIARI STUDIO DI FUNZIONI Scritti dal tutore Dario GENOVESE 1 Dominio La prima cosa

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA" SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000

UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000 UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA" SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000 - I PROVA SCRITTA DI ESONERO DI ANALISI I 20/2/999

Dettagli

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera?

DERIVATE. Rispondere ai seguenti quesiti. Una sola risposta è corretta. 1. Data la funzione f(x) =2+ x 7, quale delle seguente affermazioni èvera? DERIVATE Rispondere ai seguenti quesiti. Una sola risposta è corretta.. Data la funzione f(x) =+ x 7, quale delle seguente affermazioni èvera? (a) f(x) nonè derivabile in x =0 (b) f (0) = (c) f (0) = (d)

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Capitolo 9 (9.2, Serie: 1,..., 18).

Capitolo 9 (9.2, Serie: 1,..., 18). Universitá degli Studi di Bari Corso di Laurea in Biotecnologie per l innovazione di Processi e Prodotti Programma dettagliato di MATEMATICA ED ELEMENTI DI STATISTICA- A.A. 2014/2015 Prof. Mario Coclite

Dettagli

Politecnico di Bari Dicatech A.A. 2015/2016 Analisi Matematica I Prova scritta 05 febbraio 2016 Traccia A

Politecnico di Bari Dicatech A.A. 2015/2016 Analisi Matematica I Prova scritta 05 febbraio 2016 Traccia A Politecnico di Bari Dicatech A.A. 2015/2016 Analisi Matematica I Prova scritta 05 febbraio 2016 Traccia A Cognome Nome N o Matricola Nello svolgimento di tutti gli esercizi richiesti, i passaggi ed i risultati

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli 6 settembre 5 ii Indice Introduzione v Nozioni preinari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

Lezione 3 (2/10/2014)

Lezione 3 (2/10/2014) Lezione 3 (2/10/2014) Esercizi svolti a lezione Esercizio 1. Tracciando un grafico approssimativo, discutere qualitativamente l esistenza di radici reali dei seguenti polinomi, al variare del parametro

Dettagli

PROGRAMMAZIONE DIDATTICA ANNUALE

PROGRAMMAZIONE DIDATTICA ANNUALE PROGRAMMAZIONE DIDATTICA ANNUALE Anno Scolastico: 2015 / 2016 Dipartimento (1) : MATEMATICA Coordinatore (1) : TRIMBOLI SILVIA Classe: 5H Indirizzo: Servizi Socio-Sanitari Serale Ore di insegnamento settimanale:

Dettagli

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE:

Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa COGNOME: NOME: MATR.: RISPOSTE: Prova scritta di Analisi Matematica 1 Prima parte, Tema A Ingegneria dell Energia, Univ. di Pisa 12 gennaio 2013 COGNOME: NOME: MATR.: RISPOSTE: A B C D E 1 X 2 X 3 X 4 X 5 X 6 X 7 X 8 X 9 X 10 X 1 Prima

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli